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INTRODUCTION

Let X denote a finite set of points in the (Euclidean) plane. A minimum spanning
tree for X, denoted by M(X), is a connected network of line segments joining
various pairs of points of X so that the sum of the lengths of the line segments,
called the length of M(X), is as small as possible. We denote this minimum possible
total length by L,/(X).

It may happen for a set X that by embedding X in a suitable larger set Y, Ly(Y)
is actually less than L,/(X). For example, if X consists of the three vertices of an
equilateral triangle and Y consists of X together with the centroid of the triangle,
then an easy calculation shows that

L(¥) _ /3 _ 0.866025... .

Ly(X) 2

For any set X we define a Steiner minimal tree S(X) for X to be a minimum
spanning tree M(Y) having the least possible length over all sets Y = X. We denote
this minimum possible length by Ly(X). Although a set X may have many different
Steiner minimal trees, the length L(X) is uniquely determined. Points in Y — X are
called Steiner points of S§(X). Points in X are called regular points. Note that
LX) < LyY)forany X = Y.

The problem of determining S(X) and Ly(X) for a given set X has an old and
venerable history, dating back to Steinhaus, Maxwell, Steiner, and, in a primitive
form, to Fermat. As is the case with many combinatorial optimization problems, the
(Euclidean) Steiner minimal tree problem is known to be NP-complete [4]. (For a
complete discussion of this concept, see [S].) This has reinforced recent efforts to
find good approximations for S(X) that can be computed efficiently. One of the most
natural of these is just the minimum spanning tree M(X). A common measure of
how well M(X) approximates S(X) in length is given by the worst-case ratio

LX)
Pl X

where X ranges over all finite sets in the plane.
A long-standing conjecture, due to Gilbert and Pollak [6], is the following:

Conjecture. p = \/3/2 = 0.866025... .

If true, this would be best possible, as the previously noted example of an
equilateral triangle shows. This conjecture has been verified in the case where
| X| <5 (see [3, 10]) and also if S(X) contains at most one Steiner point (see [9]).
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Over the past few years, lower bounds for p have improved from the observation
of E. F. Moore (see [6]) that p > 1/2 (in fact, for any metric space), to p > 1/\/_ =
0.57735... by Graham and Hwang [7] (for any Euclidean space), and then to

p=@2+2/3—/7+2/3)/3=074309...

by Chung and Hwang [1]. Very recently, Du and Hwang [11] proved that p > 0.8.
The purpose of this paper is to tighten the bound on p even further with the
following result.

THEOREM.
p = po = 0.82416874... , m
where p,, is the unique real root of the polynomial
P(x) = x'? — 4x't — 2x'% 4 40x°® — 31x® — 72x7 + 116x°
+ 16x° — 151x* + 80x® + 56x% — 64x + 16
satisfying 0.8 < p, < 1.

We point out that if X, denotes a regular simplex in Euclidean n-space, then it is
known [2] that the ratio Ly(X,)/Ly(X,) can be arbitrarily close to \/‘32/(4 — \/5) =

0.66984. .. for n sufficiently large so that the previously mentioned lower bound of
l/ﬁ is not as bad as it looks. In the case of the rectilinear plane, with the (/,)
distance between (x, y) and (x', y') given by {x — x'| + |y — y'|, and where Lg{X)
and Lg,,(X) denote the lengths of the rectilinear Steiner minimal tree for X and the
rectilinear minimum spanning tree for X, respectively, Hwang [8] proved

LesX) _ 2

> -, for all X,
LystX) 3

and that further, this is best possible [as the four points (+1, +1) show, for
example]. Thus, the Euclidean plane seems to be a somewhat more stubborn case.

Before proceeding to the main results of the paper, we should comment on its
general style. Even a casual perusal shows that a fair amount of algebraic computa-
tion is displayed. We felt that this was unavoidable for two reasons. First, in fairness
to the reader who might really wish to verify the various claims, we tried to include
enough detail so that it would actually be possible. In fact, we omitted most of the
actual computations and, of course, all of the computer symbolic computations we
needed. Second, on more than one occasion in the past, assertions made by various
authors in proofs of bounds for this problem have proven to be incorrect (usually
because of sketchy and incomplete arguments). We hope to avoid this pitfall by
being more explicit than usual.

PROPERTIES OF STEINER MINIMAL TREES
In this preliminary section we will mention several properties of Steiner minimal

trees that will be needed later. Some of these can be found in the excellent (but now
somewhat out-of-date) survey of Gilbert and Pollak [6].
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LemMa 1. (i) In any Steiner minimal tree S(X) for X we can assume without loss of
generality that every Steiner point is incident to exactly three edges of S(X), each of
which meets the other two at 120°.

() If |X| =n, then S(X) has at most n — 2 Steiner points. If S(X) has n —2
Steiner points it is called a full Steiner tree.

(i) Any Steiner minimal tree S(X) for X can be decomposed into full Steiner trees
in the following sense. There always exist unique subsets X; = X such that | X; n X ]|

< 1 for i #j, S(X) restricted to X; is a full Steiner tree on X;, and these full trees
partition the set of all edges of S(X).

LemMma 2 [10]. Let four points A, B, C, D be given so that both possible full
Steiner trees exist. Then A and B are adjacent to a common Steiner point in the unique
Steiner minimal tree if and only if the angle AEB is acute where E is the intersection of
lines AD and BC (see FIGURE 1).

FIGURE 1

With coordinates assigned as shown in FIGURE 1 we have
s+ (1/2)a + d)
/3 Na+d)’
s+ (1/2)(b + ¢)
W3+

Thus, by LEMMa 2, if A and B have a common Steiner point S; and the angle AEB is
acute, then we have

slope AD = —

slope BC =

s+ (1/2)a + d) s + (1/2)(b + ¢) -1
W3Da+d  (S3b+0)

ie.,
2s+a+dN2s+ b+ c)=3a+ d)b +c). (2)

Infact,fora’ <a, b <b,c <c,d <d, we have

2s+a +d)2s+ b + )= 3@ + dY + ). (2%
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THE PROOF OF THE THEOREM

We now proceed to the proof of (1). It will be enough to show that for any finite
set X in the Euclidean plane,

Ly(X)

LX) Z Pos (3)

where p, is defined as in (1). The proof is by induction on |X|. Inequality (3)
certainly holds if | X| < 4 as we previously noted. Assume that (3) holds for all X
with | X | < n for a fixed integer n > 5 and suppose | X| = n violates (3), i.e,,

Ly(X)
Ly(X)

<

We will eventually derive a contradiction through a sequence of claims. The
occasionally rather formidable algebraic manipulations needed in the proofs of the
claims have been relegated to the Appendix.

CLAM 1. Any Steiner minimal tree S(X) on X must be a full Steiner tree. For if
S(X) were not full, then by LEMMA 1, we could partition the edges of S(X) into (full)
Steiner minimal trees on smaller sets X; < X, and

Ly(X) Z Ls(X) oo
Ly(X) Z LX)

since by induction, for each i
L R
(X)) >
LX)

Thus, we can also assume that some Steiner point S, of S(X) is adjacent to two points
A and B of X and another Steiner point §, .

Let d(U, V) denote the (Euclidean) distance between U and V. Referring to
FIGURE 2, we can assume (without loss of generality) that d(4,S,)=a<b=
d(B, S,) and d(4, B)= 1.

FIGURE 2
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Note that a® + ab + b? = 1. Set
d(S;, S;) =5, dC,S)=¢c, d(D,S,)=4d.
Note that at least one of C and D must be a Steiner point.
CLamM 2.5+ ¢ +d < ((pp — b)2a + b — po))f(a + 2b — 2p,).
Proof. Let s’ denote Lg({4, C, D}) and let X’ denote X — {B}. Suppose
s+a+b+tc+d—5=p,.
Now,
LyXy< LX) —(s+a+b+c+d+5

since the right-hand side is the length of some tree connecting X’ together. Since
| X'| < n, then by induction

Ly(X") > po Ly(X).
Combining these we obtain
LX) LX) —(s+a+b+c+d)+5 +p,
Ly(X) LX) +1

- Po LM(X:I) + Po = 0o
LX) +1

which is a contradiction. Thus, we can assume
m+a+b—ys <p,, where m=s+c¢ +d.
A straightforward computation gives
s =(a® + am + m*)Y2,
Therefore,
(m+a+b—py)? <a®+am+ m?
which implies
mia + 2b — 2po) < (p, — b)2a + b — p,).

Suppose we have 2p,>a+ 2b. Then by taking a®+ ab + b® = 1, we obtain
b = 1.15 or b < 0.49 which is impossible. Therefore b < po and
{po — b)2a + b — py) .

m=s+c+d< @+ 26— 2py) = f(b).

Note that since f(b) is a decreasing function in increasing b,
m< f(1//3)=2677....1
Cram 3. The angle AEB is acute (see FIGURE 1).
Cram 3 is proved in the Appendix.
CLamM 4. b < 0.7574 and a > 0.3728.
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Proof. Choose S’ on the extension of $,S, such that d(S,, §3) = f(b). It is easily
checked that the angle AS’, B is smaller than the angle AS, B which is smaller than
the acute angle AEB. Therefore by (2') we have

(21 (b) + a)2f (b) + b) = 3ab.
Together with a? + ab + b? = 1, we obtain
b < 0.7574.

This also implies a > 0.3728. |

CLamm 5. (i) If C is a Steiner point, then there is a point Y € X with
d(4, Y)<d(4, C)ord(4, Y) < &4, S,).

(i) If D is a Steiner point, then there is a point Z € X with d(B, Z) < d(B, D) or
d(B, Z) < d(B, S,).

FIGURE 3

Proof of (i). Suppose C is a Steiner point but no such point Y exists. Referring to
FIGURE 3, locate the point R so that RC is parallel to AS, and d(R, C) = s + 2a — ¢
so that d(4, R) = d(4, C). If some point of X lies on the line segment RC, then we
are done.

Suppose some Steiner point @ lies on RC. Let us move along the edges of S(X)
on AS,8,C0Q,Q, ... Q;... Y by always turning to the right at the Steiner points
Q;. If the angle ACQ is no more than 60°, we have d(Q, C) < d(4, Q) < d(4, O)
because of the minimality of S(X). Also, we note that the angle 0,04 is no more
than 60°. Therefore we have d(4, Q,) < d(4, C) and d(4, Y) < d(4, C) if Q, is not in
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the region 4SS, C. If the angle ACQ is greater than 60°, it can easily be seen that
the angle AQC is less than 60°. By a similar argument we have

d(4, Y) < max {d(4, C), d(4, S,)}.

We may assume some Steiner point Q' of S(X) connected to C lies on the extension
of the line segment CR.
We next need the following inequality which is proved in the Appendix:

a+b+c+d+s+dR,C)= LA, C, D, R) + p,. @)

By deleting the point B and the five edges incident to S, or S, and reconnecting the
points (excluding B) by S(4, C, D, Q') we have

Lg(A, C, D, Q') < L{A, C, D, R) + d(R, Q)
and so, by induction and (5),
LX) _(LsX)—(a+b+ct+d+s+dC R)+ L4 C D, R)+p,
LX)~ Ly(X —{B})+1

Ly(X — {B}) + po
I X —(B)+1-F°

which is a contradiction. }

Proof of (ii). The argument used to prove (ii) is analogous to that used to prove
(i) except that in place of (4) we need the inequality (4’) {also proved in the
Appendix):

a+b+c+d+s+dD,R)>LyB,C,D, R)+ p,. 4)
To complete the proof of (1) we need a final inequality (proved in the Appendix):
a+b+c+d+s5s2dC, D)+ pyow, 5)
where
o=min {1 + w, 1 + w,, o, + v,}
and
w; = max {d(4, C), d(4, S,)},
w, = max {d(B, D), d(B, S,)}.
Granting these, we then have

LX) (LsX)—(@a+b+c+d+9)+dC D)+po0
LX)~ Lu(X —{4,B) + o
LyX — {4, B})) + pow
= LyX—{A,B)+w

= pPo

which again is a contradiction.
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In the last sequence we used the induction hypothesis on the set X — {4, B},
using the fact (by CLAIM 5) that there are points of X — {A, B} relatively close to A
and B.

This completes the proof of the theorem. ||

APPENDIX

Proof of CLAM 3. Suppose the angle AEB is not acute. LEMMA 2 indicates that
the full Steiner tree on ABCD in the “other” direction (i.e., the full Steiner tree in
which A and C are joined to the same Steiner point) does not exist. This implies (as
shown in [107) that

L ACS, + LBDS, <60° or [ CAS,+ . DBS, <60°.

Case 1. £ ACS, + /. BDS, < 60°.
We then have

a+s sin 0,
c+s sin(60° +6,)

b+s sin 6,
d+s sin(60° + 0,)°

where 0, = £ ACS, and 0, = £ BDS,.
Since 8, + 0, < 60°, we have

sin (60° + 0,) sin (60° + 6,)

(c+s)+({d+s)=(a+s) in 0, +b+9) sin 0,
sin (60° + 6,) sin (60° + 6,)
=g +t+9 e —a,
= w(f,).

Now suppose

dw (a + 5) sin 60° (b + s) sin 60°
d0 (sin 6,)* (sin (60° — 6,))?

has a zero at 0. It can be shown that

2

FTE (9) >0.

Therefore w has a minimum at § and

o) = (Va+s+ b+ 9~
Thus
c+d>a+b+2./(a+skb+s)

and f(B)=a+b+s+2/(a+skb+s). Since 0,, 6, < 60°, we have ¢ >a and
d>b.
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Choose By, C,, D, on BS,, CS,, DS,, respectively, such that d(B,, S,) =
d(Cy, S;) = d(Dy, §;) = a. Then the subtree of S(x) connecting 4, By, C,, D, is
minimal. Therefore, s > (\/3 — 1a.

We have

&)= a+b+2/J3ab + (/3 — Da).
Combining this with the fact that a*> + ab + b*> = 1 and b > a, we get
b < 0.561 or b > 0.853
which is impossible. Therefore Case 1 cannot occur.

Case 2. L CAS, + [ DBS, < 60°.
Then by a method similar to that in Case 1, we have

a+b>c+d+2/(c+sNd+s)

We consider the following subcases:

Subcase (i).c <a—sandd < b —s.

Since /. ACR and [ BDR’ (see FIGURE 3) are not more than 60°, by an argument
similar to that used in CLAM 5, it can be shown that there are regular points
d(4, Y) < d(4, S;) and d(B, Z) < d(B, S,). Since s < a < b, the minimal spanning
tree on A, B, S, consists of AS, and BS, . Therefore we have

a+b+s> ? (4, S;) + d(B, S,))

and

LX) | LX) —a—b—s+(/3/2d(4, 5) + dB, 5,)
LX)~ Ly(X — {4, B)) + d(4, ) + d(B, 2)
L LsX — {4, BY) + (/3/20d(A, S,) + d(B, S,)
LyX —{4,B})+d(4, S,) +d(B, S,)

o PoLu(X — {4, B}) + po(d(4, S,) + d(B, S,))
“ Ly(X — {4 B)+d4,S,) +d(B, S,

which is a contradiction.

Subcase (i).c >a—sand b < b —s.
We know that

2s+c+d<a+b.

Choose C’ on the extension of CS, such that d(C’, S,) = a + b — 2s. Let E’ denote
the intersection of A4S, and BC'. Then the angle AE’'B is greater than the angle 4EB.
Therefore from (2) we know that

(25 + a)2s + b + ') < 3ab + ¢),
where ¢’ = a + b — 25, ie.,

(25 + a)(a + 2b) < 3a(a + 2b — 2s)



Chung & Graham: Euclidean Steiner Minimal Trees 337

which implies
scGbtaa
T2b+2a ° T

We want to show that

2= /3a+b> pe/b + 52 + bs,.

Using a® + ab + b* = 1, this can be derived by straightforward manipulation (using
the VAXIMA symbolic system, for example). In fact, this holds for 1 > b > 0.2.
Now choose C" on CS§, so that §C”, S,) =a—s. Then a+ b + s + d(C", S,)
— Lg({4, S,, C}) — pod(B, S,) > Osince Ly({4, S,, C"}) = \/ga. We consider
LX) | LX) —a—b—s—d(C", Sy) + Ls({4, S;, C}) + po d(B, S)
Ly(X) ~ Ly(X — {B}) + d(B, 2)

_ LsX — {B) + pod(B, 5,)
= LyX - (B) +d(B,S)

2 Po-
Again this is a contradiction.

Subcase (iii). c <a—sandd > b —s.
As in (ii) we can get
(2a + b)b
S ———=3,
2{(a + 2b)

a+(2—\/§)b>p0«/a2+as1 + 52

(which holds for 1 > b > 0.43). We can also derive a contradiction by the same
method as in Subcase (ii). ||

<b,

and

Proof of (4). Referring to FIGURE 3, we first note that ¢ > a in this case. It is easily
seen that

a+b+c+d+s+d(C, Ry< L{A, B, C, D, R).

Choose P so that PCR forms an equilateral triangle (see FIGURE 3). Thus, PCS,
forms a straight line and

LyA,B,D,P)=a+b+c+d+s+dC,R)

(by applying LEMMa 2 and using the fact that PCR is equilateral).
Thus, by (2) we have

2s+a+d)2s+ b+ )= 3a+ dyb + ¢), (6)
where
¢ =c+d(C, R)=s+ 2a.
In fact, for d’ < d we have

Es+a+d)2s+b+c)z3a+ )b+ d) (6")
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If f(b) < s + ¢’ + d, then by a calculation similar to that used in CLAIM 2 we can
prove

a+b+c +d+s— LgA, P, D)= p,

which is equivalent to (4).
We may assume

fByzs+c+d=2s+a) +4d )]
Suppose d > b. By (6’) we have
(2s+a+b)2s+ b+ )= 3a+ b)b + ¢),

ie.,
/13b* + 40ab + 284> — b — 2a
s> = a.
6
From (7) we have
4a + b < f(b).

This implies
ga, b):=p% + (—4b — 10a)p, + 3b> + 1lab + 4a* < 0.
On the other hand, we note that g(a, b) can be viewed as a function of a single

variable b since a® + ab + b? = 1 and the derivative of g,(b):= g(a, b) with respect to
bis

d %+a 14a® — 16b% — 4ab
L g1b) = —dpy + 10
ap 91(0) = =400 + <2a+b>p° 2a+b
14a® — 4b* — 2ab
>

2a+ b

since da/db = —(2b + a)/2a + b), and py > 076 > b > a > 0.37. By a straightfor-
ward calculation we have g(a, b) > g,(l/\/_j) > 0, which is a contradiction. Therefore

we may assume d < b. It follows from earlier arguments that there is a regular point
Z such that

d(B, Z) < d(B, S,) or d(B, Z) < d(B, D).
We consider the following two possibilities.

Case 1. d(B, Z) < d(B, S,).
Suppose the following is true:

a+b+c +s5s—dA, Py— p,d(B, S,) > 0. 8
Then we have
LX) - (LX) —(a+ b+ + s+ dC, R)) + Lg(4, R, C) + p,d(B, Z)
LX)~ Ly(X — {B}) + d(B, 2)

 LslX — {BY) + po d(B, 2)
~ Ly(X —{B}) +d(B, 2)

2 Po
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which is a contradiction. Therefore we must have

a+b+c +s—./3a+s)—pob+s) <0,

B—3a+1—poh
s >
Po_2+\/§

since a > 0.3728 and b < 0.7574.
From (7) we have

> 1.5b,

2a + 3b < f(b).
However, this implies f(b) > 4a + b, which has been shown to be impossible.

Case 2.d(B, S,) < d(B, Z) < d(B, D).
In this case we have d > b — s. Suppose the following is true:

a+b+c+d+s—d(C, D)~ p,(1 +d(B, D) > 0.
Then we have
Ly(X) S L{X)—a—b—c—d—s+dC, D)+ pyl + d(B, Z))

Lo(X — {4, B}) + po(1 + d(B, Z))
Ly(X — {4, B) + 1 + d(B, Z)

ZPO’

which is a contradiction.
Thus we may assume

goa, b, c,d, s):=a+b+c+d+s—dC, D)— py(l + d(B, D)) < 0.
Since g, is increasing in ¢ and decreasing in d we then have
gi(a, b, 5):=g,(a, b, 0, b, s)
=2a+2b+s—1—ps(l+b+s5)<0.
By choosing d' = b — s in (6") we have

V4b* +13ab + 10a* ~b—~2a _b+a
s = > .
3 3
Therefore

gsla, b,s)22a+b—1—pg+ L — pola + b)/3 =002 >0

since @ > 0.37 and a + b > 1.12. This again yields a contradiction. This completes
the proof of (4). ||

The proof of (4’) is basically the same as that of (4) so the details will be omitted.

Proof of (5). The one remaining inequality to prove is (5). We consider several
cases (refer to FIGURE 3).
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Case 1. d(4, C) < d(4, S,), d(B, D) < d(B, S,).
In this case (5) holds if it holds for ¢ = d = 0. However, since it does hold for
¢ =d =0, Case 1 is completed.

Case 2.d(4, C) < d(4, S,), d(B, D) = d(B, S,).
It is easily checked thatd > b —s =d' and s < a.
Suppose we have
a+ @2 —./3b=podi4, S,).
Then we can choose D' on S,D with d(S,, D’y=b —s. Suppose a+b+d +s
— LgB, S,, D) = pod(A4, S,). Then
LX) (Ls(X)—(@a+b+d +3) + LB, S, D) + pod(4, S,)
LX) Ly(X — {4}) + d(4, 5)
Ly(X — {4}) + pod(4, S,)
T LydX —{A) +d(4, S

2pO’

which is a contradiction.
Thus we must have

a+(2—\/§)b < poJat + as + s
This implies

- Ja(8 = 3p2) + 28b% + \/3(—16b*> — 8ab) + 16ab — ap,
B 2pg .

=5,.

We want to prove

9u(a, b, s)=a + b + 5 — po(s/a*> + as + 7 + 1) = 0.
Since g, is increasing in s, by straightforward calculation we have
9ala, b, 56) = (/3 = Db + 55— po > 0.16 > 0.
Recalling that b < 0.7574 and a > 0.3728, we therefore have

a+b+c+d+s=gaa b, s)+ dC, D)+ po(l + wy) = &C, D) + po(l + wy)
> d(C, D) + pow
and (5) is proved.

Case 3.d(4, C) = d(4, S,), d(B, D) < d(B, S,).

Since any point on Lg(X) — Lg(4, B, S,) cannot be within distance b of B, there
is a regular point Z’ in the shaded area of FIGURE 4.

We know that

3
—‘é—— Ly(A, B, Z)) < LA, B, Z)

< Ja+b+s?+d>+(a+b+s)d 9)
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A

FIGURE 4
We now consider

2
gs(a,b,d,s):=a+b+s—poﬁ\/(a+b+s)2+d2+(a+b+s)d.

Note that
a+b+s _ sin 0
Ja@a+b+s2+d +(@a+b+sd sin60°

where 0 is the angle S, DW (see FIGURE 5).
Ifsin 8 = p,, we have gs(a, b, d, 5) > 0 and
LX) Ls(X)—a—b—s+ pyLy(A, B, Z)
LX) Ly(X — {4, BY) + Ly(4, B, Z))
_LyX — {4, B}) + po Lu(4, B, Z))
Ly(X — {4, B}) + Ly(A, B, Z')

= Po
which is impossible.

FIGURE 5

341
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We may assume sin 0 < p,:=sin 6,. Hence

sin (60° — 6,) _

d>(@+b+s) ———
o

do. (10)

Suppose we have
b+ Q2 —./3)a=p,d(B, S,),
where d(C’, S,) = a — 5. Then

Ly(X) > Ls(X — {B}) + pod(B, S,)
LX)~ LydX — {B) +4(B,5;,) - '°

which is impossible. We may therefore assume

b+ ay/3 < por/b? + bs + 5% an
Consider the function
gela, b, s)=2a + b + dy — d(C’, D) — po(1 + /b* + bs + b?),

where d(D', S,):=d,.
Note that g, is decreasing in s since

gela, b, s + €) — ggla, b, s) = &(t — t cos B, — py cos 8,) <0
when ¢ = sin (60° — 6,)/sin 8, < 0.1and 0, = £ S,D'C,0,= £ 8,5, B < 60°. Thus
gela, b, 5) = gela, b, @) = 2a + b — 2p,.
If b < 0.6539, then g¢(a, b, s) > 0 and

LX) S LX) ~(a+b+s+c +d)+ LA, C, D)+ pod(B, Z')
Ly(X) Ly(X — {B}) + d(B, Z)

> Ly(X — {B}) + pod(B, Z)

T Ly(X —{B}))+ d(B, Z)

2 Py a contradiction.

Thus, we may assume b > 0.6539. Also, if a + b + s — po(1 + d(4, C)) = 0, then we
have
Le(X) _ LX) —a—b—s5+ po(l +d(4, C))
Ly(X) ™ Ly(X —{4,B)+1+d(4,C)

= po

which is impossible. Consequently, we may assume

a+b+s—pg

4, C) = (12)

Po

We now consider

g7(a’ b) c, d’ S):C+d+5"f(b)
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for a, b, ¢, d and s satisfying
a?+ab+b2=1 13)

together with (10), (11), (12) and 0.6539 < b < 0.7574.

Let (ag, by, ¢q, dy, s¢) denote the 5-tuple for which g4 achieves its minimum
value m,. It is easily seen that ay, by, ¢, do, and s, must satisfy (10), (11), and (12)
with equality. Thus, g, can be considered a function of the single variable b. We now
outline the (brute-force) method used to prove that g,(b)>0 for 0.6539
< b <0.7574. The actual mechanism by which this was done was through the
symbolic computation system VAXIMA, a modified form of the Macsyma system at
the Massachusetts Institute of Technology.

Step 1. Determine the derivatives da/db, dc/db, dd/db, ds/db in terms of
a, b, c,d,s.
Step 2. Show that in the ranges

037<a<05, 065<b<076, 0<s,¢,d< 1

we have |da/db| < 2, |ds/db| < 2, |dc/db| < 10, |dd/dc| < 1, and df (b)/db < 0. It then
follows that dg,/db > —15.

Step 3. Compute the values of g4(b) for b, =065+ i/200, 0 <i <1, where
b,_; <0.76 < b,. It turns out that g,(f) > 0.1for0 <i <t.

Step 4. Estimate g-(b) for 0.65 < b < 0.76 using the results from Steps 2 and 3. In
particular, since g, is continuous, then for any b € [0.65, 0.76] we can choose the
largest b, satisfying b > b, and conclude

g,(b) = g4(b)} — 15(b — b)
>0.1-0075>0.

By this method we can prove that g,(b) > 0. However, this contradicts CLAIM 2
so we conclude that Case 3 cannot occur.

Case 4. d(A, C) = d(A4, S,), d(B, D) > d(B, S,).
We want to prove that

gs(@ b, e,d, s)s=a+b+c+d+s—dC, D) — pyfl + w;) >0,
where w; = min {d(4, C), d(B, D)} for a, b, ¢, d and s satisfying (13) and

(po — b)2a + b — po)

E d 14
e P T P 19
2s+a+d2s+b+c)=3a+d)b + ¢), (15)
0.6539 < b < 0.7574. (16)

Note that (14) and (15) follow from Craims 1 and 2.
Let (ay, by, ¢y, dy, 50) denote the 5-tuple for which g, achieves its minimum
value m. Suppose d(4, C) < d(B, D). For a small positive value ¢ we note that

gs(@g, bo, co, do — & So) < gslag, by, co, dy, So)
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and (gy, by, ¢o, dg — &, s) satisfies (13)H15), and dy, — & > O since d(B, D) > d(B, §,).
This contradicts the minimality of (aq, by, Co, dg, So)- Similarly, if d(4, C) > d(B, D),
we derive a contradiction. Thus we may assume d(4, C) = &(B, D), i.e.,

(@ + Co)so + a2 + c2 — agco = (bo + do)so + b3 + di — by d,. a1

Suppose (ay, bg, o, dg, So) does not satisfy equality in (15). We consider the
S-tuple (ag — &,, by + &, Co + &, dg — €, So), Where &,, &,, €., &, are small positive
values chosen such that equality holds in (13) and (14), and d(4’, C")=d(4, C) =
d(B’, D) (see FIGURE 6). Looking at first-order approximations, we conclude:

(i) (2ao + boe, = (2bg + ales,
(i) &5 + 2ay — ) = ¢&.(s¢ + 2¢ — a),
(i) eysq + 2by — d) = g5 + 2dy, — b).

FIGURE 6

Thus

bo_dO zbo +ao Co— Qg
—g—£ >3
gt ey —& —& 2 £b<so+2do—b0+<bo+2"0 So + 2¢co — ag

=38, g9(@g, bo, Co» do» So)-

Since d(A4, C) = d(B, D), we have b, > a,, ¢, = d, . It suffices to consider the follow-
ing three cases:

Subcase 1. by > ay 2 ¢y 2 d,.

Here, it is immediate that go(a,, by, Co, do, So) = 0.
Subcase 2. co 2 dg 2 by = aq.

Then

by — d, Co — g

dy, by, Co, dos So) = +
95(@05 bo, o, do, So) So+ 2dy — by So+ 2c6 — ag

(bo + co — ag — do)so + boco — apdy
(5o + 2dy — bo)sg + 2¢o — ag)

>0.

Subcase 3. by = dy, co = ag.
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Then

(bo + co — ag — do)so + boco — agdy
(So + 2dg — boXso + 2¢4 — ag)

goldo, by, Co, do, So) = 20.

Thus we have ¢, + ¢, >¢, +6.. It follows that (ay —¢,, by +¢, ¢o +¢,,
dy — &4, 5) satisfies (15) since the angle determined by A’C’ and B’D’ containing S, is
no more than 90°. Therefore,

98(@o, bo, o, do, So) — Gala@o — 4> bo + &y, Co + &, do — &4, So)
=¢,—¢& —¢efl —cos 0,)+ el —cos 8,)
> (1 —cos 0, 0e, — &, —¢&. +¢&5) =0,

where 6, = £/ S,CD and 6, = . S, DC. However, this contradicts the minimality of
{ag, by, €y, do, So). Thus (ag, by, ¢y, dy, o) satisfies the inequalities (13), (14), (15),
and (17), with equality. Since we have five variables and four equations, ay, c,, dy,
50, and gg can all be viewed as functions of the single variable b,. Again we use a
brute-force technique to prove gg(b) > 0 for 1/\/3 < b £0.76 as follows:

Step 1. Determine da/db, dc/db, dd/db, ds/db in terms of a, b, c, d, s using (13)-
7.

Step 2. Determine dgg/db in terms of a, b, ¢, d, s. It turns out that
|dgg/db| < 1500.

Step 3. Determine d?g,/db” in terms of a, b, c, d, s. It turns out for this computa-
tion that
|d*gg/db*| < 6 x 108

Step 4. Sample (dgg/db)(b) at the points b; € (1/./3, 0.58] where
bi=1/3+i22x1078), i=1,2...,13x 10°
All these values of (dgg4/db)(b) happen to be greater than 60.
Step 5. Sample gg(b) at points b; in [0.58, 0.76] where
b; =0.58 + j(6 x 107 °).
All these values of g, are greater than 0.1.

Now from Steps 3 and 5 we know that

%(b)z%(bi)~6x 10822 x 107°8>0

for b e [1/\/3, 0.58]. Since g4(1/y/3) =0, we have g4(b) > 0 for b e [1/,/3, 0.58].
From Steps 2 and 5, we have, for b in [0.58, 0.76],

ge(b) > gg(b) — 1500 - 6 x 1073 > 0.
This completes the proof of (5). |]

We point out that the actual value of p, is obtained by solving the system of
equations formed by taking equality in (13), (14), (15), and (17) together with the
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equation ga(l/\/g) = 0. We remark in conclusion that it would appear that new
ideas will be needed to prove that p > \/3/2, although this does not diminish our
belief in its truth.

10.

11.
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