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Introduction

In 1971, C. M. Fortuin, P. W. Kasteleyn and J. Ginibre [FKG] published a re-
markable inequality relating certain real functions defined on a finite distribu-
tive lattice. This inequality, now generally known as the FKG inequality, arose
in connection with these authors’ investigations into correlation properties of
Ising ferromagnet spin systems and generalized earlier results of Griffiths [Gri]
and Harris [Har] (who was studying percolation models). The FKG inequality
in turn has stimulated further research in a number of directions, including a
variety of interesting generalizations and applications, particularly to statistics,
computer science and the theory of partially ordered sets. It turns out that spe-
cial cases of the FKG inequality can be found in the literature of at least a half
dozen different fields, and in some sense can be traced all the way back to
work of Chebyshev.

In this paper, I will survey some of this history as well as the more recent
extensions and applications. I will also discuss various open problems along
the way which I hope will convince the reader that this exciting area is still fer-
tile ground for further research.

Background

We begin with an old result of Chebyshev (see [HLP]) which asserts that if f
and g are both increasing (or both decreasing) functions on [0, 1] then the aver-
age value of the product fg is at least as large as the product of the average val-
ues of fand g, where the average is taken with respect to some measure y on
[0, 1].

In symbols, this is just

1 1 1
D (J)fgdﬂ> Ifdu(J;gdu
0
In the case that 4 is a discrete measure we can restate (1) as follows: If f(k) and

g (k) are both increasing (or both decreasing) and u(k)=>0 for k=1,2,3, ...,
then
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The proofs of (1) and (2) follow immediately by expanding the inequality
2 UO=fUNGO—g(Mpr@u)=0.
L J

Basically, the FKG inequality represents a way of extending (2) to the situa-
tion in which the underlying index set is only partially ordered, as opposed to
the totally ordered index set of integers occurring in (2). The setting is as fol-
lows. Let (I, <) be a finite distributive lattice, i.e., I"is a finite set, partially or-
dered by <, for which the two functions A (meet or greatest lower bound) and
v (join or least upper bound) defined by:

xAy=max{z€l z<x,2z<y},

xvy=min{z€lz2x,z>y}
are well-defined and satisfy the distributive laws:
XA(yvzZ)=(xAy)v(xAz)

Xv(yAaz)=(xvy)a(xvz)
forall x,y,zerl.

It is well known that any such lattice can be realized as a sublattice of the
lattice of all subsets of some finite set partially ordered by inclusion and with
xAy=xnyand xvy=xuy.

We now suppose u: I'-1R,, the nonnegative reals, satisfies

(*) pxANpxvy)yZpu(y) forall x,yer.

For reasons we shall mention later, a function y satisfying (*) is often called log
supermodular. Finally, a function f: I'- R is called increasing if

x<y= f(x)<f(g) for x,yel’

(with decreasing defined similarly).

The FKG inequality states:
If fand g are both increasing (or both decreasing) real functions on a finite dis-
tributive lattice I and p: I'—> IR, is log supermodular then

3 er ) g () (x) ;F# (x)> ;Ff(X)ﬂ(X) ng(X)u(X)-

The original proof of (3) was somewhat complicated [FKG]. Several years after
(3) appeared, Holley found the following beautiful generalization:
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Theorem (Holley [Hol])

Suppose a, f: =R, satisfy
a(xay)fxvy)yzax)B(y) forall x,yerl.

Then for any increasing function 8: I'> R,

4 Zra x)B )= ;Fﬂ ()8 (x).

However, this result was itself soon superseded by a striking result of Ahlswede
and Daykin [AD 1] which we now describe.

The Ahlswede-Daykin Inequality
To state the inequality of Ahlswede and Daykin, we need the following simpli-
fying notation. For subsets X and Y of I, define
XaY={xry:x€X,yeY},
XvY={xvy:xeX, yeY]}
and, for a function of f: I'— IR, define
fX)= 3 f@x).

xeX

As before, I denotes a finite distributive lattice.
Theorem [AD]

Suppose «, B, v, 6: '-1R, satisfy
3 a@)p<yxvy)d(xay) forall x,yer.

Then
(59 a(X)BY)<y(XvY)6(XAY) forall X,YCT.

Note the attractive similarity between the hypothesis (5) and the conclusion
(5"). This certainly contributes to the relative simplicity of the proof of the the-
orem, which we now give (also, see [Kle 2]).

Proof: 1t follows from our previous remarks that it suffices to prove the the-
orem for the case that I'=2" is the lattice of subsets of [N]={1,2, ..., N} par-
tially ordered by inclusion. In this case, the hypothesis is

6) a(x)p(y)<yxuy)d(xny) forallx,ye2™
and the desired conclusion is

(6") a(X)BY)<y(XvY)S(XAY) forall X, YC2M,
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The proof proceeds by induction on N. We first consider the casc N=1, in
which case 2M=2"={¢_{1}}. For c=a, B,y or 8, let o, denote o(¢) and &, de-
note o ({1}). Then (6) becomes

ofo<¥000,

a1Bo<¥100,

aofr1<y160,

a1 <y16,.

(7

It is easy to check that (6”) holds if either X or Y consists of a single element.
This leaves only the case X={¢, {1}}=Y to deal with. In this case, the inequality
we must prove is

7 (@o+a)(Bo+B)<(Yo+71)(6o+61).

Note that (7') would follow at once from (7) if one of the occurrences of ¥, 8, in
(7) were y, 6, instead (by summing). As it is we have to work slightly harder. If
any of ay, fo, ¥o, O¢ is zero then (77) follows at once. It follows from this (and a
little computation) that it is enough to consider the special case
ao=Po=Yo=00=1. Now (7) becomes

(3 ar<y1, Bisyi, aifi<syné
and (7’) becomes
(89 +a)(A+)<A+7)(1+68,).

Again, (8') is immediate if ¥, =0 so we may assume y,>0. Since (8') becomes
harder to satisfy as 6, decreases, it suffices to prove (8") when &, is as small as
possible, i.e., (by (8)) when §,=a,,/7,. In this case (8’) becomes
o
(rap(+ps(ier(1+22
1

ie.,

a1

)4

o +ﬂ]<}/1 +

However, this last inequality is an immediate consequence of

ri—a)(y1—p1)=0

which is implied by (8). This proves the result for the case N=1.
Assume now that the assertion holds for N=n—1 for some n>2. Suppose
a,B,y,6: 2"~ R, satisfy the hypothesis (6) with N=n and let X, YC 2! be

given. We will define new functions a’, #’, ¥’, 5’ mapping 2"~ ":= T" into R, as
follows:
a'(x)= ) a@),
x’xzii([nl

By = ZY B(y),

(S
¥ =y\{n}
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yeE) = 2 r@,
R

Swy= D b(w).
e

Thus, forx'€ T/,

axN+ax'u{n) if xX€X, x'u{nleX,

o (x')= a(x’) if x’€X, x'ulnl&X,
ax'vin) if x'&X, x'u{nlEX,

0 if x’&X, x'u{nj&X.

Observe that with these definitions

a(X)= T a@)= ¥ a'&)=a'(T’)

xeX x'eT’

and, similarly,
BXY)=p(T), yXvY)=y(T), &XAY)=6"(T").
Therefore, if
(10) a’' XNy (x'uy)d'(x'ny’) forall x',y'eT’
holds, then by the induction hypotheses we would have
a(X)B(Y)=a (T (T)<y (THo'"(T)=y(XvY)6(XAY)

since T'vT'=T', T' A T'=T’, which is just (6'), the desired conclusion.

So, it remains to prove (10). However, note that by (9) this is exactly the
same computation as that performed for the case N=1 with x' ¢ and
x'u{n} < {1}. Since we have already treated this case then the proof of the in-
duction step is completed. This proves the theorem of Ahlswede and Day-
kin. O

We next indicate how the FKG inequality follows from the AD (= Ahl-
swede-Daykin) inequality. As usual it suffices to prove this in the case that
I'=2"h:— T partially ordered by inclusion. Note that if 4 and B are upper ide-
als in T(i.e., x, y€EA = x Uy €A) then the indicator functions f=1, and g=1I3
(where I, (x)=1 if and only if x €4) are increasing. Taking ¢ =f=y=0=y in
(5) and X=A4, Y=B in (5’) we have

(11 U ApB)<p(AVB)u(AAB).
But
uA)= ZAu(x)— Z Sx)ux),
u(B)= ZTg(X)u(X),
uAAB)= ; B#(Z)— Z S@g@)ui),

pAVB)= 3 u@< 3 ue).

z€EAVEB zeT
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Thus, (11) implies
2I/@D9@u@) Xu@) =3 f@ue) X g@u@)

which is just the FKG inequality for this case. The general FKG inequality is
proved in just this way by first writing an arbitrary increasing function fon T
as f=>'A;1,, where 4,>0 and the 4; are suitable upper ideals in T. That is
for !

B

f=Zj'iIA," /’{«,’)0,
we have l

2 /@u@= 3 ShL.@ue)
=24k 2 L,(@u@), etc,

i z€T

and we can now apply the preceding inequality.

Some Consequences of the AD Inequality

By specializing the choices of o, 8, ¥ and § in (5), many results which have ap-
peared in various places and times in the literature can be obtained. We now
describe some of these.

To begin with, setting @ ==y =5=1 we have a(T)=|T) for TC[N] and we
obtain

(12) XINYI<SIXvY|XAYl forall X, YC2M

This was first proved by Daykin [Day 1] (who also showed that this implies a
lattice is distributive) and has as immediate corrollaries:
(a) (Seymour [Sey]). For any two upper ideals U, U’ of 2™

lunuI<|un U')-2".
(b) (Kleitman [Kle 1]). For any upper ideal U and lower ideal L of 2V,
(ULl =|UnNL|-2".
(c¢) (Marica-Schonheim [MS])
l[Al<|A\Al  for all 4 C2M,

Kleitman’s result first appeared in 1966 and, in fact, directly implies (a). The
1969 result (c) of Marica and Schonheim arose in connection with the follow-
ing (still unresolved) number-theoretic conjecture of the author.

Conjecture: If 0<a,;<a,< ... <a, are integers then

a;

max —————>n.
Li ged(a, a;)
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The Marica-Schonheim inequality is equivalent to the validity of the conjecture
when all the a, are squarefree. To see this, suppose

a;=[]pi*, ex=0orl,
k

where p, denotes the k™ prime. To each a; associate the set S;CZ™" defined
by

Si={k:&x=1}.
Then
a= [[ pc
keSi
and

a; Eik —min(gik, £jk)
= Hpkl ik, Ej
ged(a,a) &

=Hl’k-

ke€Si\S;
By (c) there must be at least n different sets $;\S; and so, at least n different in-

tegers of the form . Thus, the largest such value must be at least as

gcd(a;, a))
large as n, which is the desired conclusion. (Further generalizations can be
found in [Mar} and [DL].)

The implication (12) = (¢) is short and sweet - simply note that for
A, BE2™M _ _ _
|[A11Bl=1411B|<|4 v B4 A Bi

=14 v Bl14 A B|
=14 A Bl|4 A B

=|B\A|14\B|
and set A =B.

Partial results currently available for the conjecture can be found in the sur-
veys [Won] and [EG].

Linear Extensions of Partial Orders

An important area in which the FKG and related inequalities have had impor-
tant applications has been in the theory of partially ordered sets and the analy-
sis of related sorting algorithms in computer science. Many algorithms for sort-
ing n numbers {a;,a,, ..., a,} proceed by using binary comparisons a;:a; to
construct successively stronger partial orders P until a linear order finally
emerges (e.g., see Knuth [Knu]). A fundamental quantity in analyzing the ex-
pected behavior of such algorithms is Pr(a; <a;|P), the probability that the re-
sult of a;:a; is a;<a; when all linear orders consistent with P are considered
equally likely. In this section we describe a number of recent results of this
type.
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First, we need some notation. Let (P, <) be a finite partially ordered set
and for n=|P|, let A denote the set of all 1—1 mappings of P onto [n]. We will
assign a uniform probability distribution on A so that each 1 €A has the proba-

1
bility - of occurring. A map A €A is said to be a linear extension of P if
n!
x<y in P=A(x)<A(y).

We denote the set of linear extensions of P by A(P). We are going to consider
the probabilities of certain “events™ occuring where we will think of an event
as some other partial order on the elements of P which is preserved by various

A€EA. Thus, Pr(Q) = 'A’E'Q)'

is just the fraction of A €A which are linear ex-

tensions of Q, i.e., u<v in Q implies A (u) <A (v). Similarly, Pr(P and Q) is the
fraction of A €A which are linear extensions of both P and Q, while Pr(P|Q) is
defined as usual to mean Pr(P and Q)/Pr(Q), provided the denominator does
not vanish.

To get into the spirit of this topic we ﬁrst give a relatively simple result.
Suppose (P, <) consists of two chains A={a,< ... <a,)and B=[b,; < ... <b,).
Of course, relations of the form g, <b; and b, <as are also allowed. Suppose Q
and Q' are two events both of Wthh are unions of sets of the form
{ai, <bj,, a;,<by,, ..}, i.e., such that a’s are less than b’s. It is quite natural to be-
lieve that the events Q and Q' are positively correlated when considering linear
extensions of P, i.e.,

Pr(QIP and Q')> Pr(QIP)

or, more symmetrically,
(13) Pr(Q and Q'I|P)=Pr(QIP)Pr(Q’|P).

In fact, the inequality in (13) is a theorem of Graham, Yao and Yao [GYY].
The first proof of (13) was a rather complicated combinatorial proof which
used, among other things, the Marica-Schonheim inequality. Shortly after
[GYY] appeared, Shepp [She 1] (and independently Kleitman and Shearer
[KS]) provided rather short proofs based on the FRG inequality. Before sketch-
ing Shepp’s proof, we give an example which shows that if the hypothesis that
P consists of two chains is weakened even slightly then (13) no longer remains
valid.

Example: Let (P, <) consist of the set {a,, a,, b, b, b3} with the following par-
tial order:

{ai<ay, a,<b,, a><b,, by <bs, b, <b;}.

Let Q denote the event {a; <b,} and let Q' denote the event {a, <b3). A straight-
forward calculation shows that

Pr(QIP and Q') =3 < § = Pr(QIP),
which violates (13).
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Proof of (13). (Shepp [She 1]). Define a lattice I” with elements of the form
xX=(Xy,...,X,) where 1<x,<x,< ... <x,<m+n. Let us define x<x’ to mean
x; <x; for 1<i<m. Thus, we have

xvx'=(...,max(x;, x;),...)
XAX'=(..., min (x;, x{),...).

It is easily checked that with these definitions I” is a distributive lattice. For
each x €I we can associate a unique mapping A; €A by setting:

Ac@)=x;, A: b=y,

where [m+n\{x, <...<x,}={y:<...<y,}
Finally, define

[1ifAceA(P)
“(x)_{o otherwise
(1 L, €A(Q)
4 (x)_{O otherwise
o [1if A €A(Q)
4 (x)_{o otherwise

To apply the FKG inequality, we must first verify the log supermodularity
of u:

14 HOOu@X)<uEvxH uxax) forall x,x'erl.
Suppose u(x)u(x")=1. Then A; €A (P), Ac €A(P). If a;<aq; in P then
Az(@)=x<x;=A:(a))

As(@)=x{<xj=A:(a;)
and so,

Asv e (@)=max(x;, x;)<max(x;, x))=A:, (a).
Similarly, if b; <b; in P then
Azv s (b)) <Az e (b))

More interesting is the case that a; <b; in P. Then

As(a)=x;<y;=4:(b),

A (@) =x;<yj=Ae(b)).
But this implies

x<i+j—1, x/<i+j—1

and consequently,

A’X \/)E’(ai) = max(xh xll)<1+]_ la
ie.,
Asvsd@)<Aiv o (b)).
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The argument for b;<a; is similar. This shows that A, .€A(P), i.e,
p(xvx)=1. In basically the same way it follows that z (x A X)=1. Therefore,
we have shown that

HEpGE)=T=>p@vX)uxAx)=1

and so (14) always holds.

The final hypothesis to check before we can apply the FKG inequality is
that f and f’ are both decreasing. To see this, suppose x<x’ and f(x)=1.
Then, by definition,

Av€EA(Q)= LkJA(Qk)

where
Qk ={a,~l <bj1, a,-2<bj2, . .}-

Thus, for some k, the elements x| of X’ satisfy all the constraints x;, <i; +j;—1,
xi,<ip+j,—1, ..., imposed by A(Q:). However, since x<x’' then x,<x!
for all i, and in particular, x; <x; <i;+j;—1, etc. This implies that
A: €A(Q) EA(Q) and f(¥)=1, and consequently, f is decreasing.

The FKG inequality can now be applied to the functions we have defined
yielding

Z /@S @uE 3 p@> T f0u T 0w
Interpreting this in terms of P, @ and Q’, we obtain

QN Q' NnPlQIZIQNPIIQ NP
i.e.,

Pr(Q and Q'|P)> Pr(QIP) Pr(Q'|P)

which is just (13). O

It is natural to try and extend (13) to more general partial orders P than just
those which can be covered by two chains. However, examples such as the one
previously given show that some additional hypotheses must be assumed in or-
der for the desired positive correlation to hold. One such extension was pro-
vided by Shepp in the following result.

Theorem (Shepp [She 1]). Suppose (P, <) is a union of two disjoint partial or-
ders, i.e., P=A U B where each pair a, b with a €4 and b € B are incomparable.
Then any two events Q and ’, each being the union of sets of the form

{a;,<b;, a;,<b,,, ...} are positively correlated, i.e.,

Pr(Q and Q'|P)> Pr(QIP)Pr(Q'|P).

The only proof known for this result uses the FKG inequality in a some-
what more subtle way than in the preceding theorem (a similar use of FKG will
be given in the next section).

Universal correlation. Suppose Q and Q’ are a pair of partial orders on a com-
mon underlying set S. Following Winkler [Win 1], let us call Q and Q' univer-



I1. Applications of the FKG Inequality and Its Relatives 125

sally correlated if for all possible partial orders P on S,
(15) Pr(Q and Q'IPy=Pr(QIP)Pr(Q’'|P)

As an example, it had been a long-standing conjecture until quite recently
that the pair Q={x<y} and Q’'={x <z} were universally correlated. This con-
jecture, due to I. Rival and W. Sands and known as the XY Z conjecture, also
has finally been settled (affirmatively) by Shepp, not surprisingly (by now) us-
ing the FKG inequality. An interesting application of this result can be found
in [Win 2]. We give an outline of Shepp’s snappy proof.

Theorem (Shepp [She 2]). For any partial order P on the set {x;, x5, ..., x,}, the
sets Q={x; <x,} and Q'={x; <xs} are positively correlated, i.e.,

Pr(Q and Q'IP)> Pr(QIP)Pr(Q'|P).

Proof (outline). Choose a large N>n and let Q=[N]"={x=(x1, ..., X,): x; €[N}
Define a partial order on £2 by:

x<y if and only if x, >y, x;,—x;<y,—y;, i=2,3,...,N.

It is easy to verify that this indeed does define a partial order on €2 and further
that

(X Ay)= min(x;—x;,y;—y1) +max(x;,y1), i€[n]

(X vy)y=max(x;—xy, y;—y1)+ min(x,, y1), i€[n].

Using these expressions together with the fact that the reals partially
ordered by magnitude form a  distributive lattice (so that
min (a, max (b, ¢))=max (min(a, b), min(a, ¢)), etc.), it follows (after a little
computation) that I also forms a distributive lattice.

Let f be the indicator function of the event {x,<x,}, i.e.,

1if x,<x,,
0 otherwise

£@)= {

and let g be the indicator function of the event {x; <x}. Again, an easy calcula-
tion shows that f and g are both increasing.
Finally, take u to be the indicator function of P, i.e.,

1 if x satisfies the inequalities in P,
0 otherwise

u(i)={

In order to apply the FKG inequality it remains to verify that u (x)>0 (ob-
vious) and that g is log supermodular, i.e.,
(16) pEAPuEvZp@u(y) forall x,ye.

Suppose pu(x)=p(y)=1. If x;<x; in P then x;<x; and y;<y; and conse-
quently ) o
(X Ay)<min(x;—x, y; —y1)+max (X, y1) = (X A y);
and, in a similar way,
(xXVyr<@Evy).
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Thus, since xAy and xXvy both satisfy each inequality in P,
HxAy)y=pxvy)=1 and so, (16) holds.

Having verified the hypotheses of the FKG inequality, we can apply its
conclusion. This yields

an Pr(x;<x,,x1<x3, P)Pr(P)= Pr(x;<x, P) Pr(x,<x;, P).

Letting N— o, the probability that x; =x; tends to zero and so, it follows that
(17) also holds for the permutations (i.e., 1 — 1 maps) induced by x, ..., x,,. Fi-
nally, dividing by Pr(P)Pr(x,<x,, P) we obtain the desired inequality and the
theorem is proved. O

It is natural to ask for other examples of universally correlated partial or-
ders, or even more ambitiously, to ask for a characterization of all such pairs.
The apparent difficulty of the second task is increased when one notes that
these are easy examples which show that such “reasonable” sets as
{x1<x:<x4 and {x,<x;<x4 are not universally correlated. It is therefore
rather surprising that there is in fact a striking characterization for such
pairs.

In order to state this result (due to Winkler [Win 1]) we first need a defini-
tion. For a partial order P, let us call an inequality x <y in P minimal if there is
no z such that x <z<y in P. We denote the set of minimal inequalities in P by
A(P).

Theorem (Winkler [Win 1]). Two partial orders Q and Q' (on the same underly-
ing set) are universally correlated if and only if

(i) Q and Q' are consistent (i.e., for no x and y do we have x<y in Q and

y<xin Q)

(i) u<v in A(Qu Q)—A(Q) and

x<yinA(QuQ)-A(Q)
=S
u=xorv=y.

In particular, Winkler shows that whenever Q and Q' are universally corre-
lated, it can in fact be proved by repeated applications of the X YZ theorem
and so, ultimately rests on the FKG inequality. As pointed out in [Win 1], it fol-
lows from the theorem that the pairs

x<y<z, Q'={x<z}

{

[x<y,x<z}, Q' ={x<u,x<v)
fu<v,x<y,x<z}, Q'={x<v}
{

Q
Q
Q
O={u<v,x<y}, Q'={x<v,u<y}
are universally correlated, whereas the (nearly) equally plausible pairs
O={x<y}, @'={x<u<y}
O={x<y<z,u<w}, Q'={x<z,u<v<w}
O={x<u,y<v}, Q'={x<v,y<v)

are not universally correlated.
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In fact, Winkler shows that if Q and Q' are partial orders on a common
n-element set which are not universally correlated then there is a partially or-
dered set on at most n+ 1 elements on which Q@ and Q' are negatively corre-
lated.

More Applications of FKG

n

Consider the set of all 2(2) labelled graphs on the vertex set [#] with the uni-

n
2

form probability of 2_( ) assigned to each graph. Let us call a property P of a
graph increasing if any graph formed by adjoining additional edges to a graph
with property P also has property P. Examples of increasing properties are:
(a) G is Hamiltonian;

(b) G has chromatic number at least k;

(¢) G has independence number at most k;

(d) G is connected (or, more generally, k-connected);

(e) G has girth at most k;

(f) G contains a clique of size k.

Using the FKG inequality, it is almost trivial to show that any pair of increas-
ing (or any pair of decreasing) properties are positively correlated. To see this,
simply define:

I’ := set of all graphs with vertex set [n] partially ordered by inclusion of the
edge sets.
S = Ip - the indicator function of property P,
J' = Ip. - the indicator function of property P,
=1
Thus, ¢ is automatically log supermodular and u(X)=|X| for XST,. The
FKG inequality therefore applies to this situation and implies at once that P
and P’ are positively correlated.
Another area in which the FKG inequality has been applied effectively is
that of unimodality and log convexity of sequences. Recall that a real sequence
(ao, ay, ..., a,) is log convex if

ai<ai_ia.,, for 1<k<n-—1.

An important property of log convex sequences is that they are unimodal. A
typical result of this type (due to Seymour and Welsh [SW]) is the following.

Theorem [SW]. If (ao, ay, ..., a,) is log convex and positive and (bo, by, ..., b,,)
and (¢, ¢1, ..., €,) are both increasing (or both decreasing) then

n n n

(18) 2 acbiey D ap= 2 abe 3 age

k=0 k=0 k=0 k=0
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Note the similarity in form of (18) to the FKG inequality (which is used in [SW]
to prove (18)). If all a, are set equal to 1 then (18) reduces to the previously
mentioned result (2) of Chebysheyv.

Order Preserving Maps of Partial Orders

Given a finite partially ordered set (P, <) one can weaken the notion of a li-
near extension and require that a map p: P—[n] only satisfy

x<y in P=p@)<p(y)

We will call such a p order-preserving. Note that in particular p need not be
1—1. It is only natural to expect that many of the results which hold for linear
extensions also hold for order-preserving maps. While this in fact may well be
true, there are still relatively few theorems available for this class of maps (no
doubt, due in part to the fact that they have not been studied as much).

As an example of such an analogue, we mention the following (due to J. W.
Daykin and the author).

For a partially ordered set P, define R(P, n) to be the set of all order-pre-
serving maps of P into [n], and for x€ P, let

range (x):={p(x): pER(P, n)}.

Theorem: Suppose P is covered by two disjoint chains 4 and B. Let Q and Q’
be partial orders on 4uUB both being unions of sets of the form
{a;,<by,, a;,<b,, ...}. Furthermore, assume for all pairs a €4, b€ B which are
comparable in P that

(19) range(a) nrange(b)=¢.
Then Q and Q' are positively correlated in P, i.e.,
Pr(Q and Q'IP)= Pr(QIP)Pr(Q’|P)

where we assume that all maps of P into [n] are equally likely.

The proof is a modification of that used for (13), complicated by the fact
that p need not be 1— 1. The key new ingredient needed is the result (pointed
out by J. W. Daykin [JWD]) that range (a) is always convex, i.e., an interval in
[n].

A related result for linear extensions which is not yet known to hold for or-
der-preserving maps is the following beautiful result of Stanley.

For a finite partially ordered set P, an arbitrary element x € P, and an arbi-
trary positive integer n, let N, (P, x, n) denote the number of linear extensions
A: P—[n] with A (x) =i.

Theorem (Stanley [Sta]). For any P, x€P and n€Z ™", the sequence N, (P, x, n),
1<i<n, is log concave.
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This was conjectured by Chung, Fishburn and Graham (strengthening an
earlier conjecture of Rivest [Riv] that the N, (p,x, n) were always unimodal)
who proved it when P could be covered by two disjoint chains (see [CFG]).
Stanley’s proof uses the Aleksandrov-Fenchel inequalities from the theory of
mixed volumes (see [Bus], [Fen]).

So far, no one has been able to establish the corresponding result for order-
preserving maps of P into [n] although it must certainly be true.

It would seem that Stanley’s theorem (and the analogue for order-preserv-
ing maps) should have a proof based on the FKG or AD inequalities. However,
such a proof has up to now successfully eluded all attempts to find it.

Concluding Remarks

It is not possible, of course, because of space limitations to explore fully all the
recent developments concerning the FKG inequality and its various generaliza-
tions and applications. We mention here several sources where the interested
reader can find additional material on these topics.

To begin with, a wide variety of FKG-like inequalities have been investi-
gated by Ahlswede and Daykin [AD 1], [AD 2], [AD 3] and Daykin [Day 2],
[Day 4]. Kemperman [Kem 1] has given some very pretty extensions of work of
Holley [Hol], Preston [Pre] and others [Car], [Bru], [KS] which consider the
FKG inequality for measures on partially ordered measure spaces. A number
of inequalities related to the FKG inequality have been developed in connec-
tion with certain concepts in the statistical theory of reliability (going back at
least to Esary, Proschan and Walkup [EPW] in 1967 and Sarkar [Sar] in 1969).
The interested reader will find many of these in the book of Barlow and Pro-
schan [BP]. In fact, the FKG inequality is just one among a large class of statis-
tical multivariate inequalities about which a number of survey papers and
books have recently appeared (e. g., see [Eat], [Jog], [Ton], [MO], [Kem 2]). An
interesting connection between the FKG inequality and majorization on par-
tially ordered sets is given in [Lih]. Also, recent applications of various forms of
the FKG inequality to modern theoretical physics can be found in [BR], which
in particular contains the following (perhaps unfamiliar) version of FKG:

Theorem: Let dv=¢"“"7 be a probability measure on IR” with w& C*(IR"). Sup-
pose

&*w/oq;0q; =0, i#j.
Then

| fgdv> | fdv[gdv

for all increasing functions of IR” (such that f, g and fg are d v-integrable).
We remark in closing that because of the intimate relation between log su-

permodular functions and ordinary sub- and supermodular functions (f is su-

permodular iffexp f is log supermodular), one suspects that there are in fact
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deeper connections between inequalities such as FKG and the many other
striking properties enjoyed by such functions than are currently known. There
is every reason to believe that we have yet to realize the full potential such a
more complete understanding could provide.
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