On the Bandwidths of a Graph
and its Complement

P.Z. CHINN P. ERDOS*
F.R.K. CHUNG R.L. GRAHAM

ABSTRACT
The bandwidth b(G) of a graph G is defined by

b(G) = min max |A(x)—A(y)|
r o e={x,y}

where e ranges over all edges of G and A ranges over all
1 - 1 functions X:V(G) + Z+, the positive integers. In this
note we show for any graph G on n vertices (with G denot—

ing its complement),
b(G) + b(G) >n - 2 .
Furthermore, for all n > 3 there exist graphs which achieve
this bound.
We also prove:
(1) b(G) + b(G) < 2n - ¢

vertices;

1 log n, for all graphs G on n
(ii) b(G) + B(G) > 2n - ¢y log n, for almost all graphs G on

n vertices.

1. Introduction.
For undefined graph theory terminology see [1] or [8]. The
bandwidth b(G) of a graph G is defined to be the least inte-

ger b such that for some labelling A of the vertices of G
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with distinct integers,
INx)-A(y)] <b for all edges {x,y} of G. 1)

If A satisfies (1) and A(vl) < A(vz) < ... < A(vn) where n

is the number of vertices of G then the labelling A(vk) = k,

1 <k <n, also satisfies (1). Hence, we need only consider

1 - 1 mappings A:V(G) » {1,2,...,n} = [n] for determining b(G).
A number of papers have appeared (e.g., [2], [3], [5], (9],

[10], [11]) recently which deal with the bandwidth of a graph,

both from the graph theoretic as well as the algorithmic point of

view. For example, it has been shown [5] that the problem of de-

termining the bandwidth of a tree is already NP-complete. (For a

discussion of this concept, see [6].) For a survey of many of

these and related results, the reader can consult [2] or [3].

In this paper we investigate the relationship between b(G)
and b(G) where G denotes the complement of G, 1i.e., V(G) =
V(G) and {x,y} € E(G) iff {x,y} € E(G). It is clear that if
G has a small bandwidth then it must have relatively few edges.
Consequently G has many edges and thus, b(G) is large. Our

purpose is to make this rough notion precise.

2. The Lower Bound.

For a graph G, the kth power Gk of G 1is defined to
be the graph which has the same vertex set as G and in which
{x,y} 1is an edge iff x and y are connected in G by a path

J

of length at most k. Let Pk denote a path with k wvertices.
It follows at once from the definition of bandwidth that:

Fact. 1f G has n vertices then b(G) <b iff G¢ PE.

In particular, it follows that

b
b(Pn) = b. (2)
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Theorem 1. 1If G has n vertices then
b(G) + b(G) > n - 2. (3)
Proof. To simplify the notation we restrict our attention
to the case that n = 2m. The case in which n 1is odd follows
in exactly the same way. We claim that (3) is an immediate con-
sequence of the following result. (In the remaining part of this
—m-1 m—1

paper, we use sz to denote the complement of sz .)

Lemma. o1
b(P, ") =m - 1. (4)

Proof. Suppose (4) holds. If b(G) =b <m - 2 then by
the Fact,

b m-1
G ¢ sz c sz .
Thus,
¢ 251
2m
and by (4),

b(G) 3b(§‘;;l) =m-1.

Hence, at least one of G, G has bandwidth > m - 1. Assume

b(G) =b >m~ 1. (5)

Therefore,
b =~ 5 5b

GeP,,G 2P, . (6)
But (5) implies 2m - b - 1 < b + 2. Since in the case ﬁgm
and P2P"2  are fsomor hic then

4m-2b-2 P
= =2m-b-2 | _
b(G) > b(P, 5 "5) =2m-b -2

and (3) holds as required.
The remainder of the proof of the theorem will be devoted to
proving (4)
To fix notation, let us write the vertex set of 52;1 as
1,...,Xm,Yl,. ?;l as all pairs

{Xi,Yj}, 1<i<j<m. The following labelling A shows that

{X ..,Ym} with the edges of P

bR <m - 1:
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A(Yi) =1, l1<i<m-1,
A(Xi) =i+m-1,1<1i<m-1,
A(Ym) =2m -1, x(Xm) = 2m

It remains to show b(§g;l) >m - 1.

Suppose the contrary, i.e., assume b(§$;l) <m - 2. Thus,

by the Fact,

Bt ey
i.e.,

Pm 2P -
Let u:ﬁg;z -+ Pz;l be an embedding of ?2;2 into ??;l. Note
that Pg;l can be formed by starting with a copy of §$;32 on
the vertex set {Al,...,Am_l,Bl,...,Bm_l} = A UB, forming com—

plete graphs on A and B, and adjoining two additional points
A* and B¥*, with A* joined to all points of A and B*

joined to all points of B. For ease of notation, let us use

[2m] for the vertex set of ?2;2. For convenient future ref-
=m-2 m-1 .
erence, we show sz and sz in Figure 1, Let X denote

{1,2,...,m} and let Y denote {m+l,...,2m}.

To begin with, suppose there exist i,j € X such that

u(i) = A*, u(j) = B*, 1In this case, however, in ?2;2 the
vertex 2m 1is adjacent to every x € X (which we will occa-
sionally write as 2m ~ x). Since no vertex in Pg;l is adja-

cent to both A* and B* then we have a contradiction.
In the same way, it is impossible that for 1i,j € Y,
u(i) = A* and u(j) = B*.
Next, suppose u{m) = A*, u(j) = B* for some j € Y. Since

m~v 1l in ?;;2 then u(l) = Ai for some i. However, this is
impossible since 1 ~ j in P and consequently

2m
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u(l) = A, vu(d) = BE

mt+l
m+2

m+3

2m~-1

Figure 1

Similarly, we cannot have u(2m) = B%*, u(i) = A* for some iegX.

Thus, by the symmetry of §2;2 (under 1i<>2m+l-i) we can
assume:
u(i) = A* for some i € {2,3...,m},
(i) = B* for some j € {m+l,...,2m-1}.
The neighbors of i in ??; must be mapped into A; these are
{m+i-1,m+i,...,2m} = Y'. Similarly the neighbors of j must be

mapped into B; these are {1,2,...,j-m+1}=X".

It is important to note that since u(i) = A* is not adja-

cent to u(j) = B* in P?;l then we cannot have i ~ j in
sm—-2
sz . Thus,
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m-2
2m
complete bipartite subgraph (i.e., x € X', ye€ Y' implies

and so, the subgraph in P induced by X' and Y' is a

x v y). Informally, the situation is shown in Figure 2,

min u (Y')
u(y")

max p (X")
ax N\ < \\\::::5555555 .
\\ u(E")
Figure 2.

In fact, we have little more than this. Note that

lney"y|
lu@n |

)
1

m-1i+ 2,

=
I

j-m+ 1.

Since A and B span a copy of @;32 then in Figure 2 minu (Y')
(the element Ak of u(Y') having the largest index k) must

be at least as high as max u(X'). Therefore

luey ] + lu@)| -1 <m-1

so that
j~-1i<m~- 3. 7N
Define
U= {j-m+2,j-m+3,...,i-1},
V = {j§+1,342,...,i+m-2}.
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Thus,
|U|=|V|=i—j+m—25til.
Further, define partitions of U and V by:

U=U U, V=vy v,

where

u() < A, u(U,) B,

H(V)) <A, u(v,) < B.
Note that the graph spanned by U and V in 5?;2 is isomorphic
to ?;;1. Also U~Y' and VX' in 13‘;;2 (i.e., u €U,

y' €Y' implies u ny', ete.).
There are two cases:
(i)- |U21 + |V2] > t.

Consider the level o of miny (Y'), i.e.

b
o = max {i:u(y') = Ai for some y' € Y'}.
Partition u(Vz) into two pieces:
= ' "
H(V,) r(vy) U H(VY)
where u(Vé) consists of all points in u(Vz) with level > o

and u(VE) consists of all points in u(VZ) with level < qg.

Note that since U ~ Y' then U2 "~ Y'. Hence, u(Uz) has level

< a.

Similarly, partition u(Ul) into u(Ui), those points in
u(Ul) with level > a and u(U;), those points with level < g

(no point in u(Ul) can have level o since min u(Y') does).

Summarizing:
level u(Ui) > a, level u(UI) < a
level u(Vé) > a, level p(VE) < a
level u(Y') > a, level u(x') < a.
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Claim. lUi[ z_|Vé|.

Suppose not, i.e., suppose lUi| < IVé‘. Then

o] = ¢ - lyg]

so that
AT
ie.,
lu@p |+ ] >t (8)
But we have already noted that the graph in Pg;l between u(U)
and u(V) is isomorphic to ?;;1. Hence, by (8) some point in

u(Uz) must be adjacent to some point in u(Vé). However, this is
impossible since level u(U{) < o and level u(Vé) > o . This
proves the Claim.

Finally, we have in A at least |u(Y')| + lu(Ui)I points with

level > o. In B there are at least

x|+ @l + luep|
points with level < a. Since the total number ot points in A

(and also in B) 1is just m -1 and n > y + 3 thenwemust have
D+ fu@pD | + @ )+ ww)| + @ -1<m-1 (9

(the -1 term on the LHS coming from the possibility that both A
and B may contribute a point of level a). Substituting for

these various cardinalities, we obtain,

m-i+2+ [u(Ui)| +j-m+1+ [u(U2)| + [u(v'2')| < m,

j~1i+3+ |u(v5)| + |u(v;)[ + |u(02)[ <m (by Claim),

j-1i+4+3+ |u(V2)| + |u(U2)| <m (since V2 = Vé lJVE),

j-1+3+t<m (by the Case (i) assumption),

j-1i+ 3+ (i~j+m-2) <m (by the definitions of t),
i.e.,

i<0
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which is a contradiction. This completes the analysis of Case (i).
Gi).  |u,| + lv,| < t.

The arguments for this case are quite parallel to those for
Case (i) and will not be given. As mentioned earlier, when m is

odd the arguments are essentially the same (in fact, slightly
easier). This completes the proof of Theorem 1. »

Corollary.
b(ﬁ;) =n-r-2 for r > 0.
Proof. Since b(P;) = r then by (3)
=r
b(Pn) >n-r1r - 2, »

The labelling which achieves this bound is not difficult to

construct and is left to the reader.

Remark. We point out that E.C. Milner and N. Sauer [10] and
J. Kahn and D.J. Kleitman [9] have recently independently also

proved Theorem 1.

3. Upper Bounds.
Since any graph G on n points has bandwidth less than n

then it is immediate that
b(G) + b(G) < 2n.
The next two results improve this estimate considerably.

Theorem 2. There is a ¢y > 0 such that for all n, every graph

G on n vertices satisfies

b(G) + b(G) <2n-1c¢, logn (10)

1
Proof. A basic result in Ramsey theory (see [4] or [7]) as-
serts that any 2-coloring of the edges of Kn, the complete graph

. . . . log n
on n vertices, contains a monochromatic Kz with =z z_Igg—Z .
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Since, the decomposition of Kn into G and G can be regarded
as a 2-coloring of the edges of G, then either G or G con-
tains a Kz' Assume without loss of generality it is G. Thus,
G contains 2z points {Xl’xz""xz} which span no edge. Con-

sequently G has bandwidth at most n - L%] (use the highest

and lowest %— labels on the xk) and so
b(G) + b(G) < 2n - ¢ log n
for an appropriate c¢ > 0. This proves the theorem. =

The next result shows that up to the choice of ¢, (10) is

best possible.

Theorem 3. There is a cy > 0 such that for every n there

exists a graph G on n vertices such that

b(G) + b(G) > 2n - ¢, log n.

2

Proof. It iswell known (e.g., see [4] or [7)) that the edges

of the complete graph Kn can be 2-colored so that the largest

monochromatic complete bipartite subgraph Kx x has x < ¢, logn
’

1

for some absolute constant ¢y > 0. Define G to be the
subgraph consisting of the edges of one of the colors (so that

G is made up of the edges of the other color). Thus

y > ¢, log n =>K v £ G, G .

1 Y,
However, Ky,y Z G implies b(G) >n - 2y + 1. (Just consider
the vertices with labels 1, 2, ..., y and n, n-1, ..., n-y+l;
some edge spanned by a vertex in each class must be in G.)

'

Taking c¢' = 2cl, the theorem is proved. =

With a more careful analysis, it is possible to improve the
values of the constants in (10) and (11). The exact value would
seem to depend on knowing the asymptotic behavior of Ramsey num-

bers, a problem well known to present difficulties.
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We conclude with the observation that if K.n is decomposed

in an arbitrary number of edge-disjoint subgraphs

K =6 UG U ooy G
then K L
} b(G,) > =n+o(1)n.
. i’ -2
i=]1

Furthermore it is easy to see (by decomposing Kn into paths)

that this bound can be achieved.
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