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A potentially useful approach to evaluating
heuristic techniques involves the determination of
their worgst-case deviation from the optimal solution.
We describe the results of applying such an analysis
to a variety of heuristic algorithms for one-dimen-
sional bin packing, closely bounding their worst-
case performance.

INTRODUCTION

The following abstract problem occurs in a
variety of computer science and operations re-
search contexts. We are given a set of objects

O; with O; having weight @; >0, 1 i <r.

We have at our disposal an unlimiteq supply of
boxes Bj' each with a maximum capacity of w

units of weight. It is desired to assign all_the
objects to the minimum number No of boxes subject
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to the constraint that the total weight assigned to
any box can be no more than w.

In this formulation the problem takes the form
of a typical loading or packing problem [3]. How-
ever, it is not difficult to show that it is also a
special case of the one-dimensional cutting stock
problem [5, 6, 7], the assembly-line balancing
problem [1], and multiprocessing with deadlines {4,
8, 9], as well as occurring in certain memory allo-
cation algorithms and table formatting schemes [11].

At present, no efficient (in the sense of
Edmonds [2]) algorithm is known for the solution of
this problem, and, in fact, many people strongly
suspect that none exists. However, a number of
heuristic algorithms have been suggested for pro-
ducing good solutions. 1In this paper we briefly
describe some recent results dealing with the worst-
case behavior of some of these algorithms.

SOME HEURISTIC ALGORITHMS

By identifying each object 0i with its weight
a;, we can think of the problem as being one in
which the weights a; are packed into the boxes Bj.
Consider the following algorithm for loading the
oy which we shall call the "first-fit" algorithm.
For a given arrangement (or 1ist) L = (al,...,ur),
the weights a, are successively assigned in order
of increasing k, each to the box Bj of lowest index

into which it can validly be placed. The number of
boxes thus required will be denoted by NFF(L)’ or

just Npp when the dependence on L is suppressed.

1f I is chosen so that oy 2 eee 200 then the

first-fit algorithm using this list is called the
nfirst-fit decreasing"” algorithm and the
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corresponding NFF(L) is denoted by NFFD'

Instead of first-fit, one might instead assign
the next a, in a list L to the box whose resulting

unused capacity is minimal. This is called the
"best-fit" algorithm and NBF will be used to denote

the number of boxes required in this case. The
corresponding definitions of "best-fit decreasing”
and NBFD are analogous to first-fit decreasing and

Nerp-

Cne of the first gquestions which arises con-
cerning these algorithms is the extent by which

they can ever deviate from No. For NFF this worst-

case behavior is given by the following result.

Theorem ([11, 5]): For any € > 0, if N, is
sufficiently large then

(1) NFF/NO < 17/10 + ¢ .

The 17/10 in (1) is best possible.

An example for which NFP/NO = 17/10 is given

by packing the 37 weights: 10 of weight 51; 10 of
weight 34; 3 of weight 16; 7 of weight 10; and 7

of weight 6 into boxes of capacity w = 101. If the
increasing list L = (6, ..., 51) is used then
NFF(L) = 17. On the other hand if the decreasing

list L' = (51, ..., 6) is used then we find

NFF(L') = No = 10 .
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In fact, for any ¢ > 0, examples can be given [5]
with NFF/NO 2 17/10 - ¢ and No arbitrarily large.

It appears, however, for No sufficiently large, that
NFP/NO is strictly less than 17/10. These examples
also show that Npp/Ny > 17/10 - €.

In order for the ratio NFP/NO to achieve rela-

tively large values, it is necessary for some of
the a; to be relatively large. This is stated pre-

Cisely in the following result.

Theorem ([5]): Suppose

X Q.
ma i

< a
w

Then for any ¢ > 0, if NO is sufficiently large then

17/10 for a > 1/2,
(2) == - f <

1+ l&-lj-l for 0 < a < 1/2.°

The right-hand side of (2) cannot be replaced by
any smaller function of «a.,

It is conjecturedfthat the preceding theorem
also holds when NFF is replaced by NBF' This is

* .
Where |x) denotes the greatest integer < x.

tAdded in proof: This has recently been established
by A. Demers.
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known to be true for a < 1/2.

As one might suspect, NFFD/NO cannot differ

from 1 by as much as NFF/NO can. This is shown in
the following result.

Theorem ([5]): For any € > 0, if No is suffi-
ciently large then

(3) Npep

< 5/4 + ¢
No

Examples can be given [5] for which No_is
arbitrarily large and NFFD/NO = 11/9 = NBFD/NO' It

®
is conjectured that the term 5/4 in (3) can be re-
placed by 11/9; this has been established [5] for
some restricted classes of oy
The bound in (3) also applies to the ratio
NBFD/NO' This is implied by the following result.

Theorem ([5)): 1I1f

min oy
—_—>1/5
w
then NFFD = NBFD'
The quantity 1/5 above is best possible s%nce
for any € > 0 examples can be given [5] for which

ﬁ————
Added in proof: This has recently been established
by D. Johnson.
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min “i
-————-)1/5-5'
w

No is arbitrarily large and

(4)
ﬁffl-’ = 11/10 .
BFD

In the other direction, examples exist [5] for
which N, is arbitrarily large and

(5) Ngrp

Nerp

= 10/9

The quantities 11/10 and 10/9 represent the largest
values of the ratios NFFD/NBFD and NBFD/NFFD

currently known (for large No).

Another algorithm which has been proposed [10]
proceeds by first selecting from all the a; a sub-

set which packs Bl as well as possible, then selec-

ting from the remaining o; a subset which packs 32

as well as possible, etc. Although more computa-
tions would usually be required for this algorithm
it might be hoped that the number N of boxes required
is reasonably close to No This does not have to be
the case, however, since examples exist [5] for any
€ > 0 for which No is arbitrarily large and
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(6) T

The guantity

I 22— =1.606695...
n=l 2'-1

in (6) is conjectured to be best possible for this
case.

SOME REMARKS

Some of the difficulty in proving many of the
preceding results and conjectures seems to stem from

the fact that a decrease in the values of a; may

result in an increase in the number of boxes reqguired.
For example, if the weights (760,395,305,379,379,241,
200,105,105,40) are packed into boxes of capacity
1000 using the first-fit decreasing algorithm then
we find Neep = 3 which is optimal. However, if all

the weights are decreased by 1, so that now the
weights (759,394,...,39) are packed into boxes of
capacity 1000 using the first-fit decreasing algo-
rithm, we have NFFD = 4 which is clearly not optimal.

In fact, it can happen that Ngp can increase when
some of the o, are deleted. For example, if the

first-fit algorithm is used to pack the weights in
the list L = (7,9,7,1,6,2,4,3) into boxes of capa-
city 13 then NFF(L) = 3. If the weight 1 is deleted

from L to form L' = (7,9,7,6,2,4,3), then we obtain
NFF(L') = 4!
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A number of interesting open questions remain,
in addition to those already mentioned. For example,
one could allow boxes of different capacities and
study the behavior of NFF(L)/NFF(L') for a fixed

set of weights, as a function of the lists L and L',
the ordering of the boxes, the distribution of the
capacities and weights, etc. It would also be of
interest to examine two-dimensional analogues of
these problems in view of the applicability of the
results [6, 7].

The determination of the worst-case behavior
for these algorithms can also be considered as a
first step in the analysis of their exrected behav-
ior. While generally being more useful in day-to-
day applications, results of this type have typi-
cally been more difficult to obtain. A major prob-
lem in this regard is that accurate assumptions re-
garding the statistics of a "random" problem may be
impossible to obtain.

As we remarked in the introduction, this paper
is intended to serve as a brief summary of some
recent results in this area. For a more complete
treatment of these topics, the reader should consult
[5] and [B].
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