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1. Introduction. For the set of three symbols S = {0,1,+],
define the function d from S X S to the nonnegative integers N

by

1 if (s,s'} = (0,1},
d(s,s') =
0 otherwise.
For n € N, d can be extended to a mapping of st x s™ to N by
n

Allsyrennnsy)s (s]heeusl)) = ) Alsy,s)).
k=1

We shall refer to d((sl,...,sn), (si,...,sﬁ)) as the distance be-
tween the two n-tuples (sl,...,sn) and (si,...,sﬁ) although,
strictly speaking, this is an abuse of terminology since d does not
satisfy the triangle inequality.

For a connected graph G, the distance between two vertices v
and v' in G, denoted by dG(v,v'), is defined to be the minimum
number of edges in any path between v and v°',.

The following problem arose recently in connection with a data
transmission scheme of J. R. Pierce [4].

Given a connected graph G, find the least integer N(G) for

which it is possible to associate, with each vertex v of G, an

element A(v) ¢ SN(G), such that

dg(v,v') = d(a(v), A(v')) (1)

for all pairs of vertices v and v' in G.
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The mapping A will be called an addressing of G; A(v) will
be called the address of the vertex v. Of course, it is not a priori
clear that addressings exist for all connected graphs G. It will be
seen that an addressing of G is equivalent to a distance-preserving
embedding of G into the l-skeleton of an.n-dimensional cube in
which certain faces have been "squashed".

In the following sections, various bounds on N(G) are estab-
lished. 1In addition, N(G) is determined exactly for a number of
classes of graphs.

2. Squashed cubes. Let Tn denote the set of 2" points

{(El,...,¢n): €, =0 or 1} in E'. Let Q, denote the graph which

has Tn as its set of vertices and an edge between the vertices

(el,...,en) and (ei,...,EA) iff they differ in exactly one coordi-

nate. Thus, Qn is just the l-skeleton of an n-cube.

For a given n-tuple s = (sl,...,sn) € s = (0,1,+)", asso-
ciate with § the set s* of vertices of Qn which can be obtained

by replacing all Sy which are «'s by either 0 or 1. Thus, if

§ has r *'s then s* has 2¥ elements. If one replaces the ver-

tices of Qn which belong to s* by a single vertex labeled § and

an edge is placed between § and (El,...,en) if and only if some

element of s* and (el,...,cn) are adjacent in Qn' one forms a

new graph Qﬁ. One may think of Qﬁ as the l-skeleton of an n-cube
in which a certain r-dimensional face was "squashed" and the 2% ver-
tices were identified by a single vertex.

1r oeee §£ all belong to s ana
d(§i,§j) 21 for i # j, then one may form the graph Q; by identi-

fying each of the sets of vertices si by the corresponding single

More generally, if ¥

vertex Ek with edges incident to §k as previously indicated. Q;

may be thought of as the l-skeleton of an n-cube in which t disjoint
hyperfaces have been squashed to points.

An addressing A of a graph G using elements of s™ can now
*

n
which is isomorphic to G. The vertex Vi of G corresponds to the

be seen to be equivalent to the existence of a squashed n-cube Q

vertex A(vk) in Q; so that A is a distance-preserving map of G
onto Q;. N(G) is the least n for which this is possible.

For example, an addressing of K,, the complete graph on 4
vertices, is given in Figure 1. The associated squashed 3-cube is
also shown.
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3
A(vl) = 000
A(v2) = 001
Va4
A(V3) = 0l*
A(V4) = lx*
V1

1%

Figure 1.
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3. Upper bounds on N(G). Given an arbitrary finite connected
graph G, we first show N(G) < w. To see this, let

N = z a.(v,,v.)
Vi’vj G i’ "5

where the sum is over all pairs of vertices Vi,Vj of G. Construct
the addresses A (v ) € SN as shown below.

dG(Vl’VZ) dG(vl.v3) dG(vl.vj)

—N— —_—— r— ey
A(Vl) =0 ......0 0 ...... 0 e * eeene. *
A(vz) N P A cee * eeeee. *
A(v3) Sk oceee.s * 1 ... 1 cee * eieee. *
A(Ve) = % weveee % % uunnn. % e 0 ...... 0
Av,) = % ..., % % eTETY . * ces 1 ......1

For each pair of vertices Vi'vj' a unique block of d (v ,v )

coordinate positions is used to achieve d(A(v )., A(v )) = d (v .v )
by placing a block of 0O's and a block of 1's in these coordlnate
positions in v; and v. and blocks of *'sg in these coordinate

positions for all other Vk+ This argument shows

(2) N(G) < Z dG(vi,vj) .

s o V.
Vl, 3

G

max is taken over all vi,vj in G, then a slight modification of

the preceding argument can be used to show

If G has n vertices and m denotes max dG(vi'vj)' where the
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N(G) = mG(n-l). (3)

No example of a graph G is currently known for which N(G) >n - 1.
However, it has not yet even been shown that there exists a fixed con-
stant ¢ such that N(G) < cn for all connected graphs G with n
vertices,

4. Lower bounds on N(G). Let D(G) denote the n X n matrix

(di,j)' where di’jb= dG(vi,vj), 1 <i,j<n., Let A be an addres-~

8ing of G using elements of SN, and write

A(Vk) = (Sk.l""'sk,N)‘ 1l <k < n.

We consider the contributions to the various interpoint distances made

by a fixed coordinate position in the addresses, say, the mth coor-

dinate position. An important fact to note is that if si,m = 0 and
sj m = 1 then these components contribute 1 to the distance

d(A(V ). A(v )). Of course, if Sim = 1 and sj m = 0 then these
components also contribute 1 to d(A(v }+A{v.)). In all other cases
these components contribute zero to d(A(v ,A(v }). Thus, if

C (s), s € S, denotes the set of t for whlch st,m = s then the
mth coordinate position contributes 1 to d(A(v ).,A(v.)) iff either

ieg Ch 0), J ¢ C (1) or 3 ¢ C (0), 1i¢ Chn (1).
Thls remark can be restated in the follow1ng terms. Let Q({(G)
denote the quadratic form defined by

Q(G) = z di,5%1%5 -
o 1<i,j=n
and let
Q' @) = Z di,jxixj =(1/2)0(G).
l<i<jzn

Then
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N
(4) @ =y () =) Y %) -
m=1 ieC (0) jec (1)

Hence, the existence of an addressing for G using elements of SN
is equivalent to a decomposition of Q'(G) of the type given by (4).
A simple algebraic transformation allows (4) to be rewritten as

N : 2
c@=3 Y (T =+ 7 =)
m=1  iec (0) jec, (1)
(4')
2
(2 m- ) ox)]-
iec  (0) jec (1)

This shows that Q'(G) is congruent to a form which has at most N
positive squares and at most N negative squares. However, results
from matrix theory [3] allow us to conclude from this that

N 2 index Q'(G) = n, = number of positive eigenvalues of D(G)
and
N 2 index Q'(G) -~ rank Q'(G) = n = number of negative eigenvalues
of D(G). )
We summarize this in the following theorem.*
THEOREM. A lower bouhd for N(G) 4is given by:
(5) N(G) 2 max(n_,n_}.

Since the sum of the eigenvalues of D(G) equals the trace of
D(G), which is 0, then max{n+,n_} < n-1l. Hence, this theorem can

never be used to find a counterexample to the inequality N(G) < n-1.

First established in a somewhat different way by
H.S. Witsenhausen.
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n

It should be noted that if [sl....,s } €87, then for some
2%+
i# 3, d(si,sj) = 0. This implies the bound
N(G) =2 log2n ' (6)

for a graph G with n vertices.

5. Some special cases. We shall apply (5) to determine N(G)

for a number of classes of graphs.

(1). G = Kn ~ the complete graph on n vertices. 1In this case
di i =1 for all i # j and n, =1, n_ =n-1l. By (5) this implies
N(G) 2 n-1. However, it is easy to see that N(G) < n-1 by consi-

dering the decomposition of Q'(G) given by

n-1 n
'@ = ) xp= ) (x ) x5) -
l<i<jsn i=1 j=i+1

(This decomposition corresponds to squashing one hyperface of each
dimension in the (n-1) -cube.) The two inequalities imply

N(Kn) =n - 1. (7

Equation (7) has an interesting graph-theoretic interpretation ob-
tained by associating complete bipartite subgraphs of G with terms
of the decomposition of Q' (G) given in (4).

COROLLARY. If K, is decomposed into t edge~disjoint complete
bipartite subgraphs, then t 2 n - 1.

No proof of this fact is known which does not use an eigenvalue
argument,

(ii). 6 = Tn - a tree on n vertices. Suppose the vertices of
Tn are labeled Vie Voo eeay v, so that for 1 =k < n, the sub-
graph of Tn determined by the vertices Vie ceer Vi is a subtree
of Tn' In [2], it is shown that it is possible to transform the
matrix D(Tn) using elementary row and column operations to a matrix
of the form
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001 1 1 ....... 1 1]
1-2 0 0 ....... O O
1 0-2 0 ....... 0 O
D*(Tn) = 1 0 0-2 ....... 0 O
1 0 0 0 ..eevuee =2 0
1 0 0 0 ..ouo.. O0=-21.

Since D*(Tn) and D(Tn) have the same determinant, then this
implies

(8) det D(T)) = 0™ n-1)2""2, n 21,

independent of the structure of Tn‘
By the way Tn was labeled, the upper left kth order principal
submatrices Dk(Tn) of D(Tn) are also distance matrices of trees

and, hence, det Dk(Tn) = (-l)k_l(k-l)zk_z, 1l =k <n, However, a

theorem from linear algebra [3] asserts that, in this case, the num-

ber of permanences in sign* of the sequence

1, det Dl(Tn), det DZ(Tn)' ..., Get Dn(Tn)

is just equal to n the number of positive eigenvalues of D(Tn).

+l
But there is just one permanence in sign in the above sequence, so
that n, = 1. Since, for n > 1, det D(Tn) # 0 then D(Tn) is non-
singular and n_ = n-l. Therefore by (5), N(Tn) 2 n-1.

It is easy to show that N(Tn) < n-1 by inductively addressing
the vy with increasing Xk, using the fact that if vy is an ex-

terior vertex of a tree T (i.e., vy has degree 1) and vy is
adjacent to vj in T then dT(vi,vk) =1 + d(vj,vk) for all k # i.

Thus, it follows that

(9) N(Tn) =n - 1.

In fact, any addressing of Tn with elements of Sn"l can use

no d's.

Where the sign of 0 may be fixed arbitrarily.
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(iii). ¢ = C, -~ acycle on n vertices. Again, (5) can be used

directly to show

n~-1 if n is odd,
N(Cn) 2

% if n is even.

It is not difficult to construct addressings (cf. [2]) which
achieve these bounds so that we have

n-1 if n is odd
N(Cn) = (10)

if n is even.

(S]]

(iv). ¢ = Qn - the l-skeleton of an n-cube. The labeling of Qn
described previously produces an addressing of Qn using n-tuples of
O's and 1l's. On the other hand, by (6), N(Q)) 2 log,|Q | = n.

This implies N(Qn) = n (which is not surprising).
(v). 6 =K - the complete bipartite graph on n and n
ny.n, 1 2
vertices. Rearrange the rows and columns of D(Kn n ) so that it
1’72

has the form

n 2
[ —
02 ... 11...1
ee. 2
D(Knl’n2)= 22 ...0| 11...1
11...1002...2
1 cee 1 20 ... 2
11 ... 22 ... 2 .

A straightforward induction argument shows that
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-2

n1+n
(3n1n2—4nl-4n2+4)

n.,+n
(11) det D(K ) = (-1) 1 2712
nl,nz

for n;.n, 2 1. By the result mentioned in (ii) on the signs of the
determinants of the principal submatrices of D(G), and the fact

det D(K) = (-1)" 1(n-1)2",

it follows that for D(K ).
n,,n
172
ny + n, - 2 if n; 2 2, n, 2 2,
n_:
nl + n2 - 1 otherwise.

Thus*, by (5),

n,y + n, - 2 if n, 22, n, 22,

n, + n, - 1 otherwise,.

In the other direction, the following general
result applies.

THEOREM. Suppose G is a graph on n vertices such that

for some edge {vi,vj],

(12) min(dG(vi,vk), dG(vj,vk)} <1

for all vertices v

X of G. Then N(G) s n - 1,

Proof. Assume without loss of generality that (12) holds for
i =1, j =2, The quadratic form Q'(G) has the following
decomposition:

K2,2 is the only Kn for which D(Kn n ) 1is singular.

1’ 1’72
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Q' (G) z a; %%

lsi<j<n

]

Z ) 05 * oL x)+x(...)+x4<...)+
41572

cee tx (L0,
where it is not difficult to check that the appropriate choices can be
made in the parenthetical expressions.

Since the complete bipartite graph Knl’n2 satisfies the hy-

pothesis of the theorem then

N (K ) €£n, +n, - 1.
nllnz 1 2

This bound for N(Kn n ) has also been obtained in [1]. However,
17772
W. T. Trotter has recently shown [5] that

N(K3n1+2'3n2+2) < 3n; + 3n, - 2.

We summarize the preceding results on Kn .

nl + n, - 1 for 1 = ny < n,
N(Knl’nz) = 2 for n; =n, =
ny + n, - 2 for ny = n, = 2 (mod 3).
In general,
ny + n, - 2 < N(Knl'nz) < n + n, - 1.

6. Concluding remarks. Many of the results of the preceding

section can also be derived from the recent interesting work of
Brandenburg, Gopinath and Kurshan [1]. 1In particular, they establish
the following theorem.
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THEOREM. A graph G with n yvertices can be addressed with

elements of SN if and only if there exist binary-valued n x N
matrices P and Q such that D(G) = PQt + QPt.

As previously mentioned, no counterexamples are known to the
inequality N(G) = n - 1. However, this inequality has not even been
established for the class of graphs G satisfying dG(Vi,vj) < 2 for
in the preceding section

all vi,vj in G. The example of K2 3

’
shows that the stronger assertion N(G) = max[n+,n_} does not always
hold.

The fact that det D(Tn) is independent of the structure of the
tree Tn (cf. Eq. (8)) was initially unexpected. It is true, though,
that the eigenvalues of D(Tn) do depend on the structure of Tn' It
seems likely that as the number of edges in a connected graph G in-
creases the possible range of det D(G) increases, at least for a
while. It would be of interest to know what this range is as a func-
tion of the number of edges of G. Perhaps det D(G) has a simple
enumerative interpretation which would make these relationships clear.
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