ON EMBEDDING GRAPHS IN SQUASHED CUBES

R. L. Graham and H. O. Pollak Bell Laboratories Murray Hill, NJ 07974

1. Introduction. For the set of three symbols $S = \{0,1,\star\}$, define the function d from S x S to the nonnegative integers N by

$$d(s,s') = \begin{cases} 1 & \text{if } \{s,s'\} = \{0,1\}, \\ 0 & \text{otherwise.} \end{cases}$$

For $n \in \mathbb{N}$, d can be extended to a mapping of $S^n \times S^n$ to \mathbb{N} by

$$d((s_1,...,s_n), (s'_1,...,s'_n)) = \sum_{k=1}^n d(s_k,s'_k).$$

We shall refer to $d((s_1,\ldots,s_n),(s_1',\ldots,s_n'))$ as the <u>distance</u> between the two n-tuples (s_1,\ldots,s_n) and (s_1',\ldots,s_n') although, strictly speaking, this is an abuse of terminology since d does not satisfy the triangle inequality.

For a connected graph G, the <u>distance</u> between two vertices v and v' in G, denoted by $d_{G}(v,v')$, is defined to be the minimum number of edges in any path between v and v'.

The following problem arose recently in connection with a data transmission scheme of J. R. Pierce [4].

Given a connected graph G, find the least integer N(G) for which it is possible to associate, with each vertex v of G, an element $A(v) \in S^{N(G)}$, such that

$$d_{G}(v,v') = d(A(v), A(v'))$$
 (1)

for all pairs of vertices v and v' in G.

The mapping A will be called an <u>addressing</u> of G; A(v) will be called the <u>address</u> of the vertex v. Of course, it is not <u>a priori</u> clear that addressings exist for all connected graphs G. It will be seen that an addressing of G is equivalent to a distance-preserving embedding of G into the 1-skeleton of an n-dimensional cube in which certain faces have been "squashed".

In the following sections, various bounds on N(G) are established. In addition, N(G) is determined exactly for a number of classes of graphs.

2. Squashed cubes. Let T_n denote the set of 2^n points $\{(\epsilon_1,\ldots,\epsilon_n): \epsilon_k=0 \text{ or } 1\}$ in E^n . Let Q_n denote the graph which has T_n as its set of vertices and an edge between the vertices $(\epsilon_1,\ldots,\epsilon_n)$ and $(\epsilon_1',\ldots,\epsilon_n')$ iff they differ in exactly one coordinate. Thus, Q_n is just the 1-skeleton of an n-cube.

For a given n-tuple $\overline{s}=(s_1,\ldots,s_n)\in S^n=\{0,1,\star\}^n$, associate with \overline{s} the set s^* of vertices of Q_n which can be obtained by replacing all s_k which are \star 's by either 0 or 1. Thus, if \overline{s} has r *'s then s^* has 2^r elements. If one replaces the vertices of Q_n which belong to s^* by a single vertex labeled \overline{s} and an edge is placed between \overline{s} and $(\epsilon_1,\ldots,\epsilon_n)$ if and only if some element of s^* and $(\epsilon_1,\ldots,\epsilon_n)$ are adjacent in Q_n , one forms a new graph Q_n' . One may think of Q_n' as the 1-skeleton of an n-cube in which a certain r-dimensional face was "squashed" and the 2^r vertices were identified by a single vertex.

More generally, if $\overline{s}_1, \ldots, \overline{s}_t$ all belong to s^n and $d(\overline{s}_i, \overline{s}_j) \ge 1$ for $i \ne j$, then one may form the graph Q_n^* by identifying each of the sets of vertices s_k^* by the corresponding single vertex \overline{s}_k with edges incident to \overline{s}_k as previously indicated. Q_n^* may be thought of as the 1-skeleton of an n-cube in which t disjoint hyperfaces have been squashed to points.

An addressing A of a graph G using elements of S^n can now be seen to be equivalent to the existence of a squashed n-cube Q_n^* which is isomorphic to G. The vertex v_k of G corresponds to the vertex $A(v_k)$ in Q_n^* so that A is a distance-preserving map of G onto Q_n^* . N(G) is the least n for which this is possible.

For example, an addressing of K_4 , the complete graph on 4 vertices, is given in Figure 1. The associated squashed 3-cube is also shown.

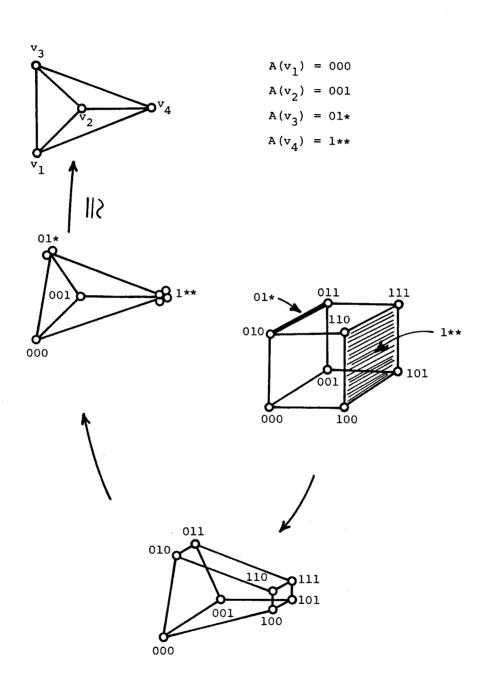


Figure 1.

3. Upper bounds on N(G). Given an arbitrary finite connected graph G, we first show $N(G) < \infty$. To see this, let

$$N = \sum_{v_i, v_j} d_{G}(v_i, v_j)$$

where the sum is over all pairs of vertices v_i, v_j of G. Construct the addresses $A(v_k) \in S^N$ as shown below.

$$A(v_1) = 0 \dots 0 \quad 0 \dots 0 \quad x \dots x$$

$$A(v_2) = 1 \dots 1 \quad x \dots x \quad x \dots x$$

$$A(v_3) = x \dots x \quad 1 \dots 1 \quad x \dots x$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$A(v_i) = x \dots x \quad x \dots x \quad 0 \dots 0$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$A(v_j) = x \dots x \quad x \dots x \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

For each pair of vertices v_i, v_j , a unique block of $d_G(v_i, v_j)$ coordinate positions is used to achieve $d(A(v_i), A(v_j)) = d_G(v_i, v_j)$ by placing a block of 0's and a block of 1's in these coordinate positions in v_i and v_j and blocks of *'s in these coordinate positions for all other v_k . This argument shows

(2)
$$N(G) \leq \sum_{v_i,v_j} d_G(v_i,v_j).$$

If G has n vertices and m_G denotes $\max d_G(v_i,v_j)$, where the max is taken over all v_i,v_j in G, then a slight modification of the preceding argument can be used to show

$$N(G) \leq m_{G}(n-1). \tag{3}$$

No example of a graph G is currently known for which N(G)>n-1. However, it has not yet even been shown that there exists a fixed constant C such that $N(G) \le cn$ for all connected graphs G with n vertices.

4. Lower bounds on N(G). Let D(G) denote the n x n matrix $(d_{i,j})$, where $d_{i,j} = d_G(v_i,v_j)$, $1 \le i,j \le n$. Let A be an addressing of G using elements of S^N, and write

$$A(v_k) = (s_{k,1}, \dots, s_{k,N}), 1 \le k \le n.$$

We consider the contributions to the various interpoint distances made by a fixed coordinate position in the addresses, say, the mth coordinate position. An important fact to note is that if $s_{i,m}=0$ and $s_{j,m}=1$ then these components contribute 1 to the distance $d(A(v_i),A(v_j))$. Of course, if $s_{i,m}=1$ and $s_{j,m}=0$ then these components also contribute 1 to $d(A(v_i),A(v_j))$. In all other cases, these components contribute $\frac{zero}{2}$ to $d(A(v_i),A(v_j))$. Thus, if $C_m(s)$, $s\in S$, denotes the set of t for which $s_{t,m}=s$ then the m^{th} coordinate position contributes 1 to $d(A(v_i),A(v_j))$ iff either $i\in C_m(0)$, $j\in C_m(1)$ or $j\in C_m(0)$, $i\in C_m(1)$.

This remark can be restated in the following terms. Let Q(G) denote the quadratic form defined by

$$Q(G) = \sum_{1 \le i, j \le n} d_{i,j} x_i x_j,$$

and let

$$Q'(G) = \sum_{1 \le i < j \le n} d_{i,j} x_i x_j = (1/2)Q(G).$$

Then

(4)
$$Q'(G) = \sum_{m=1}^{N} \left(\sum_{i \in C_{m}(0)} x_{i} \right) \left(\sum_{j \in C_{m}(1)} x_{j} \right).$$

Hence, the existence of an addressing for G using elements of S^N is equivalent to a decomposition of Q'(G) of the type given by (4). A simple algebraic transformation allows (4) to be rewritten as

$$Q'(G) = \frac{1}{4} \sum_{m=1}^{N} \left[\left(\sum_{i \in C_{m}(0)} \mathbf{x}_{i} + \sum_{j \in C_{m}(1)} \mathbf{x}_{j} \right)^{2} \right]$$

(4')

$$-\left(\sum_{\mathbf{i}\in C_{\mathbf{m}}(0)} \mathbf{x}_{\mathbf{i}} - \sum_{\mathbf{j}\in C_{\mathbf{m}}(1)} \mathbf{x}_{\mathbf{j}}\right)^{2}\right].$$

This shows that Q'(G) is congruent to a form which has at most N positive squares and at most N negative squares. However, results from matrix theory [3] allow us to conclude from this that

 $N \ge index Q'(G) = n_{+} = number of positive eigenvalues of D(G)$

and

 $N \ge index Q'(G) - rank Q'(G) = n_ = number of negative eigenvalues of D(G).$

We summarize this in the following theorem.*

THEOREM. A lower bound for N(G) is given by:

(5)
$$N(G) \ge \max\{n_{+}, n_{-}\}.$$

Since the sum of the eigenvalues of D(G) equals the trace of D(G), which is 0, then $\max\{n_+,n_-\} \le n-1$. Hence, this theorem can never be used to find a counterexample to the inequality N(G) $\le n-1$.

First established in a somewhat different way by H.S. Witsenhausen.

It should be noted that if $\{s_1, \ldots, s_{2^n+1}\} \subseteq S^n$, then for some $i \neq j$, $d(s_i, s_j) = 0$. This implies the bound

$$N(G) \ge \log_2 n \tag{6}$$

for a graph G with n vertices.

- 5. Some special cases. We shall apply (5) to determine N(G) for a number of classes of graphs.
- (i). $G=K_n$ the complete graph on n vertices. In this case $d_{i,j}=1$ for all $i\neq j$ and $n_+=1$, $n_-=n-1$. By (5) this implies $N(G)\geq n-1$. However, it is easy to see that $N(G)\leq n-1$ by considering the decomposition of Q'(G) given by

Q'(G) =
$$\sum_{1 \le i < j \le n} x_i x_j = \sum_{i=1}^{n-1} (x_i \sum_{j=i+1}^{n} x_j)$$
.

(This decomposition corresponds to squashing one hyperface of each dimension in the (n-1)-cube.) The two inequalities imply

$$N(K_n) = n - 1. (7)$$

Equation (7) has an interesting graph-theoretic interpretation obtained by associating complete bipartite subgraphs of G with terms of the decomposition of Q'(G) given in (4).

COROLLARY. If K_n is decomposed into t edge-disjoint complete bipartite subgraphs, then $t \ge n - 1$.

No proof of this fact is known which does not use an eigenvalue argument.

(ii). $G = T_n$ - a tree on n vertices. Suppose the vertices of T_n are labeled v_1, v_2, \ldots, v_n so that for $1 \le k \le n$, the subgraph of T_n determined by the vertices v_1, \ldots, v_k is a subtree of T_n . In [2], it is shown that it is possible to transform the matrix $D(T_n)$ using elementary row and column operations to a matrix of the form

$$D^{*}(T_{n}) = \begin{bmatrix} 0 & 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & -2 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & -2 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & -2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 & \dots & 0 & -2 \\ 1 & 0 & 0 & 0 & \dots & 0 & -2 \end{bmatrix}.$$

Since $D^*(T_n)$ and $D(T_n)$ have the same determinant, then this implies

(8)
$$\det D(T_n) = (-1)^{n-1} (n-1) 2^{n-2}, \quad n \ge 1,$$

independent of the structure of T_n .

By the way T_n was labeled, the upper left k^{th} order principal submatrices $D_k(T_n)$ of $D(T_n)$ are also distance matrices of trees and, hence, $\det D_k(T_n) = (-1)^{k-1}(k-1)2^{k-2}$, $1 \le k \le n$. However, a theorem from linear algebra [3] asserts that, in this case, the number of permanences in sign* of the sequence

1, det
$$D_1(T_n)$$
, det $D_2(T_n)$, ..., det $D_n(T_n)$

is just equal to n_+ , the number of positive eigenvalues of $D(T_n)$. But there is just <u>one</u> permanence in sign in the above sequence, so that $n_+ = 1$. Since, for n > 1, det $D(T_n) \neq 0$ then $D(T_n)$ is non-singular and $n_- = n-1$. Therefore by (5), $N(T_n) \geq n-1$.

It is easy to show that $N(T_n) \le n-1$ by inductively addressing the v_k with increasing k, using the fact that if v_i is an exterior vertex of a tree T (i.e., v_i has degree 1) and v_i is adjacent to v_j in T then $d_T(v_i, v_k) = 1 + d(v_j, v_k)$ for all $k \ne i$. Thus, it follows that

(9)
$$N(T_n) = n - 1.$$

In fact, any addressing of T_n with elements of S^{n-1} can use no d's.

^{*} Where the sign of 0 may be fixed arbitrarily.

(iii). $G = C_n$ - a cycle on n vertices. Again, (5) can be used directly to show

$$N(C_n) \ge \begin{cases} n-1 & \text{if } n \text{ is odd,} \\ \\ \frac{n}{2} & \text{if } n \text{ is even.} \end{cases}$$

It is not difficult to construct addressings (cf. [2]) which achieve these bounds so that we have

$$N(C_n) = \begin{cases} n-1 & \text{if } n \text{ is odd} \\ \\ \\ \frac{n}{2} & \text{if } n \text{ is even.} \end{cases}$$
 (10)

- (iv). $G = Q_n$ the 1-skeleton of an n-cube. The labeling of Q_n described previously produces an addressing of Q_n using n-tuples of 0's and 1's. On the other hand, by (6), $N(Q_n) \ge \log_2 |Q_n| = n$. This implies $N(Q_n) = n$ (which is not surprising).
- (v). $G = K_{n_1,n_2}$ the complete bipartite graph on n_1 and n_2 vertices. Rearrange the rows and columns of $D(K_{n_1,n_2})$ so that it has the form

nl	ⁿ 2
$\begin{bmatrix} 0 & 2 & \dots & 2 \\ 2 & 0 & \dots & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \end{bmatrix}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2 2
	$ \begin{bmatrix} 0 & 2 & \dots & 2 \\ 2 & 0 & \dots & 2 \\ \vdots & & & \vdots \\ 2 & 2 & \dots & 0 \\ \hline 1 & 1 & \dots & 1 \end{bmatrix} $

A straightforward induction argument shows that

(11)
$$\det D(K_{n_1,n_2}) = (-1)^{n_1+n_2} 2^{n_1+n_2-2} (3n_1n_2-4n_1-4n_2+4)$$

for $n_1, n_2 \ge 1$. By the result mentioned in (ii) on the signs of the determinants of the principal submatrices of D(G), and the fact

$$\det D(K_n) = (-1)^{n-1} (n-1) 2^n,$$

it follows that for $D(K_{n_1,n_2})$,

$$n_{-} = \begin{cases} n_{1} + n_{2} - 2 & \text{if } n_{1} \ge 2, n_{2} \ge 2, \\ n_{1} + n_{2} - 1 & \text{otherwise.} \end{cases}$$

Thus*, by (5),

$$N(K_{n_1,n_2}) \ge \begin{cases} n_1 + n_2 - 2 & \text{if } n_1 \ge 2, n_2 \ge 2, \\ \\ n_1 + n_2 - 1 & \text{otherwise.} \end{cases}$$

In the other direction, the following general result applies.

THEOREM. Suppose G is a graph on n vertices such that for some edge $\{v_i, v_j\}$,

(12)
$$\min\{d_{G}(v_{i},v_{k}), d_{G}(v_{i},v_{k})\} \le 1$$

for all vertices v_k of G. Then $N(G) \le n - 1$.

<u>Proof.</u> Assume without loss of generality that (12) holds for i=1, j=2. The quadratic form Q'(G) has the following decomposition:

^{*} $K_{2,2}$ is the only K_{n_1,n_2} for which $D(K_{n_1,n_2})$ is singular.

$$Q'(G) = \sum_{1 \le i < j \le n} d_{ij} x_i x_j$$

$$= (x_1 + \sum_{d_{2i} = 2} x_i) (x_2 + \sum_{d_{1j} = 2} x_j) + x_3 (...) + x_4 (...) + ...$$
... + x_n (...),

where it is not difficult to check that the appropriate choices can be made in the parenthetical expressions.

Since the complete bipartite graph K_{n_1,n_2} satisfies the hypothesis of the theorem then

$$N(K_{n_1,n_2}) \le n_1 + n_2 - 1.$$

This bound for $N(K_{n_1,n_2})$ has also been obtained in [1]. However, W. T. Trotter has recently shown [5] that

$$N(K_{3n_1+2,3n_2+2}) \le 3n_1 + 3n_2 - 2.$$

We summarize the preceding results on K_{n_1,n_2}

$$N(K_{n_{1},n_{2}}) = \begin{cases} n_{1} + n_{2} - 1 & \text{for } 1 = n_{1} \le n_{2} \\ 2 & \text{for } n_{1} = n_{2} = 2 \\ n_{1} + n_{2} - 2 & \text{for } n_{1} = n_{2} = 2 \pmod{3}. \end{cases}$$

In general,

$$n_1 + n_2 - 2 \le N(K_{n_1, n_2}) \le n_1 + n_2 - 1.$$

6. <u>Concluding remarks</u>. Many of the results of the preceding section can also be derived from the recent interesting work of Brandenburg, Gopinath and Kurshan [1]. In particular, they establish the following theorem.

THEOREM. A graph G with n vertices can be addressed with elements of S^N if and only if there exist binary-valued n x N matrices P and Q such that D(G) = PQ^t + QP^t .

As previously mentioned, no counterexamples are known to the inequality $N(G) \le n-1$. However, this inequality has not even been established for the class of graphs G satisfying $d_G(V_i, v_j) \le 2$ for all v_i, v_j in G. The example of $K_{2,3}$ in the preceding section shows that the stronger assertion $N(G) = \max\{n_+, n_-\}$ does not always hold.

The fact that $\det D(T_n)$ is independent of the structure of the tree T_n (cf. Eq. (8)) was initially unexpected. It is true, though, that the eigenvalues of $D(T_n)$ do depend on the structure of T_n . It seems likely that as the number of edges in a connected graph G increases the possible range of $\det D(G)$ increases, at least for a while. It would be of interest to know what this range is as a function of the number of edges of G. Perhaps $\det D(G)$ has a simple enumerative interpretation which would make these relationships clear.

References

- L. H. Brandenburg, B. Gopinath and R. P. Kurshan, On the addressing problem of loop switching, <u>Bell System Tech</u>. <u>Jour</u>., to appear.
- R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, <u>Bell System Tech.</u> Jour. 50 (1971), 2495-2519.
- B. W. Jones, The arithmetic theory of quadratic forms, <u>CARUS</u> <u>Mathematical</u> <u>Monograph</u> <u>No</u>. 10, Math. Assoc. of Amer., 1960, <u>Providence</u>.
- J. R. Pierce, Network for block switching of data, <u>Bell System Tech</u>. <u>Jour</u>., to appear.
- 5. W. T. Trotter (personal communication).