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I. INTRODUCTION

The results presented here are an outgrowth of an in-
vestigation on the subject of "cube-numbering" and some of
its generalizations. "Cube-numbering" refers to the gen-
eral problem of assigning a glven set of real values to the
vertices of an n-cube (or more generally, some graph G) so
that the sum over all edges e of the n-cube (or G) of a
given function of the difference of the values of the two
endpoints of e is minimized. This concept arises in the
study of certain optimal binary codes (cf. [4], [5], [7]).
In this note we extend the set of admissible graphs G (of
which the n-cube is now a special case) and express the
preceding question of optimal vertex assignments in number-
theoretic terms. The solution to the corresponding number
theory problem is obtalined by studying the structure of a
special class of graphs we call primitive. Although the
few facts established here about primitive graphs are suf-
ficient to completely answer our vertex assignment problem,
it will be seen that many interesting open gquestions remailn.

IT. CUBE-NUMBERING

One of the first problems to be asked in this subject

was the following. Let ¢ denote the graph formed from the
l-skeleton of a unit n-cube. In other words, the set of

vertices V(Cn) of the graph consists of the set of the ot
distinct binary n-tuples; a pair of vertices is Jjolned by
an edge if the two binary n-tuples differ in exactly one

coordinate. Given a set* of real numbers
A=f{ay<a, < ... <a }, the problem is to determine
0O =>"1= = 704

the value of the expression

v(A)

min ) |9(2) - ®(b)] (1)
® n

e={a,bleE(C")
where E(Cn) denotes the set of edges of ¢” and ¢ ranges
over all 1-1 maps of V(C") onto A.

This was first solved by L. H. Harper [2] for the case

a, = 1. Later, K. Steiglitz and A. J. Bernstein [7] showed

o
Where repetition is allowed.

170
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that the arguments in [2] can also be applied to the case
of general A. A particular map ¢ which achieves the mini-
mum is given by

@(ao,...,an_l) =a, (2)
n-1

where ay = O or 1 and a = }: a121; we shall call this map
1=0

the canonical assignment.

ITI. COMPLETE PAIRINGS

Let X = {XO’Xl""’XQm—l} denote a se‘cAr of 2m real

numbers. We define a palring P of X to be a partition of X
into two sets XO and Xl of cardinality m together with a

map 6 of XO onto Xl' We define the value of P by

vE) = ) Ix - e(x)]. (3)
xeXO
If m were even, we could now form pairings PO and Pl

of X, and X, respectively with values V(Po) and V(Pl)'

Furthermore, if m/? were even we could continue this pro-
cess stlll another step forming pairings POO’POl’Plo’Pll

XOO’XOl’XlO’Xll respectively, where XO = XOO L)X01 and

of

Xl = XlOUXll are the partitions induced by the palrings

PO and Pl. Finally, in the extreme case in which m = 2n,

we could continue for n steps, each time forming a pairing
of all sets created by partitions of previous palrings. At
the end, the original set X has been partitioned into
singletons. We define this process to be a complete
pairing P* of X and we define the total value of P¥ by

v(pe) =) v(p) (%)
P

where the sum 1s taken over all pairings P which occurred
in the complete pairing P¥*.

As an example, for the set X = (0,1,3,6,6,7,9,11) we
have the following complete pairing P*:

TAS before, we allow repetition.
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0
o 6 Poo? g v(Poo) = 6
Py: T 3
1 3 5
=8
0 3 6 11 wv(p,) = 1143 =14 Fo1* T v(Py7)
p: I 13 ¢ 0 11
1769 1 7 1
v(P) = 1+4+0+2 = 7 P g g P1o® % v(Pyg) = 6
v(P;) = 542 = 7 6
! Piyt I v(Pyy) =3
9
V(P*) = 7 + (14+7) + (6+8+6+3) = 51
Example 1
The general questlion is to determine
w(X) = min V(P*) (5)
P*

where -the minimum 1s taken over all complete pailrings P* of
X. For example, for the set X of Example 1, 1t is not hard
to check that w(X) = 45.

A 1ittle thought shows that for any
A=f{ayg < ... <Ca
27-1

w(a) < v(a). (6)
One of our results (cf. Theorem 3) will be that equality
always holds in (6). 1In order to attack this problem, we
first examine a special class of graphs.

IV. PRIMITIVE GRAPHS

We consider a connected gr’aphJr G with V(G) and E(G)
the vertex and edge sets, respectively. We begin by giving
several definitions.

Definition: A subset CC E(G) is said to be a cutset
of G 1f:

(1) The graph with vertex set V(G) and edge set E(@) - C
is disconnected.

(i1) (i) does not hold if C is replaced by any proper sub-
set of C.

TFor‘ the more standard concepts in graph theory, the reader

is referred to [6].
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We say that C is a simple cutset if no two edges of C have
a common vertex. We call G decomposable if @ has s simple
cutset; otherwise we say that G is Indecomposable. @ will
be called primitive if G is indecomposable but every proper
subgraph of G is decomposable. Finally we say that G is
completely decomposable 1if every subgraph of @ (including G
itself) is decomposable.

We give several examples to 1llustrate these concepts.

(or E:amgi? 2: G = K3, the complete graph on 3 points
cf. PFig. .

Flgure 1

G 1s certainly indecomposable. Also, 1f any edge of @
is removed then the remaining graph is completely decompos-
able. Hence G 1s primitive. Notice that any graph (except
K3) which contains K3 as a subgraph can be nelther primi-

tive nor completely decomposable.
Example 3: G = Cn, the l-skeleton of the n-cube.

If we take C to be the set of all edges of @ parallel
to a fixed edge, then C 1s a cutset of G whose removal
leaves a graph consisting of two disjoint copies of

n-1
c

then by induction @ = Crl is completely decomposable.

Hence, since Cl is trivially completely decomposable

We point out an important, though obvious, fact.

Fact 1: If G 1s not completely decomposable then @
contains a primitive subgraph.

In particular, any 1lndecomposable graph G must contain
a subgraph which is primitive (possibly G itself). Howeven
knowing that a primitive subgraph exists and exhibiting it
may be two different things. To illustrate this point,
conslder the following:

Exercise: Let G be defined by Fig. 2.

Figure 2
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(1) Show G 1s indecomposable.
(ii) Show G is not primitive.
(111) Find a primitive subgraph of G.

This graph was first suggested by D. Kleitman as a candi~
date for a primitive graph. Any solution in less than a
half hour is to be considered excellent.

Definition: Let e = {x,y)} be an edge of a primitive
graph G and let G’ denote the graph with V(@’) = V(G),
E(a’) = E(Gg) - {e). We say that e is a regular edge of G
if @' has both a simple cutset no edge of which contains x
and also a simple cutset no edge of which contains y.

We next show how two primitive graphs may be combined
to yield a new primitive graph. Let G be a primitive graph
with a regular edge e and let H be a primitive graph with a
vertex z of degree 2 (cf. Fig. 3).

b4 X b
G’ e e z s Y Gr e~ o H!
¥ y ¥y
G H K
Figure 3

We assume that V(G)JﬁiviH) = {x,y) and the two edges of
E(H) incident to z are {z,x} and {z,y}. We form the graphs
G’ and H’ as follows:

v(a’) = v(a), E(a¢') = E(G) - (e,
v(H') = V(H) - {z], E(H') = B(H) - (z,x] - (z,¥].
Finally, we form the graph K = G’ W H by
v(K) = v(a) V(" ),
E(K) = E(¢') W E(H").
Theorem 1l: K is primitive.
Proof: First, assume K is decomposable. Let D be a
simple cutset for K and define XK' by V(K') = V(X),
E(X’) = B{(K) - D. If x and y are in different components
of K’ then Df)E(H) must be a simple cutset for H'. But
since H is primitive then any simple cutset for H' must
contain both x and y since otherwise by choosing elther

{z,x} or {z,y]} we would have a simple cutset for H which is
impossible. Therefore D contalns both x and y. Hence, we
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can construct a simple cutset for G substituting e for
D/VH in D. This is a contradiction and we conclude that
K must be indecomposable.

Next, let f ¢ E(K) and define K” by V(K”) = V(K),
E(K”) = E(K) - {f}. There are two cases:

Ei) f e E(G'). Define G” by V(6”) = V(@),

E(G”) ="E(G) - [f)}. Let D be a simple cutset for G#. If

e ¢ D then D is also a simple cutset for K”. Furthermore,
we can continue to delete simple cutsets from E(G”) C E(X”)
until all that remains in E(K”) 1s just E(H’). We can now
complete the decomposition since H’ is completely decompos-
able and therefore K” is completely decomposable. If e € D
then no edge of D/ = D - {e] contains elther x or y. Let
D” be a simple cutset for H’. Thus, D’ U D" is a simple
cutset for K” and, as before, it is not difficult to see
that K” is also completely decomposable in this case.

(11) £ € E(H' ). Define the graph H” by V(H") = V(H),
E(H") = E(H) - {f}. Let D; be a simple cutset for H”.
Form the graph H; with V(Hl) = V(H"), E(Hl) = E{(H") - D,.

If x and y are in the same component of Hl then Dl is also

a simple cutset for K”. 1In general we can continue forming
graphs Hy, 2 < 1 { m, so that V(Hi) = V(H"),

E(Hi) = E(Hi_l) - Dy, where D; 1s a simple cutset for Hy 15
2 <1< m, and for the first time, x and y are in different

components of Hm. Thus, for 1 <1< m~- 1, Di is a simple
cutset for @’ “H; ;. Also, exactly one of {z,x}, {z,¥y])
must belong to Dm. Since e was a regular edge G then we

can find a simple cutset D* for G’, all of whose edges are
disjoint from those of Dm' Therefore, Dm ) D* is a simple

cutset for G/ L)Hm and 1t is easily seen that we can now
completely decompose G’ MJHm. This establishes the com-
plete decomposability of K” in this case.

Hence, in all cases K” is completely decomposable.
Since f was arbitrary, then K is primitive and the theorem
is proved.

It is not difficult to show that if all edges of G and
H are regular then all edges of K are also regular. Thus,
we can use Theorem 1 to generate infinite families of prim-
itive graphs. We list some of the simpler members of
several of these familles in Fig.
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Figure 4

For a nonnegative integer k, let w(k) denote the num-
ber of 1's in the binary expansion of k. Define W(k) to be
w(0) + w(l) + ... + w(k). The next result restricts the
number of edges of a completely decomposable graph.

Theorem 2: Let G be a completely decomposable graph
with n vertices. Then

|E(¢) | < W(n-1). (7)
This bound is best possible.
Proof: The fact that (7) is the best we could hope

for follows from considering the graph G defined as
follows:

Il

(i) V(Gn) [O:l: ..,1’1-1},
(11) {1,3) € E(Gn) if and only if the binary expansions of
i and j differ in exactly one place.

It is easily seen that
|E(G, )| = W(n-1).
Since G is a subgraph of the N-cube C for 2 > n then the

complete decomposability of cN (Ex. 3) implies that G, is
also completely decomposable.

The first few values of the right-hand side of (7) are
given in Table 1.
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n ofi1|2{3i4l516] 718

w(n) o11)1112}1{2{2{ 3 1

win) {ofl1j2i4s{7lolia{13

Table 1

The theorem holds for n = 1 and 2 by the definition of
a graph, i.e., loops and multiple edges are prohibited.
For n = 3, there is only one graph with 3 vertices and 3
edges (cf. Flg. 1) and since this is not (completely) decom-
posable then the theorem also holds in this case. Assume
the theorem has been established for all graphs with < n
vertices and suppose there exists a completely decomposable
graph G with n vertices and e > W(n-1) + 1 edges. By defi-
nition, G must have a simple cutset D. If we delete the
edges of D from E(G) we must be left with exactly two com-
ponents Gy, G,, say with ]V(Gi)| = ny, IE(Gi)I = ey,

i =1,2. Condition (ii) in the definition of a cutset pre-
vents the formation of more than two components when D is
removed from E(G). We can assume without loss of general-
ity that 0 < n; < ny,. It 1s easy to see that

ID| < min{n,,n,} = n; and hence,
= 1’72 1
e + e, +ny > e Wn-1) + 1. (8)

However, if either

ey > w(nl—l) +1 or e, w(ng—l) + 1

then by the induction hypothesis, one of the two components
is not completely decomposable and this is a contradication.
Thus, we must have

1 < w(nl-l), e, < w(nz—l). (9)

Hence, combining (8) and (9) with the fact that n

l+n = n
we obtain

2

W(n,-1) + W(ne—l) +ny > Wing+n,-1) + 1, 0< n; < n,.

(10)
Therefore, the proof of the theorem will be completed by
proving the following lemma which contradicts (10).

Lemma 2: Let r and s be integers > 0. For a 1-1 map
9 : {0,I,...,r) = (s,s+1,...,s+r} define &(9) by

8(e) = min (w(e(k)) - w(k)]}. (11)
O<kgr
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Then
(1) There exists ¢ such that 6(9) > O.
(11) If s > r then there exists ¢ such that &(9) > 1.
Proof: The proof proceeds by induction on r. For
r = 0 and all s the lemma holds. Assume the lemma holds
for r - I and all s > 0. Also, for s = O, (i) holds with ¢

the identity map and (ii) holds vacuously. Hence, we may
assume 8 > O. Let p satisfy logz(r+l) <{p<1l+ loge(r+l).

In the set {s,s+l,...,s+r} there is exactly one integer

which is divisible by 2P. Denote this integer by 2%.u
where q > p and u 1s odd. We can write (s,s+l,...,s+r} as

{2%u-r+x,...,2%u,...,2% u+x) for some x, O <x<r. If
X = r then (i) and (ii) hold by mapping k — 2%-u + k for
O < kr. Hence we can assume O ¢ x < r.

If 8 < r so that the two sets overlap then we only
need to establish (i). Partition the two sets into
{0,1,...,8-1} U {s,...,r} and {s,...,r} U {r+l,...,s+r].

By the induction hypothesis there is a map

? : {0,1,...,5-1} > {r+1,...,s+r} with () > 1 > 0. We
can combine this with the identity map of {s,...,r} into
{s,...,r} to obtain a map ¢’ : {0,1,...,r} — {s,s+l,...,s+n
with 8(9’) = 0. This establishes (1) in the case s < r.

If 8> r then it suffices to establish (i1) since this
implies (i). Partition the two sets into {0,1,...,x} U
{x+1,...,r) and {2qu-r+x,...,2qu-l] v (2%, ... ,2% ux).
Let @, : {0,1,...,x}-» 2% u,...,2% u4x) by wl(k) = 2% + x,
0 < k< x. Certainly 6(¢1) > 1. Since u is odd, the lemma
is proved if we can find
9, {x+1,...,7} = (2% -r+x,...,2%-1} with 6(¢2) > 1.

By definition r + 1 < 2P < 2%, Since u is odd we
have

w(j) + w(2%.u-1-3) = w(u-1) + q, x + 1 < J<r. (12)
But

w(@e(k)) w(k) > 1, x+1l<k<r,

iff w(u-1) + g - w(k) - (w(u-1) + q - w(@e(k)))

Y
[a

™
+
e}
I
~
74N

r,

irr w(e%u-1-x) - w(2q-u—-l—<p2(k)) >1, x+1<k

I
3

Hence, it suffices to find a map
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93t {0,1,...,r-x-1] - (2% u-1-(x+1),...,2%9.4-1-p}
with 5(cp3) > 1.

But x > O and these sets are disjoint. Hence by the induc~
tion hypothesis, such a map @S exists. This completes the

proof of the lemma.

We remark that the contradiction to (10) is obtained
as follows. Let @ : {O,l,...,nl—l}-ﬁ [n2,...,n2+nl—l] with
5(9) > 1. This is possible by Lemma 2 since O < ngp < on,.
Thus, w(®(k)) - w(k) > 1 for 0 < k < n; - 1and

n2+nl—l nl—l
w(n2+nl~l) - w(ne—l) = E: w(k) = }; w(o(k))
k=n2 k=0

(w(k) + 1) = w(nl—l) +ny

|
o
~
'_l

which is a contradiction to (10). Thus, Theorem 2 is
proved.

Corollary 1: Let G be a primitive graph with n
vertices. Then

[E(a)] < (5Z5)W(n-2).

Proof: We have seen that n > 3. Suppose there exists
a graph G with n vertices and |E(G)| > ( ~5)W(n-2). Then

I5(6) | > w(n-2) + 2IE@L (13)

Since @ has n vertices and |E(G)! edges then some vertex
vy € V(G) must have degree ¢ 2|E(G Form the graph G’
by removing v, from V(G) and all the edges of E(G) which
are incident to Vg- Hence,

V()] =n -1

and

lE(er) | 3 I8(6)| - 2LE@ S yinoz) (14)
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by (13). Since G is primitive by hypothesis then G’ must
be completely decomposable. This is impossible however
since (14) contradicts Theorem 2. This completes the proof.

V. SOME AUXILIARY RESULTS

We shall need several additional facts.

Lemma 3: For fixed integers 0, > 1, 1 < k< t, let

(ci 5 ) be a t-dimensional array of real
1t 1t <ny, 1cke

numbers. Then the following two statements are equivalent:

(1) For all choices of O xik) < xék) < v & xﬁk),
1<k<t, K
o 4 x§1). .x§t) > 0. (15)
; t 71 t
lgikgnk
1<k<

(i1) For all choices of 1 < Jo<nes 1<k,

z ¢y ...1, 20 (157)
Iy $hny
1ck<t

[}
o+

Proof: Suppose (ii) fails. Then for some choice of
L <, 1< k< t, the sum in (157) 1s < 0. Choose
k

x( ) = ... = x(k) = 0, x(k) = ... = x(k)
1 Kt i P
A straightforward substitution into the sum of (15) shows

that (i) also fails.

=1, 1< k< t.

Suppose (11) holds. The following identity is easily
verified:

Z Cil...i xﬁ).-.x&)

1<t <n, t
1K<
\
A R YA A A
il...lt I Jl—l Jg Je-
sy Pty

1IKk<t  \1<k<t



Graham: Primitive Graphs 181

where x k)

that (1

é =0, 1< k< t. From (16) it follows at once
) holds. This proves the lemma.

We state the simple special case t =1 as

Corollary 2: Let (ci)lgign’ be a sequence of real

numbers. Then }: cyXy > 0 for all cholces of
1<i<n
0 < x) < X, < e Xy if and only if }: ¢y > 0 for all
J<i<n
choices of 1 < J < n.
Finally, we consider a set X and a pairing P of X with
partition X = X, Y X; and map 6 : Xp ™ X (cf. Sec. III).

Let f map the real line R into R such that f is symmetric,
i.e., f(x) = £f(-x) for x ¢ R . By the f-value of P,
denoted by vf(P), we mean

Vf(P) = E: f(x - 6(x))

xeXO

(compare with (3)}).

Lemma 4: Suppose f is symmetric, and for x > 0 convex
and nondecreasing. Then for a fixed partition of
X = Xo‘u/Xl, vf(P) is minimized by taking the map € to be

order-preserving.

Proof: Suppose there exist x, x’/ € Xo such that

x < x' and 6(x) > 8(x’). (There 1s no problem 1f x = x’ or
6(x) = 6(x’).) We show that if 6 is replaced by
er Xo-ﬁ X1 defined by

]

6" (x) = 6(x'),
6r(x) = 6(x),
o' (y) = e(y), vy # x,x',

then the resulting pairing P’ has vf(P') < vf(P). It is

sufficient to show

rle(x') - x) + £{6(x) - x') < £(6{x) ~ x) + £{6(x') - x’).
(17)

By the symmetry of f we can assume x < 6(x'). There are
three cases.
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(1) x < x < 9(x") < 6(x). Then (17) holds if
£((8(x")-x) + (x7-x)) + £((6(x)-6(x")) + (8(x’)-x"))
< f((e(x)-0(x7)) + (6(x")-x") + (x'-x)) + £(6(x’)-x")
and this is a direct consequence of the convexity of f.
(11) x < 6(x’) < x’ < 6(x). Then (17) holds if
£(6(x' )-x) + £(6(x)-x)
< E(xr-6(x1)) + £((8(x)-x") + (x7-6(x")) + (6(x')-x)).
But convexity implies
£(8(x')-x) + £(o(x)-x") < £(0) + £((6(x")-x) + (8(x)-x))

and by monotonicity we can add x’ - 8(x’) to each of the
arguments to establish (17) in this case.

(111) x ¢ 8(x’) < 8(x) < x’. Then (17) holds if
£(0(x)-x) + £(x7-6(x)) < £((6(x)-6(x")) + (8(x’)-x))
+ r((e(x)-6(x") + (x'-6(x)))
and this is a consequence of the monotonicity of f.
This proves the lemma.

VI. OPTIMAL COMPLETE PAIRINGS

We recall the notation of Sec. III. Let
A= [ao < ... < a }.  The main purpose of this section
- T oot
1s to determine w(A) = minimum of V(P*) over all complete
pairings P* of A.

Theorem 3:

ofo1

w(a) = v(a) = ) (2w(k) - n)a
k=0

K

Proof: Let P* be a complete pairing of A. Then

(18)
k=0

where the I, are integers which are = n (mod 2). This
follows by observing that V(P*) is just a sum of terms of
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the form ag - aj, 1> 3 (since we sum the absolute value of
the differences). Thus, each a, occurs with a coefficient

k

of +1 and altogether there are n coefficients to add up for
each a, . This sum we denote by I ; this is (18). Specifi-
cally Ik is the number of terms a - ai in which a, was
paired with a smaller ay, minus the number of fTerms aj -ay
in which a, was paired with a larger aj.

Now consider the following complete palring Q* of A.
All partitions of various subsets
B = [bO < ... <b } C A are of the form

- B T

B=B,VB =(b,< ...<b _, Juilb__.<...<D> };

0 1 o= ST l_l oF 1 = or_g

all maps 0 : Bo<ﬁ Bl are order-preserving. By Lemma 4 once
we have made the partition into BO and Bl’ we may as well
take 6 to be order-preserving in order to minimize V.

This complete pairing will be called the canonical
complete pairing. It is easy to verify

v(Qx) = v(A). (19)

In Q*%, each 2y is paired with all ay for which

[w{k) - w(i)| = 1. Hence, we can change any one of the
w(k) 1's to a O in the binary expansion of k to obtain an
admissible i or we can change any one of the n - w(k) O's
to a 1. This implies the coefficient of a, is

wik) - (n - w(k)) = 2w(k) - n and ¢

ol g

v(Q*) = E: (2w(k) - n)ak. (20)

k=0

Suppose now that P*¥ is a complete pairing of A such
that V(P*) < V(Q*). Then

o1 21
I, < (ew(k) - n)ak,
k=0 =0
(21)
o
(Ik - 2w(k) + n)a, < O.
k=0

By Corollary 2, (21) implies that for some r,
o¢rg2t-1,
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2 -1
(Ik - 2w(k) + n) < 0,
=r
n-l 21’1_1 .
\ -I
2J(n-wﬂd)< z <n;ﬁ,
k=r k=r
CHEN I, 22-1 ol.y
}: <} 2k> > }Z (n - w(k)) = }: w(2%-1-k)
k=r k=r k=r
2%.p-1
= w(k) = w(2"-r-1). (22)
k=0
n-I

Notice that the term 5 is "just the number of
coefficients of a, in V which have the coefficient -1, i.e.,
the number of aJ paired with ay for which j > k.

Let us associate a graph G with the complete pairing
P*¥-in the following way. V(G) wlll be the set
{0,1,...,2"-1); (1,4} e E(G) if and only if a, was paired
with aj for some pairing in P*., Thus each vertex of @ has
degree n. Note that the graph associated with the canoni-
cal complete pairing Q* is just the n-cube CV. We point
out the following important

Fact 2: G is completely decomposable. This follows
immediately from the construction of a complete pairing.
Conslder the subgraph G’ of G defined by
v(e¢') = {r,...,2"-1} and {1,3) € E(G') 1f and only if

1,J € v(G’) and {i,j} e E(G). For each k, r < k ¢ 2" - 1,
there i1s an edge in E(G’) for each j > k such that a‘j and

a, were paired in P*. Hence

281
ECOTIEY (m?ﬂ- (23)
k=r

Therefore, by (23) and (22) and the definition of G',

lE(ar )| > w(e"-r-1), |v(a')] = 2" - r. (24)
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However, this is a contradiction to Theorem 2 since G is
completely decomposable and therefore the subgraph G’ must
also be completely decomposable. This shows

V(p*) > v(Q*) (25)
which, together with (19) and (20), proves the theorem.

VIY. CONCLUDING REMARKS

A number of open questions remailn, several of which we
1ist here.

1. Suppose the definition of v(P) in (3) 1s replaced
by

v(2) = ) (x - 8()2. (3')

xeXO

Is it true that for A = {0,1,...,2"-1} the canonical
paliring Q* still has the minimum V-value? It has been
recently shown in [1] that in the case of cube-numbering,
the canonical assignment is still optimal; it 1s reasonable
to conjecture that Q% 1s the optimal complete pairing here.
One may also use a more general f-value of P (ef. Lemma 4)
and more general sets A and ask when Q¥ 1s optimal. For
the related problem in which v(P) = min |[x - 8(x)|, this

xeX

0

has been solved for A = (0,1,...,27-1) by Harper [3].

2. Suppose G is a primitive graph. Can |E(G)|/|V(a)|
be arbitrarily large? The bound in Corollary 1 only shows
for £ > O,

lE(e) | /]v(a)| < (% +¢) }ggg n

for n sufficiently large. We can also ask what reasonable
lower bounds may be placed on |E(G)|/|v(G)|. For example,
it is not difficult to show that except for G = K3, a

trian%le, anT primitive graph G must satisfy
le(e) [/Iv(e)] > 6/5.

3. Must all the edges of a primitive graph be
regular? Must a primitive graph have a vertex of degree 27
No counterexamples are known at present.

4, Can a primitive graph G have an even number of
vertices? While the answer to this question 1s almost
certainly yes, it is known that there are no primitive
graphs with 2, 4 or 6 vertices.

5. Can a primitive graph have smallest cycle length
> k? At present, the answer is known to be in the
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affirmative only for k < L.

6. More generally, is it possible to classify the
primitive graphs? Because of the rather strong conditions
a primltive graph must satisfy, this goal may not be too
unreasonable,
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