ON THE DISTRIBUTION OF 7»¢ MODULO 1
R. L. GRAHAM AND J. H. VAN LINT

Introduction. In recent work of E. Arthurs and L. A. Shepp on a prob-
lem of H. Dym concerning the existence of an ergodic stationary stochastic
process with zero entropy (cf. 1), the function d¢(n) was introduced .as
follows:

For an irrational number 6, let

O=a<u<a<...<ty <1 =1

be the sequence of points {If}, 1 =/ < n, (where {x} denotes x — [x], the
~ fractional part of x) and define*

do(n) = max(a; — a;_y), 1=:=n+1.

It is our purpose in this paper to establish several asymptotic results for
do(n). In particular, we prove that
sup lim inf ndy(n) = l—i—\Q
[ N0 2
and
24/5

inf lim sup nde(n) = 1 + 5
4 n-c0

(cf. Theorems 1 and 2).

Notation. We consider an irrational number 6. [by, by, by, ...] is the
simple continued fraction expansion of 4, i.e.,

1
SR I
The convergents h,/k, of 8 satisfy (cf. 3)
hoi=1, ho=10by, hi=bihi1+ hi, 121,
kei=0, ko=1, ki=bki1+ ks iz1
We define 6, by
0o =0, 8:1=1/(0,—[6.]), 120

Received July 15, 1966 and in revised form, December 13, 1966.
*It should be noted that the related function d'y(n) = minigicni1(a; — ai—;) has been
extensively studied by Sés, Halton, and others (cf. 2; 4; 5; 6; 7; 8; and 9).
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We have (cf. 3)
bn = [On]
and
(=" .
kn (kn0n+1 + kn—l)

hy
0 — E; =
Finally, we define x, and v, by

Xp = kn+l/km Yu = 1/0,,+2.
We then have

Zorr = [1/] + 1% Vo1 = —[1/3] + 1/yn, 52 0.

It follows easily from the definitions that

(1) %n = [bnt1, bny o o ., Bi]
and
2) Yo = 1/[bnyey buss, by, . . 1.
We shall use the following basic lemma.
LEmMMaA 1.
. do(m) = |kyf — hy + a(kyy10 ~— hypa)]

kn+(a+1)kn+1_1§m§kn+(a+2)kn+1—2
andOéaéb,H_z-—l.

The proof of this result appears implicitly in (5) and (7) and will not be
given here. It depends upon the somewhat surprising and apparently little-
known fact that the set of numbers {a,;; — a;: 0 <7 < n} (using the nota-
tion in § 1) always consists of at most three elements.

We are now prepared to prove the statements given in the introduction.

The main results.
THEOREM 1. ~
sup lim inf ndy(n) = l—izﬁ .
o o
Proof. We observe that, for # — o, |
lim inf nds(n) < lim inf(k, + kpya) |Ba8 — By

= lim inf(1 + x,) (v, + x,)~L
We first show that

3) lim inf(1 4+ x,) (3, + %)~ < 3(1 + v2), n— o,

Equivalently, we must show that



1022 R. L. GRAHAM AND J. H. VAN LINT

(4) limsup(n + %)L+ %)' 2 20+ V2)' =2(v2 - 1), 7>,
We prove (4) by establishing
LEMMA 2. Let 0 = [bo, by, ba, . . .], where b, < M for all n. Then
lim sup x,¥, = 1, #n— o,
with equality if and only if the b, are eventually constant.
Proof. By (1) and (2) we have

%Yn = [bnity Ouy - o ., 011/ [Bry2, Orgay - - -]
> (bprr + (M + 1)71) (bpye + 1)
(i) If bs41 > byye infinitely often, then b,41 2 1 + b4 infinitely often
and hence, for # — »,
lim sup %,y = lm sup(bpr1 + (M + 1)) (bpy2 + 1)7?
= limsup(bpye + 1+ (M + 1)) (bpye + 1)L
=214+ M+1)2>1.
(ii) If bpy1 > buye for just a finite number of values of #, then there is an
N such that b,, = N for all sufficiently large m. Hence, if « = [N, N, N, .. .]

then
lim x,y, = (lim x,) (lim 3,) = a- (1/a) = 1, n— o,

This proves Lemma 2.

1t follows that, for any ¢ > 0, infinitely many of the pairs (x,, ¥,) lie in the
hyperbolic region given by x = 0 and xy =2 1 — ¢. We observe that this
region is contained in that defined by x =2 0 and (v + x)/(1 + x) = 2(~1/2
—1) — ¢, since the last boundary line passes below the hyperbola, for all
sufficiently small ¢; and (4) now follows. Thus (4) holds in case the b, are
bounded. On the other hand, if the b, are unbounded, then the x, are un-
bounded and

lim sup(y, + %) {1 + x,)~! = limsupx, (1 + x,)"1 =1> 2(+/2 - 1),
n — o, This proves (4).
Finally, suppose that 8 = 1 + /2. Then b, =2 for n = 0,1,2,.... The
relations for k, and &, can be solved to give
By = (24/2)71(1 + v2)"2 — (1 — v/2)™2),
b= @V + V2 — (1 — 2y,
and all 8, = 1 + /2. Hence, we have

k.0 — h, = (—1)"(+/2 — 1)"H,
By Lemma 1,
do(m) = (v2 — 1)1 — a(v2 — 1)]
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ifm =k, + (@4 1)kyy1 + ¢, where0 S a < bryz—land —1 S ¢ < by —2;
that is, if, for large #,
m~ (24/2)71(1 + V2" (1 + (@ + 1)1 + v2)],

where e =0or land —1 ¢ < (2v2)7'(1 4 +v/2)*! — 1. When m — =,
n — o ; therefore

lim inf mde(m) = inf(2+/2)7'[1 — a(v/2 — 1)][1 + (@4 1)1 + v2)]

—inf@V2) 24+ v2 + @ —af] = H}i .
This completes the proof of the theorem.

THEOREM 2.
inf lim sup nde(n) = 1 + 2v5 .
[ o 5

Proof. By Lemma 1, it is sufficient to prove

lim sup (&, + 2kn41) ]R8 — k| = lim sup(l + 2x,) O + x,)1

®) N
=14 245/5, n— o,

in order to show that
lim sup nde(n) = 1 + 2+/5/5, n-— o,
If ¥, < % infinitely often, then
A+22)0+x) 122
infinitely often and we have
lim sup(1 + 2x,) (y, + %)~ = 2, n—> o,

If y, > % for all sufficiently large #, then b, = 1 for all sufficiently large .
Hence, as n — o,

lim x, = 1,1, 1,...]= (1+\/5)/2, limyn= ('—1+'\/5)/2
and

lim(1 + 2x,) (v + %,)71 = 1 4 24/5/5.
This proves (5). An easy calculation shows that
lim ndo(n) = 1 + 2+/5/5, n-— o,
for 8 = (1 4 /5)/2, and Theorem 2 is proved.
We note that if
by +boy1 — 1 =m Z by + (@ + 2)kpyr — 2,

where @ = b,,5 — 1, we have
max mdy(m) = max . A4 (4 2)2) (A = py,) (g + v

0SSy 42—
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We conclude with

THEOREM 3.
lim sup nds(n) = ©» < limsup b, = «, n-—> o,

Proof. (i) If lim sup,,, b, = =, then lim inf, ,, y,» = 0. If y, is sufficiently
small, then we can take u = [1/2y,] — 1 (since this is less than b, — 1)
and we find

I+ (4 2)%) 1 = pya) (n + ¥2)™' 2 % (29) @) (0 + DT o

for a subsequence of y, which tends to 0.
(ii) If lim supy,nds(n) = «, then certainly

lim Sup(l + (P‘* + 2)x,) (1 - “*yn) (xn + yn)_1 = @, n— o,
where
= (29)7 = (2w) - 1

(the expression considered is a quadratic form in g with a maximum for
p = u*). Hence, as n — o,

lim sup 271 (% + ¥2) (253a) " + 11[L + 2630 (0 + 32)"1] = o

and this implies lim inf,, .y, = 0, i.e., lim sup,, 0, = ® and the theorem is
proved.

The authors would like to acknowledge several helpful comments of a
referee.
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