A COMBINATORIAL THEOREM FOR PARTIAL SUMS

By R. L. Gramam
Bell Telephone Laboratories

1. Introduction. Let (2, - - - , #,) be a sequence of real numbers, s = 2y ;
and M, = max (s;, -+, §). As usual let the superscript * mean maximize with
zero. In a recent paper of M. Dwass [2], a theorem equivalent to the following is
proved (generalizing a result of Kac [3] and Spitzer [4]):

THEOREM. 2, (M} — M7i_1) = s} where o ranges over all cyclic permutations
Of (x17 7:1;")'

In this note we give a generalization of this theorem. It will be seen that
several recent results of L. Takécs [5], [6] may be derived from this extension.

2. The basic theorems. We begin with a preliminary lemma. Let
X = (21, *++ , %) be asequence of real numbers. Let m (X) denote the rth larg-
est term of X (or zero if r > n) and let m (X, y) abbreviate m (@1, -+, Zx, ¥) ).

LeMmMA. If y = 0 then
o m(X, y)" — m@X)* = m(X,y) — m(X,0).

Proor. There are three cases:

(i) Suppose m (X, y) = 0.Sincey = 0 thenm(X,0) = m (X, y) andm(X)" =
m(X,y)t = 0and (1) follows.

(ii) Suppose m (X, y) > 0 and m(X) > 0. Then m(X, y)* = m(X, y) and
m(X)* = m(X) = m(X, 0) and (1) follows.

(iii) Suppose m(X, y) > 0 and m(X) = 0. Since y = 0 then a moment’s
reflection shows that m(X)*¥ = 0 = m(X, 0). But we have m(X, y)7 =
m(X, y) and so (1) follows.

This completes the proof.

Now denote the partial sum D+ x; by s . Suppose 1 S r £ n and let m;, =
m((s1, <+, s)). Then we have

THEOREM 1. Z,, (m?f — m:f-.1) = s where o ranges over all cyclic permutations
of (@, - ’xn)'

Proor. If s, < O then the theorem is immediate since in this case s; = 0 =
m} — mi_; for all permutations of the z; . Assume s, = 0 and note that

Mo = m(@1, 21+ T2, o+, 2+ -+ + )
=2+ m(0, 22,2+ 25, -, T4 0+ 2a)).
Therefore by the lemma
Z (’m:f —mj:-1) = Z (mn—m((x1,x1+$2, SRR A S +$n—1,0)))
2 @A m(O, 2, 24 @, B F e Ta))
—m(0,z, T+ @, T Ta)))
=24+ T = 8
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since the sum is taken over all cyelic permutations of (x;, -+, z,). This proves
the theoren.

Theorem 1 is a special case of a more general result. Let (x1, -+ -, Z:10) be a
sequence of real numbers and let m;(k) denote m((@r41, Tiar + Tigz, -+,
Teg + oo F zpyy)) for0 £ k = tand 1 £ j = w. Then exactly as before we
have

TarorEM 2. If 1 < r S wand D fyaey; = Ofor 1 < &k < ¢ then
11 t
]; ma (&) " — maa (B)F) = mu(t) — ma(0) + gxk

Ifwelett = u =nand z,,; = z;for 1 < j = nin Theorem 2 then m, (n) =
m, (0) and we obtain Theorem 1. A similar substitution in Theorem 2 yields

THEOREM 3. Let (x1, - -+ , Z,) be a sequence of real numbers and let 1 < m < n.
Suppose the sum of any m consecutive x; is nonnegative where the x; are considered
cyclically i.e., 2, follows z, , etc. Then form — 1 = ¢ = p = n we have (using the
notation of Theorem 1)

Z (mp - mq (p - q>8n

where o ranges over all cyclic permutations of (@1, <+, ).

3. Concluding remarks. It may be noted that several results of L. Takécs
follow directly from Theorem 1. For example, if we assume that the z; are inte-
gers and x; + - -+ 4+ 2z, = 1, then Theorem 1 asserts that for any integer r
satisfying 1 < r < n we have

2 mi —mia) = @+ ) =1

where ¢ ranges over all cyclic permutations of (z1, -+, z,). Since each sum-
mand m, — mi_; is a nonnegative integer then there must be exactly one cyclic
permutation of (21, - -+, &.) such that mf — mf_; > 0. This inequality holds,
however, if and only if there are exactly r of the partial sums s; which are = s, =
1,1.e., if and only if there are exactly r positive partial sums. This is just Theorem
1 of Takédes [5]. Similarly, by replacing x; by 1 — 2,1+ and taking r = 1 in
Theorem 1, we obtain the following interesting result of Takdcs ([6], Theorem 1)
(which may also be derived from an elegant result of Dwass [2]):

TueOREM. If 1, + -+, Tn are nonnegative integers such that x3 + -+ + z, =
k = n then there are exactly n — k cyclic permutations of @, , - - - , &, such that the
Jth partial sum is less than j forj = 1,2, - -+ | n.

The author wishes to express his gratitude to the referee for several very help-
ful simplifying suggestions.
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