
OR Spectrum (2016) 38:531–540
DOI 10.1007/s00291-016-0431-5

REGULAR ARTICLE

Worst-case analysis of the LPT algorithm for single
processor scheduling with time restrictions

Oliver Braun1 · Fan Chung2 · Ron Graham2

Received: 1 January 2015 / Accepted: 11 January 2016 / Published online: 29 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We consider the following scheduling problem. We are given a set S of
jobs which are to be scheduled sequentially on a single processor. Each job has an
associated processing time which is required for its processing. Given a particular
permutation of the jobs in S, the jobs are processed in that order with each job started
as soon as possible, subject only to the following constraint: For a fixed integer B ≥ 2,
no unit time interval [x, x + 1) is allowed to intersect more than B jobs for any real
x . There are several real world situations for which this restriction is natural. For
example, suppose in addition to the jobs being executed sequentially on a single main
processor, each job also requires the use of one of B identical subprocessors during
its execution. Each time a job is completed, the subprocessor it was using requires
one unit of time to reset itself. In this way, it is never possible for more than B jobs to
be worked on during any unit interval. In Braun et al. (J Sched 17: 399–403, 2014a)
it is shown that this problem is NP-hard when the value B is variable and a classical
worst-case analysis of List Scheduling for this situation has been carried out.We prove
a tighter bound for List Scheduling for B ≥ 3 and we analyze the worst-case behavior
of the makespan τLPT(S) of LPT (longest processing time first) schedules (where
we rearrange the set S of jobs into non-increasing order) in relation to the makespan

B Oliver Braun
o.braun@umwelt-campus.de

Fan Chung
fan@ucsd.edu

Ron Graham
graham@ucsd.edu

1 Trier University of Applied Sciences, Environmental Campus Birkenfeld, 55761 Birkenfeld,
Germany

2 University of California, San Diego, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-016-0431-5&domain=pdf

532 O. Braun et al.

τo(S) of optimal schedules. We show that LPT ordered jobs can be processed within
a factor of 2 − 2/B of the optimum (plus 1) and that this factor is best possible.

Keywords Scheduling · Worst-case analysis · Time restrictions · LPT (longest
processing time first) algorithm

1 Problem description

We are initially given a set S = {S1, S2, . . . , Sn} of jobs. Each job Si has associated
with it a length si . The jobs are all processed sequentially on a single processor. Only
one job can be worked on at any point in time. A job Si will be processed during
a (semi-open) time interval [α, α + si) for some α ≥ 0. A special type of job Si ,
called a zero-job, has length si = 0. By convention, each zero-job is processed at
some particular point in time. Furthermore, only one job can be worked on at any
point in time except in the case of zero-jobs, where it is allowed for several zero-jobs
to be processed at the same point in time, provided the constraint (1) below is not
violated. Given some permutation π of S, say π(S) = T = (T1, T2, . . . , Tn) with
corresponding job lengths (t1, t2, . . . , tn), the jobs are placed sequentially on the real
line as follows. The initial job T1 in the list T begins at time 0 and finishes at time t1.
In general, Ti+1 begins as soon as Ti is completed, provided the following constraint
is always observed:

For every real x ≥ 0, the unit interval [x, x + 1)can intersect at most B jobs.
(1)

Constraint (1) reflects the condition that each job needs one of B additional resources
for being processed and that a resource has to be renewed after the processing of a
job has been finished. The preceding procedure results in a unique placement (or
schedule) of the jobs on the real line. We define the finishing time τ(T) to be
the time at which the last job Tn is finished. A natural goal might be for a given
job set S, to find those permutations T = π(S) which minimize the finishing time
τ(T).

In Braun et al. (2014a) it has been shown that the problem is NP-hard in general (the
authors polynomially reduce the NP-hard problem PARTITION Garey and Johnson
(1979) to a special case of our scheduling problem).

Let us denote by τw(S) the largest possible finishing time for any permutation of
S, and let τo(S) denote the optimal (i.e., the shortest possible) finishing time for any
permutation of S. The following bounds from Braun et al. (2014a) are similar in spirit
to some of the bounds in the very early worst-case analysis literature of scheduling
algorithms (Graham 1966, 1969): For B = 2 and any set S, τw(S) − 4

3τo(S) ≤ 1. For

B ≥ 3 and any set S, τw(S) −
(
2 − 1

B−1

)
τo(S) ≤ 3. The factors 4

3 for B = 2 and

2 − 1
B−1 for B ≥ 3 are best possible.

In fact, the constant 3 can be replaced by B
B−1 (and that bound is tight).

123

Worst-case analysis of the LPT algorithm for single processor... 533

Theorem 1 For B ≥ 3 and any set S,

τw(S) ≤
(
2 − 1

B − 1

)
τo(S) + B

B − 1
.

This bound is best possible.

We give the proof in Sect. 4. Note that the worst-case analysis of the finishing time
of any permutation of S exactly corresponds to the classical worst-case analysis for
the List Scheduling algorithm (Graham 1966, 1969) where the jobs can be placed in
any order on the machine. We need this result for the analysis of the LPT (longest
processing time first) algorithm. For the LPT algorithm, we rearrange the job set S of
jobs into non-increasing order to form the permutation L = (L1, L2, . . . , Ln) where
li denotes the length of Li and li ≥ li+1 for 1 ≤ i ≤ n − 1. We write τLPT(S) for the
makespan of an LPT schedule. In what follows we assume that all the lengths li of the
jobs Li satisfy li ≤ 1 for all i , since if any Li had li = 1+ ε > 1, then by decreasing
li to 1, we decrease both τLPT(S) and τo(S) by ε, thereby increasing the upper bound.

In Sects. 2 and 3, we show the following theorems:

Theorem 2 For B ≥ 2 and any set S,

τLPT (S) ≤
(
2 − 2

B

)
τo(S) + 1.

This bound is best possible.

Theorem 3 For B = 2 and any set S,

τLPT (S) − τo(S) ≤
{

1
2 (1 + l1 − ln−1 − ln) if n is odd,
1
2 (l1 + l2 − ln−1 − ln) if n is even.

This bound is best possible.

2 Analysis of the LPT algorithm for B ≥ 2

In this section, we are going to proof the general bound for the worst-case behavior of
the makespan of LPT schedules in relation to the makespan of optimal schedules for
arbitrary B ≥ 2 as stated in Theorem 2. First, we establish an upper bound for LPT
schedules.

Lemma 1 If the jobs are ordered according to the LPT rule and have only processing
times li ≤ 1

B−1 , i = 1, . . . , n, then we have:

τLPT (S) ≤

n∑
i=1

li + n

B

123

534 O. Braun et al.

Proof By (1) and because of li+1 ≤ li , we have

(1) τLPT (S) ≤ 1 + lB + 1 + l2B + 1 + · · · + ln
(2) τLPT (S) ≤ 1 + lB−1 + 1 + l2B−1 + 1 + · · · + ln−1

. . .

(B) τLPT (S) ≤ 1 + l1 + 1 + lB+1 + 1 + · · · + ln−(B−1)

Consequently, this implies

B · τLPT(S) ≤
n∑

i=1

li + n

which in turn implies

τLPT(S) ≤

n∑
i=1

li + n

B
. (2)

Note:This holds forn = Bm,m ≥ 1.The casesn = Bm+1, . . . , n = Bm+(B−1)
can be shown in a similar way. ��

Now we are ready to prove Theorem 2. We separate the permutation L = {L1, . . . ,

Ln} generated by the LPT rule into two setsV = {V1, . . . , Vv} andU = {U1, . . . ,Uu},
where vi = li ≥ 1

B−1 denotes the length of Vi and ui = li+v < 1
B−1 denotes the

length of Ui , n = u + v. In what follows we use the abbreviations β := ∑v
i=1 vi for

the sum of the processing times of the job set V of “large” jobs, and γ := ∑u
i=1 ui

for the sum of the processing times of the job set U of “small” jobs.

Case 1: u ≤ τo(S) · (B − 2) + B + γ (B − 1)
The jobs in the large job set V can be scheduled without any gap, so we have

τLPT (V) = β. SetU contains the small jobs with processing times < 1
B−1 . We know

from Lemma 1 that in this case τLPT (U) ≤ γ+u
B . So we have for the makespan of the

LPT ordered job set:

τLPT(S) ≤ τLPT(V) + τLPT(U)

≤ β + γ + u

B

≤ β + γ + γ + u

B
− γ

≤ τo(S) + τo(S)(B − 2) + B + γ (B − 1) + γ − Bγ

B

≤ τo(S) + τo(S) · B − 2

B
+ γ (B − 1) − γ (B − 1)

B
+ 1

123

Worst-case analysis of the LPT algorithm for single processor... 535

≤ τo(S)

(
1 + B − 2

B

)
+ 1

≤ τo(S)

(
2 − 2

B

)
+ 1

Case 2: u > τo(S) · (B − 2) + B + γ (B − 1)
Again, we have for the makespan of the LPT ordered job set:

τLPT(S) ≤ τLPT(V) + τLPT(U)

≤ β + γ + u

B

≤ β + u

B − 1
· B − 1

B
+ γ

B

≤ β + u

B − 1
·
(
1 − 1

B

)
+ γ

B

≤ β + u

B − 1
−

(u
B−1 − γ

B

)

For the auxiliary job set T with job lengths ti = 1
B−1 , if si ≤ 1

B−1 , and ti = si , if

si > 1
B−1 , we have τ(T) = β + γ = β + u

B−1 . Together, we come so to

τLPT(S) ≤ τ(T) −
(u

B−1 − γ

B

)

and with (8) to

τLPT(S) ≤ τ(T) − u

B(B − 1)
+ γ

B

≤ τo(S)

(
2 − 1

B − 1

)
+ B

B − 1
− u

B(B − 1)
+ γ

B

< τo(S)

(
2 − 1

B − 1

)
+ B

B − 1
− τo(S)(B − 2) + B + γ (B − 1)

B(B − 1)
+ γ

B

≤ τo(S)
(2B − 3)B − (B − 2)

B(B − 1)
+ 1

≤ τo(S)

(
2 − 2

B

)
+ 1

We give the following example that shows that the bound is tight. Consider the set
S consisting of t jobs of length 1 and (B − 2)t + B zero-jobs for some integer t . We
denote a job of length 1 by 1 and a zero-job by 0. The optimal permutation 0B−1[1
0B−2]t 0 has finishing time τo(S) = t . On the other hand, the LPT order 1t 0t (B−2)+B

has a finishing time τLPT (S) = t + ((B − 2)t + B)/B = (2 − 2/B)t + 1. Thus,
τLPT (S) = (2 − 2/B)τo(S) + 1.

123

536 O. Braun et al.

3 Refined analysis of the LPT algorithm for B = 2

Our goal in this section will be to prove Theorem 3. A first version of this result has
been presented by the authors in Braun et al. (2014b). As usual (see Braun et al. 2014a),
we let s(li) denote the starting time of Li when L is scheduled, and we let f (Li)

denote the corresponding finishing time. We start with the following observation.

Lemma 2 If the jobs are ordered according to the LPT rule and have only processing
times li ≤ 1

B−1 , i = 1, . . . , n, then we have:

s(Li) = f (Li−B) + 1, i ≥ B + 1

Proof It follows from (1) that

s(Li) ≥ f (Li−B) + 1, i = B + 1, . . . , n. (3)

In fact, we claim that (3) holds with equality for all i if the jobs are given in LPT
order. This is certainly true for i = B + 1 (since l1, . . . , lB ≤ 1

B−1). The only reason
that we could have s(Li) > 1 + f (Li−B) (for some value i ≥ B + 2) is if

f (Li−1) > f (Li−B) + 1. (4)

But we know by induction that f (Li−1) = s(Li−1) + li−1 = f (Li−(B+1)) + 1 +
li−1. Hence, by (4), f (Li−(B+1)) + 1 + li−1 > f (Li−B) + 1, i.e., f (Li−(B+1)) +
li−1 > f (Li−B) = s(Li−B) + li−B . However, s(Li−B) ≥ f (Li−(B+1)). Therefore,
s(Li−B)+ li−1 > s(Li−B)+ li−B , or li−1 > li−B , which is a contradiction. Thus, we
have s(Li) = 1 + f (Li−B) for all i . ��

We know from Braun et al. (2014a) that the optimal schedule for S satisfies

τo(S) ≥ 1

2

(
s1 + sn +

n∑
i=1

si + n − 2

)

≥ 1

2

(
ln−1 + ln +

n∑
i=1

li + n − 2

)
(5)

(note that ln−1 and ln are the lengths of the two smallest jobs in the LPT order).
Now we consider two cases:
(i) n = 2m + 1. From Lemma 2 we see that

τLPT(S) = l1 + 1 + l3 + 1 + · · · + l2m−1 + 1 + l2m+1 =
m+1∑
i=1

l2i−1 + m.

123

Worst-case analysis of the LPT algorithm for single processor... 537

Because of li+1 ≤ li for 1 ≤ i ≤ n − 1, we have consequently

τLPT(S) ≤ l1 + 1 + l2 + 1 + · · · + l2m−2 + 1 + l2m = l1 +
m∑
i=1

l2i + m.

Thus,

τLPT(S) ≤ 1

2

(
l1 +

2m+1∑
i=1

li + 2m

)

= 1

2

(
l1 +

n∑
i=1

li + n − 1

)
.

Hence, by (5),

τLPT(S) − τo(S) ≤ 1

2

(
1 + l1 − ln−1 − ln

)
.

(ii) n = 2m. From Lemma 2 we see that

τLPT(S) = l1 + l2 + 1 + l4 + 1 · · · + l2m−2 + 1 + l2m = l1 +
m∑
i=1

l2i + m − 1.

Because of li+1 ≤ li for 1 ≤ i ≤ n − 1, we have consequently

τLPT (S) ≤ l1+l2+1+l3+1+· · ·+l2m−3 + 1+l2m−1 = l2 +
m∑
i=1

l2i−1+m − 1.

Thus,

τLPT(S) ≤ 1

2

(
l1 + l2 +

2m∑
i=1

li + 2m − 2

)

= 1

2

(
l1 + l2 +

n∑
i=1

li + n − 2

)
.

Hence, by (5),

τLPT(S) − τo(S) ≤ 1

2
(l1 + l2 − ln−1 − ln) .

It follows immediately that the makespan of LPT schedules is at most one unit
interval longer than themakespan of optimal schedules.Wegive the following example
that shows that the bound is tight. Consider the set S consisting of t = 2m jobs of

123

538 O. Braun et al.

length 1 and t zero-jobs for some integer t . We denote a job of length 1 by 1 and a zero-
job by 0. The optimal permutation 0[1]t [0]t−1 has finishing time τo(S) = (3t − 2)/2.
On the other hand, the LPT order 1t0t has a finishing time τLPT (S) = 3t/2. Thus,
τLPT (S) − τo(S) = 1. For the case t = 2m + 1 one has to add one more zero-job to
achieve the given worst-case bound.

4 Refined analysis of the List Scheduling algorithm for B ≥ 3

In this section, we analyze the worst-case behavior of the makespan τw(S) of any
permutations of S in relation to the makespan τo(S) of optimal schedules as stated in
Theorem 1.

In Braun et al. (2014a) the authors assume that the permutation (S1, S2, . . . , Sn)
is the optimal permutation for the set of jobs S = {S1, S2, . . . , Sn}, so that this
permutation has finishing time τo(S). Then the authors create an auxiliary job set
T = {T1, T2, . . . , Tn} as follows. The size of ti = |Ti | is defined by:

ti =
{ 1

B−1 if si ≤ 1
B−1 ,

si if si > 1
B−1 .

(6)

Observe, that for any permutation T ′ of T ,

τ(T ′) = τ(T) =
n∑

i=1

ti ≥ τw(S). (7)

The authors next examine the schedule for S. They replace each job Si that has si ≤
1

B−1 by a zero-job S′
i placed on the time axis at the starting time of Si (the lengths

of the jobs with si > 1
B−1 remain unchanged). This certainly causes no violations of

the B-constraint (1). Then they assign a weight of size 1
B−1 to each zero-job in this

modified job set S′. Thus, the schedule for S′ consists of the original “large” jobs Si
of length si > 1

B−1 and a number of “point masses” of weight 1
B−1 , all placed so that

condition (1) still holds, i.e., no unit interval intersects more than B of these jobs. The
sum of all the weights of the jobs in S′ is just equal to the sum of all the lengths of
the jobs in T , which by (7) is an upper bound on τw(S). In addition (since some of
the jobs have been replaced by zero-jobs), all of the jobs in S′ still fit in the interval
[0, τw(S)).

In that way the problem has been reduced to that of finding an upper bound W on
the total weight of an arbitrary assignment of (semi-open) intervals of length si > 1

B−1

and point masses of weight 1
B−1 so that condition (1) is satisfied (and, of course, so

that positive length intervals are disjoint, and point masses can only intersect a positive
interval at its starting point). In particular, we can conclude that τw(S) ≤ τ(T) ≤ W .

Next, in Braun et al. (2014a) the authors define blocks Ui = [i, i + 1) for 0 ≤ i ≤
N − 1, where N = �τo(S)�. They define the content c(Ui) to be the sum of all the
weight (or “mass”) in Ui . In other words, all the contributions of the point masses in
Ui together with all the portions of those S′

k that happen to lie withinUi are added up.

123

Worst-case analysis of the LPT algorithm for single processor... 539

In what follows, the authors analyze various possibilities for the contents of the
blocks Ui . The interval Ui is named bad if c(Ui) > 2 − θ , otherwise Ui is good.
By analyzing the possible numbers of zero-jobs in a block Ui the authors conclude
that the total gain of the sum of the contents of the blocks Ui over the average value
2 − 1

B−1 is at most B · 1
B−1 (for details we refer the reader to [Braun et al. (2014a),

p.402]). That is, the total weight
∑N−1

i=0 c(Ui) of the blocks of S′ satisfies

τw(S) ≤ τ(T) =
n∑

i=1

ti =
N−1∑
i=0

c(Ui)

≤ N

(
2 − 1

B − 1

)
+ B · 1

B − 1

We observe that to achieve this upper bound the last block UN−1 in the optimal
schedule S must be a bad block, i.e., the last block UN−1 must have content 2. This
means that there has to be a job of size 1 in the last blockUN−1. And that implies that
N actually equals τo(S). So we can follow that

τw(S) ≤ τ(T) ≤ τo(S)

(
2 − 1

B − 1

)
+ B

B − 1
(8)

which shows that the worst-case example for B ≥ 3 as given in Braun et al. (2014a)
is a tight worst-case example. (In this worst-case example the job set S consists of
(B−1)t +1 zero-jobs 1 and (B−2)((B−1)t +1)+ B jobs of length 0 for a positive
integer t , t must be large enough.)

5 Concluding remarks

For the single processor scheduling problem with time restrictions it is never possible
for more than B jobs to be worked on during any unit interval. Another view on
the problem is to consider B parallel processors that need one additional resource
(tool) for processing. After a processor has used this resource that processor needs
one timeunit to reset itself (e.g., for cleaning, cooling down, etc.) whereas the resource
is immediately available again. The single processor scheduling problem with time
restrictions was studied for the first time by Braun et al. (2014a) where the authors
show that this problem is NP-hard when the value B is variable andwhere they provide
a detailed worst-case analysis of List Scheduling.We analyze the worst-case behavior
of LPT schedules (where we rearrange the set S of jobs into non-increasing order)
and prove a tight bound for List Scheduling for B ≥ 3. We show that LPT ordered
jobs can be processed within a factor of 2− 2/B of the optimum (plus 1) and that this
factor is best possible. There might be algorithms other than LPT that achieve a better
worst-case behavior than LPT. An easy improvement for the case B = 2 is a heuristic
H where we start the schedule with the smallest job and then perform LPT. In that
way the bound τH (S)− τo(S) ≤ 1/2 can be achieved. It would be interesting to know
if our problem remains NP-hard if B ≥ 2 is fixed. The development of a mathematical

123

540 O. Braun et al.

programming model to find the optimal solutions would also be an interesting topic
to investigate.

References

Braun O, Chung F, GrahamRL (2014a) Single processor scheduling with time restrictions. J Sched 17:399–
403

Braun O, Chung F, Graham RL (2014b) Bounds on single processor scheduling with time restrictions. In:
Fliedner T, Kolisch R, Naber A (eds) Proceedings of the 14th International Conference on Project
Management and Scheduling, pp 48–51

GareyMR, Johnson DS (1979) Computers and Intractability: a guide to the theory of np-completenessW.H.
Freeman, New York

Graham RL (1966) Bounds for certain multiprocessing anomalies. Bell Syst Tech J 45:1563–1581
Graham RL (1969) Bounds on multiprocessing timing anomalies. SIAM J Appl Math 17:416–429

123

	Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions
	Abstract
	1 Problem description
	2 Analysis of the LPT algorithm for B geq 2
	3 Refined analysis of the LPT algorithm for B=2
	4 Refined analysis of the List Scheduling algorithm for B3
	5 Concluding remarks
	References

