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Abstract

Motivated by mathematical aspects of origami, Erik Demaine asked which points in the plane can be
constructed by using lines whose angles are multiples of 7/n for some fixed n. This has been answered
for some specific small values of n including n=3,4,5,6, 8, 10, 12,24. We answer this question for
arbitrary n. The set of points is a subring of the complex plane C, lying inside the cyclotomic field
of nth roots of unity; the precise description of the ring depends on whether 7 is prime or composite.
The techniques apply in more general situations, for example, infinite sets of angles, or more general
constructions of subsets of the plane.
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1. Introduction

Origami constructions start with a flat sheet of paper and end with a three-dimensional
figure through a series of folds. Some of the folds produce creases or pleats, whereas
others produce reference points needed for further folds. Information about practical
origami design, including amazing origami creations, can be found in [5]; various
mathematical aspects of origami can be found, for example, in [1, 2, 4].

The sets of reference points that can be constructed under various assumptions
have been studied for theoretical reasons—for example, solving quartic equations [3,
pp. 285-291]—or for more practical reasons—for example, approximating desired
reference points [6].

We will consider an idealized form of paper folding and determine the set of
reference points that can be constructed by folds chosen from a fixed set of directions
(that is, angles), where new points are intersections of folds through points that have
already been constructed. As observed in [7], this is a more limited set of assumptions
(axioms) than is sometimes used in mathematical origami. As a basic example,
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FiGure 1. The hexagonal lattice Z[{3].

the set of all points constructible from the points 0 and 1 with angles chosen from
{0, /3, 27/3} is the hexagonal lattice Z[{3] in the complex plane C (see Figure 1), as
the reader may enjoy verifying.

Erik Demaine raised the general version of this question: given an integer n > 3,
what is the smallest set S of points of the complex plane that contains 0 and 1 and is
closed under the operation of taking intersections of lines, through two points in S,
of distinct slopes which are multiples of 7/n? The case n =8 was answered in [7],
and the cases n =3, 4,5, 6, 8, 10, 12, 24 were found by Butler, Demaine, Graham and
Tachi (work in preparation).

Our first goal here is to show that if U is a group of angles, finite or infinite, then
the set of points constructed in this way (starting with just the two points 0 and 1) is a
subring R(U) of the complex plane. The techniques, and explicit description of R(U),
then enable us to answer Demaine’s question for all .

In order to state these results precisely, we now introduce some notation that will
be used throughout the paper.

For us, an origami fold is a line in the complex plane. A line is determined by a
point p on the line and a direction. A direction is determined by a nonzero complex
number u, and the line through p with direction u is

L,p):={p+ru:reR}

Two nonzero complex numbers determine the same direction if they are real scalar
multiples of each other, so we will assume that direction vectors are complex numbers
of absolute value 1, where the horizontal line has direction 1. Moreover, u and —u
determine the same direction. Thus direction vectors will be understood to lie in the
circle group T of complex numbers of absolute value 1 (under multiplication), and the
direction of a fold or line will be taken to be an element of the quotient group T/{+1}
of T by its subgroup {+1} of order two. We will assume throughout that a set U of
direction vectors is closed under negation, and let V = U/{+1} be the corresponding
set of folds. Note if a set of folds V has n elements, then the corresponding set of unit
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direction vectors U has 2n elements. The reader could, alternatively, choose to identify
T/{+} with the group R/aZ of real numbers in [0, 7) under addition modulo , where
6 would correspond to ¢ in the formulas to follow. In this setting, the horizontal line
has angle 0. Note that addition of angles, in the usual geometric sense, corresponds to
multiplication in the groups V and U.

It is natural to restrict attention to U and V that are subgroups of T (that is, closed
under multiplication) since this holds in Demaine’s context, is pleasant from the point
of view of symmetry, and turns out to allow for a natural proof that the set R(U) of
constructed points is closed under multiplication. However, some of what we do (for
example, the closure of R(U) under addition) does not require that U be a group, and
it would be interesting to consider arbitrary sets of angles.

If V, is the cyclic group of order n generated by (the class of) ¢”/" mod {+1}
then the corresponding group of direction vectors U, is the cyclic group of order 2n
generated by e”™/". The reader can check that if U is a group of directions and V is the
corresponding group of folds then V is isomorphic to the group U? of squares in U.

If directions u and v determine distinct folds (that is, u # +v), let

Iu,v(pv Q) = Lu(p) N LV(Q)

be the unique point on the intersection of the lines L,(p) and L,(g).

If UcT is a group of directions then let R(U) be the set of points that can be
obtained by repeatedly forming intersections I, ,(p, ¢), where u and v are arbitrary
distinct elements of U, and p and g are known points; initially the only known points
are 0 and 1. It is easy to check that R(U) could also be defined to be the smallest subset
of the complex plane that contains 0 and 1, and contains /, ,(p, ¢) whenever it contains
p and ¢, and u, v are distinct elements of U.

TueOREM 1.1. With the above notation, if the group V of folds has at least three
elements (so that U has at least six elements) then R(U) is a subring of C, consisting
of all integral linear combinations of arbitrary finite products of complex numbers of
the form

1—u?

1 -2

where u and v are in U. (Note that u®> € T is independent of the choice of representative
of the class of u € T/{x1}.)

Our other main result uses this theorem, together with results about cyclotomic
fields, to answer Demaine’s original question about V,, and describe R(U) explicitly
when U is finite. The key fact is that the quotients above are cyclotomic units when n
is prime, and units outside the primes lying over » if n is not a prime.

THeOREM 1.2. Let n>3. If n is prime, then R(U,) = Z[(,] is the cyclotomic integer
ring. If n is not prime then R(U,) = Z[{,, 1/n] is obtained from the ring of integers by
inverting n (that is, localizing the ring away from the primes dividing n).
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This generalizes the n = 3 result depicted in Figure 1. However, that case is a bit
of an outlier; later we will see that the theorem implies that for all n > 3, R(U,) is a
dense subset of the complex plane. Finally, we note that the theorem implies that even
though elements of R(U,,) are found by intersecting lines whose directions are powers
of {,, their coordinates lie in Q(Z,).

2. Plane intersections

In order to investigate the points that are constructible from a given set of folds
we will need to understand intersections in detail. The goal of this section is to give
explicit formulas for 1,,(p, g) and then investigate the properties of this operation,
from both algebraic and geometric perspectives.

Let u,v be distinct directions, and consider the lines L,(p) and L,(g). The
intersection of these lines is the point /,,,(p, g) that is the unique solution z to

Z=p+ru=q+sv,

for real numbers r and s. Since s = v~!(p — g + ru) is real, we can take the imaginary
part to get an equation that can be solved for 7:

_Im((g - p)/v)
 Im(u/v)

It is convenient to introduce the notation
Sy = Xy* — x"y = 2ily[* Im(x/y)

where x* denotes the complex conjugate of x, and |y|* =y*y. Note that s.. is
antisymmetric, and real-linear in each component. We can rewrite the equation for r

in the form s
—pv
r= L
Su,v

This gives

Sg— SyvP + SgoU — Sp U
q—p,v u,v q,v psv
Iu,v(pa QP=p+ P u= .

u,y Su,v

Substituting the definition and doing some algebraic juggling leads to a fundamental
formula:

upv —u'pv —vq'u+viqu su,pv . Svgq

L(p,q) = u. (2.1

Su,v Su,v Sv,u
A number of basic facts follow from these formulas.

ProposiTiON 2.1. Let p,q be points in the plane, and u,v be pairwise distinct
directions.

e (Symmetry) 1,,(p, q) = I,u(q, p).
. (Reduction) I, ,(p, q) = 1,,,(p, 0) + 1,,(0, @).
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Ficure 2. Properties of I,,(p, q).

. (Projection) 1,,(p,0) is a projection of p onto the line {rv:reR} in the
direction u.

) (Linearity) 1,,(p +q,0)=1,,(p,0)+1,,(q,0) and, for real r, I,,(rp,0)=
F Luy(p, 0).

. (Convexity) I, (p, q) has the form Ap + Bq where A and B are real-linear maps
of the complex plane that satisfy A + B = 1¢, where 1¢ is the identity map on the
plane.

° (Rotation) For w € T, wl,,,(p, q) = Lyuyw(Wp, wq).

The projection of p onto a line L in the direction « is the point of the form p + ru
that lies on the line L.

Using identity (2.1) to verify the facts in the proposition is a straightforward
algebraic exercise which we leave to the reader. However, these facts can also be
verified geometrically, as we now briefly sketch.

Symmetry follows from the fact that both sides of the equation solve the same
intersection problem. Reduction is the law of parallelograms (see Figure 2(a)).
Projection follows from a straightforward diagram. Linearity follows from projection
and the fact that projections are linear (see Figure 2(b)). Convexity follows from
reduction, the fact that each term in the reduction formula is a projection, and the
fact that if p = g then I,,(p, g¢) = p. (Note that the linear maps A, B have rank one,
since they are projections.) Rotation expresses the fact that if the points and directions
of an intersection problem are all rotated by multiplying by w € T then the result is
also rotated by w.
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Real-linear maps of the complex plane can be written as
p—p =ap+bp

for complex constants a, b, or as maps taking p = x + iy to p’ = x’ + iy’ written in terms

of two by two matrices:
X\ _f(a b\(x
yl - c d y 3

where a, b, ¢, d are real. The intersection I,,,(p, g) can be given a purely trigonometric
formula. Indeed, if u = ¢’® and v = ¢ are directions with angles « and 3, let

sin(a@) cos(B) —cos(a@) cos(B)
sin(a — ) sin(a — )
sin(a) sin(8) —cos(a) sin(B)
sin(a — B) sin(a — B)
Then if p = py + ip2, ¢ = q1 + iq, then

i) ore ()

It is easy to check that A, g has rank one, and that A, g + Ag, is the identity.
The intersection map, thought of as a binary operator on points p, g, has the form

L.,(p,q)=Ap + Bg

where A + B = 1¢. We call this ‘convexity’ by analogy with convex combinations in
real vector spaces, where x, y are mapped to tx + (1 — 1)y, with ¢ € [0, 1]. Many of the
ideas and results of this paper can be generalized by replacing ‘intersection of lines of
angles chosen from a fixed set’ by considering binary operators

p,q — Ap + Bq

(dubbed ‘binary hybridization’ operators by de Launey) where A, B range over a fixed
set of functions from the plane to itself such that A + B is the identity map. These
arguments are somewhat more elaborate, and require additional hypotheses on the
set of A, B. For the sake of expository simplicity we stick to the concrete case of
intersections of lines described above.

3. Closure under addition and multiplication

Recall, for a fixed group U of directions, that R(U) denotes the smallest set of
complex numbers that contains 0 and 1 and has the property that if u, v are distinct
elements of U, and p, ¢ are elements of R(U), then I, ,(p, q) is in R(U). We now want
to prove that if U determines at least three folds then R(U) is a subring of C, that is,
that R(U) is closed under addition, negation, and multiplication. We consider each of
these operations separately.
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pP3 P1 P2
u
v
-1 0 1 2
FiGure 3. —1 and 2.

Tueorem 3.1. If U is a subgroup of T that contains +1 and has at least six elements,
then R(U) is a group under addition.

Proor. First, we prove that 2 and —1 are in R(U). Since there are at least three lines
determined by the directions in U, there are directions « and v such that the six numbers
+1, +u, +v are all distinct. Use u and v to construct a point p; = 1,,,(0, 1) lying off the
horizontal axis (see Figure 3). Then construct p, =1, (1, p;) on a horizontal line
through p;. It is then easy to verify algebraically (and obvious geometrically) that

2=1,(0, p2).

Similarly, if p3 :=I,,1(0, p;) then one can check that

-1= Il,u(o, Ps)-

Next, we show that if p is in R(U) then so is p + 1. Indeed, apply the steps that were
used to construct p starting from 0 and 1, but instead starting at the points 1 and 2; the
resultis p + 1.

Similarly, if p and g are in R(U) then so is their sum: repeating the steps used to
construct g, starting from p and p + 1, gives p + g.

Finally, by linearity we see that if p is in R(U) then the same steps that lead to p
from 0 and 1 will lead to —p from 0 and —1. O

Now we turn to multiplication. A point p is said to be a primitive monomial if it
can be constructed in one step from 0 and 1, that is,

pP= Iu,v(O’ 1)

for some u, v in U. More generally, a point p in R(U) is said to be a monomial (or,
if the emphasis is needed, a U-monomial) if it can be produced starting at 1 using
only intersections of the form 1, (*, 0), that is, intersections in which the second line
is required to go through the origin. Thus a monomial lies in a sequence of the form

P11 = Iul,vl(L 0)9 P2 = qu,vZ(pla O)’ p3 = Iu3,\/3(p29 0)9 e
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If p=pr=1,.,(pr-1,0) occurs at the kth step, then p is said to be a monomial of
length at most k. In terms of the linear operators A in the convexity property, this
could be written

P =ArAk-1 - - ArA ]
where A; is the linear operator occurring in the ith step.

Lemma 3.2. The product of two monomials is a monomial. Any monomial is a product
of elementary monomials.

Proor. Given u and v in U, let r=[u, 1]/[u,v] € R. Then I,,(0,1) =rv from our
earlier formulas. Using rotation and linearity gives

Iu,v(la O)Iu’,v’(l, 0) =ryv Iu’,v’(lv 0) =r Ivu’,vv’(vv 0) = Ivu’,vv’ (rvv 0)
= Lyw v (Iu,v(l, 0), 0)

This shows that the product of two elementary monomials is a monomial, and (read
in reverse) that a monomial of length two is a product of elementary monomials.
The claims in the lemma follow by easy induction arguments on the length of the
monomials. m|

Note that this lemma was the first use of the rotation property, and the first use of
the fact that U is a group under multiplication.

Tueorem 3.3. If U is a group of directions that determine at least three folds, then
R(U) is the set of integral linear combinations of U-monomials and is therefore a
subring of the complex numbers.

Proor. Let § be the set of all such linear combinations. Since the product of
monomials is a monomial, S is obviously a ring.

Since R(U) contains all monomials and is a group under addition, R(U) contains S .
Conversely, if r is an element of R(U) then it has the form r = 1,,,(p, q) = 1,,,(p, 0) +
1,,(0, g). If p and g can be written as integral linear combinations of monomials of
lengths at most k then, by linearity, r is an integral linear combination of monomials
of length at most k + 1. The implicit induction argument shows that R(U) is contained
in S, finishing the proof. O

With a bit more work, these results can be extended to suitable binary hybridization
operators described above, with similar proofs. For instance, if (4;, B;) are a collection
of (pairs of) linear operators on the plane, satisfying A; + B; = I for all i, then the set
of points S that they generate, starting from O and 1, is an additive group if 2 lies in S.
If the set of operators is (in a suitable sense) rotationally invariant and reversible, then
the set of monomials is a subgroup of the multiplicative group C* of nonzero complex
numbers, and the set S of points is closed under multiplication.
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4. Finite groups of folds

Throughout this section let U be a group of directions that determine at least three
folds, and let U, denote the cyclic group of order 2n of directions generated by ¢™/",
forn > 3.

Monomials are products of elementary monomials. Elementary U-monomials have
the form 7,,,(1, 0) = ([u, 1]/[u, v])v, which is a real number

[u, 1] sin(a) o i8
= — , u=ée*v=e",
[u,v]  sin(a - p)

multiplied by an element of U. In addition, we note that

Sul u—u* 1 —u?
v =

1,,(1,0)= = =
(1,0 Suw w2 —u  1-(u/v)?

so that as u and v range over all elements of U, elementary monomials range over all
complex numbers of the form (1 — a)/(1 — b) where a and b range over all nontrivial
distinct elements of the square group U?. By reversing a and b we see that these
quotients are obviously invertible in the ring R(U), and therefore any monomial is a
unit in R(U).

This proves the following result.

THeoreM 4.1. Let U determine at least three folds (that is, have order at least six).
Then R(U) is the smallest subring of C that contains all elements of the form

l-a
1-b

for distinct nontrivial elements a and b of U*>. Moreover, these monomials are units
in R(U).

Now we turn to the case of finite groups U for which we will use cyclotomic
fields (see [8]). Recall that the cyclotomic field Q(¢,) is the smallest subfield of C
that contains the primitive nth root of unity £, := e?™/", and that it consists of the
polynomials in ¢, with rational coefficients,

Q&) = {f(Zn) : f1X] € Q[X]}.

The group U, is generated by (5, = ¢”/", the corresponding group V,, of folds is of
order n, and the group U2 of squares is generated by £,. Thus the preceding theorem
implies the following corollary.

CoroLLARY 4.2. The ring R(U,) is a subring in Q({,).

Note that this is slightly curious: the points in R(U,,) result from intersections with
lines whose direction vectors are powers of {», and yet the intersections lie in Q(Z,).
(Of course, this is only surprising if #n is even, since if  is odd then Q({2,) = Q(£,).)
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For prime n, the quotients

Map = (1 =D/ = 20)

are familiar from algebraic number theory—they are examples of so-called cyclotomic
units in Q(¢,). In any case they lie in the ring Z[{,] of algebraic integers (polynomials
in ¢, with integer coefficients) in that field. Thus R(U) is contained in Z[{,] and it
is not hard to see that R(U) is equal to that ring. For nonprime n, the m,; do not
necessarily lie in the ring of integers (when b is not prime to n), but it turns out that
they lie in the ring Z[{,, 1/n], that is, the subring of the cyclotomic field of elements
of the form Y a;Z* where the a; are rational numbers such that all primes dividing their
denominators are divisors of n. Moreover, the m,; generate that ring.

Our remaining goal in this section is to prove all of these statements, by
investigating the underlying cyclotomic fields. For later use, we recall that

n—1
xt-1=] [x-2h
k=0
where { = £,. Dividing by X — 1 and letting X go to 1 gives

n—1
nzrkl—ﬁ) 4.1)
k=1

TueoREM 4.3. Fixn >3, let U = U, and { = {,.

(@) The ring R(U) contains (.

(b) Any element of the ring R(U) is in the ring Z[{, 1 /n].
(¢) Ifnis prime, then R(U) =Z[{].

(d) Ifnisnot aprime, then R(U) =Z[, 1/n].

Proor. The ring R(U) contains —1 and

-7
FEy= g
This proves (a) and shows that

Z[y] C R(U).

From (4.1) we see that for any 7, and a that is nonzero modulo n, 1 — £“ is a divisor
of n. It follows that any elementary monomial m,; can be written as an element of
the ring of integers Z[{] divided by n, and therefore that any element of R(U) is an
element of Z[{] divided by a power of n. This finishes (b).

Assume that n is a prime, and consider an elementary monomial m, , where a and b
are coprime to n. By coprimality, we can solve the equation @ = rb — sn in integers r, s.
Then

1—{“_ 1_§a+sn_ I_Z;rb
1-¢b 1= 1=

is obviously a polynomial in { and hence an algebraic integer. This proves (c).
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To prove (d) it suffices to show that 1/p € R(U) for every prime p dividing n. Since
n is nonprime, either p? divides 7 or else there is another prime g such that pq divides n.
In the first case, it suffices to let n = p?. Indeed, ¢ 2= {Z/ 7 and any monomials that
can be constructed in Q({)2) can also be constructed in Q(,). In the relation (4.1) for
n=p’,
2
p=||a-2H,
1

=

>~
1l

there are p(p — 1) terms where k is coprime to p, and p — 1 terms where k is divisible
by p. The product of the latter is equal to p (by (4.1)) for n = p, so the product of the
former is equal to p. It follows that the monomial

1=

_ spk

k coprime to p 1 é’p

is equal to p/p” = 1/pP~!. Multiplying by p”~? shows that 1/p is in R(U) as claimed.

Now consider the case in which 7 is divisible by (at least) two primes, p and g. As
above, it suffices to consider the case n = pq. In the expression

pq-1

pa=]]a-2h
k=1

there are three disjoint kinds of terms: k coprime to both p and ¢, k divisible by p,
and k divisible by g. The products of the last two kinds of terms are equal to g and p,
respectively. Therefore the product of the first kind is equal to 1, and 1 — ¢ is a unit.
This implies that the monomial

is a unit divided by p. Multiplying by the inverse of u shows that 1/p is in R(U) as
claimed. =

CoroLLARY 4.4. If n > 3 then R(U,) is dense in the complex plane.

Proor. If n is nonprime (so that 1/n is in the ring) then the ring has points arbitrarily
close to zero and is therefore dense; for prime 7 it is well known in algebraic number
theory that the image of the ring of integers under a complex embedding is dense if
there is more than one pair of conjugate embeddings, and that this happens for prime n
when n > 3.

However, this denseness result can also be proved directly: denseness of the ring
R(U,) is equivalent to showing that O is a cluster point of R(U,), which in turn is
equivalent to finding a nonzero element of R(U,,) inside the unit circle (since powers
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of such an element converge to 0). This is obvious for nonprime n, so we need only
consider primes n > 5. In this case

1-¢ 1
1-2 1+¢
is easily verified to be a unit lying inside the unit circle. m|

We conclude with a series of remarks. First, in any real-world context, the folds
required to reach a specific element of the cyclotomic ring might be rather unwieldy.
Second, we suspect that the proofs here can be turned into ‘efficient’ constructions in
the sense of computational complexity; as is the case for the constructions in [7], the
number of folds is likely to be linear in the complexity of a suitable description of the
desired coordinates.

Also, the results here raise several interesting questions. We mention three.

(a) Is it possible to describe which subrings of the complex plane are of the
form R(U)? For example, the ring Z + iZ corresponds to the points which can
be constructed by using the angles {0, /4, 7/2}.

(b) Is there a subgroup U of the unit circle whose Hausdorff' dimension is zero
and for which R(U) is the entire complex plane? (Motivated by conservations
with Dan Mauldin, see forthcoming work on this by Dan Mauldin, Warwick de
Launey, and Dan Goldstein.)

(c) What subsets of the complex plane can be produced by the more general binary
hybridization schemes Ap + Bg, and are there other contexts where this idea
might be useful?
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