
Parallelism versus Memory Allocation
in Pipelined Router Forwarding Engines

Fan Chung ∗† Ronald Graham ∗ George Varghese ∗

ABSTRACT
A crucial problem that needs to be solved is the allocation
of memory to processors in a pipeline. Ideally, the processor
memories should be totally separate (i.e., one port memo-
ries) in order to minimize contention; however, this mini-
mizes memory sharing. Idealized sharing occurs by using
a single shared memory for all processors but this maxi-
mizes contention. Instead, in this paper we show that per-
fect memory sharing of shared memory can be achieved with
a collection of *two*-port memories, as long as the number
of processors is less than the number of memories. We show
that the problem of allocation is NP-complete in general,
but has a fast approximation algorithm that comes within
a factor of 3/2. The proof utilizes a new bin packing model,
which is interesting in its own right. Further, for important
special cases that arise in practice the approximation algo-
rithm is indeed optimal. We also describe an incremental
memory allocation algorithm that provides good memory
utilization while allowing fast updates.

Categories and Subject Descriptors
C. 1. 4. Parallel Architechtures
F. 2. 2. Nonnumerical Algorithms and Problems
H.3. Information Storage and Retrieval

General Terms
Algorithms, Performance, Theory.

Keywords
Memory allocation, approximation algorithm

1. INTRODUCTION
Parallel processors are often used to solve time-consuming

problems. Typically, each processor has some memory where

∗University of California, San Diego
†Research supported in part by NSF Grants DMS 0100472
and ITR 0205061

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04,June 27–30, 2004, Barcelona, Spain
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

it stores computation data. To minimize contention and

maximize speed, each memory should be read by exactly one

process. Unfortunately, if the tasks assigned to processors

vary wildly in memory usage, this is not an efficient use

of memory, for some tasks one processor’s memory may be

unused while anothers is exhausted.

The interaction between parallelism (the desire to mini-

mize contention) and memory allocation (the desire to max-

imize memory sharing) is a general phenomenon that has

been largely unexplored in the literature. We encountered

this problem in the context of networking while trying to

design fast IP lookup schemes. In IP lookup, the time-

consuming task at hand is prefix lookup, and the processors

are arranged (often within a custom chip) as a pipeline.

Almost all known IP lookup schemes [11] traverse some

form of tree (e.g., trie, binary tree) using the destination

32-bit IP address in a received packet as a key. The leaves

provide information required to forward the packet. Lookup

time is proportional to tree height, and storage required is

the sum of the storage required for each node.

Observe that any tree can easily be pipelined by height: all

nodes at height i are placed in memory i which is accessible

only to processor i. Such a design is simple because there is

no memory contention. However, it is extremely wasteful of

memory. Since the shape of the tree can vary from database

to database, and the trees are in general unbalanced, trees

can change their memory needs from database to database.

More precisely, the number of nodes at height i can vary for

different databases by large factors.

Thus, statically deciding the size of each memory is a bad

idea because there will be at least some databases where

the total amount of memory required is less than the sum

of the sizes of all memories, but the database still cannot

fit because memory i is underutilized while say memory j is

full. How then should memory be allocated to processors?

This problem was left as an open problem in [12].

An approximate solution to the problem of trie memory

allocation across pipeline stages is described in [1]. It tries

to choose the tree to minimize memory imbalance. Their

results show a reduction in the maximum allocation by ap-

proximately one-half. Unfortunately these results do not

help for worst-case designs. Their worst-case bound is close

to the naive bound of requiring each stage memory equal to

the total required memory.



Given that minimizing memory is required to minimize

cost and that pipelining is required for speed, one way out

of the dilemma is to change the underlying model. In some

sense, the rest of this paper can be considered to be the

proposal of a new memory model for pipelined engines and

its implications. To motivate our final model (multiple two-

port memories connected by a partial crossbar), we first con-

sider a series of simpler models, which however have draw-

backs.

Our second model (the first is partitioned memory) is

shared memory which is ideal for memory sharing. Unfortu-

nately, large, fast shared memories are currently infeasible

to build. In practice, most large n-port memory is (under-

neath the covers) time-multiplexed. Every processor is given

one memory access for every n memory accesses done to the

memory (in the worst case). Unfortunately, multiplexing

n-ways causes the effective memory access time to grow by

a factor of n. The tradeoff between these two extremes is

shown in Figure 1.

p
1

p
1

M
1

M M
2 n

p
2

p
n

Memory
Shared

Zero contention

Poor Memory sharing

VS

Perfect memory sharing

Maximal contention

p
2

p
n

Figure 1: Models 1 and 2 have problems: Strictly
partioned memories have poor memory sharing
while a single shared memory has poor contention.

When faced with two unacceptable extremes, it is natural

to consider intermediate forms. Thus, strictly partitioned

1-port memories have good access speeds and memory den-

sities but have poor memory utilization. On the other hand,

n-port memories have the opposite problem. Hence, it is

natural to consider a collection of Y-port memories, where

Y < n. A natural starting point is to consider Y = 1 mem-

ories. Thus, imagine for our second model that we have a

collection of b 1-port memories that are shared among the

n processors (see Figure 2).

This can be modeled by a set of n processors (shown on

the bottom of Figure 2) and a set of b memories (shown on

the top of Figure 2) that are connected by an interconnec-

tion network. The interconnection network allows parallel

connections to be made between processors and memories,

and allows each processor to be connected to multiple mem-

ories, but allows at most one processor to be connected to

a single memory (because the memories have only 1 port).

Such interconnection networks are commonly used in paral-

lel computers[4] and are called crossbar switches.

p
1

M
1

M
2

p
2

p
n

M
3

Add connection if
p  needs more memory
1

M
b

PARTIAL
CROSSBAR

Figure 2: Model 3: Allowing memory sharing by
connecting a large number of one ported memory
banks to the set of n processors via a partial cross-
bar.

Figure 2 shows processor p1 connected to two memories

M1 and M2. Suppose that is all that has been allocated

to p1, and p1 wants more memory. The idea is that the

memory allocation system keeps track of the free memories,

realizes that, say M3, is free and (see dashed line in Figure 2)

reconfigures the crossbar to allocate M3 to p1. Notice that

the crossbar need only be reconfigured at allocation time,

which is generally orders of magnitude less stringent than

lookup times.

At first glance, this looks very attractive, because if b is

large, then each processor can waste at most 1 memory,

which is small in size for large b. Thus the percentage of

wasted memory is at most n−1
b

. For example, for n = 16,

if b = 32 this can incur a worst case memory wastage of

around 50%. While this is quite large, it can be reduced to

essentially 0 by increasing b.

While this looks superficially attractive, in practice one

does not want to waste even 12.5% of an expensive SRAM

memory system, especially if it is on chip. This implies the

use of even higher values of b. Unfortunately, practical con-

straints limit the values of b that can be used. The larger

the number of memory banks, the larger the load that must

be driven on the data busses that make up the interconnec-

tion network, and hence the larger the delay. It is difficult

today to imagine a very high speed design with more than

say b = 100 banks of memory connected via the crossbar. It

would be far simpler and faster (important for higher speeds)

to use a smaller number of banks, such as b = 32, and still

get good memory utilization.

Because of the bus capacitance issues of dealing with a

large number of memories caused by using a large number

of shared 1-port memories, we consider the next natural

progression in our model (Figure 3). Thus we consider in-

creasing the number of ports on the memories to Y = 2 from

Y = 1. A collection of 2-port memories will only slow down

access speeds (using say time multiplexing) by a factor of at

most two. But what kind of memory utilization would such

2-port memories provide?

To understand the model, imagine a collection of n proces-

sors that have access to a network (e.g., a crossbar switch)

that allows them access to a collection of b 2-port memories.

Each memory has 2 ports that can be allocated to any two

processors. Thus each memory can be read by at most 2



p
1 2

p
n

PARTIAL
CROSSBAR

M1 M2 M3 Mb

p

p p
1

1 n
2

p

p

Figure 3: Our final model: Allowing memory shar-
ing by connecting a small number of two-ported
memory banks to the set of n processors via a partial
crossbar.

processors at a time. Of course, a processor that needs a

large amount of memory could be assigned a port on X > 1

memories. Each of the b memories has a fixed amount of

memory, say Max memory words.

Notice in Figure 3 that memory M1 is not completely full

and is allocated partially to processor p1 and partially to

processor p2. Notice also of the two memory ports allocated

to each processor in Figure 3, M1 has both ports allocated,

M2 and Mb have one port allocated and one port free, and

M3 has two ports free. Thus, if say processor p3 wants even

one word of memory, p3 cannot use M1 (both of M1’s ports

are already allocated to other processors even though it has

free memory). However, if p2 wants more memory it can get

more allocation in M1.

Thus, it should be clear that besides allocating memory,

the allocator has to be frugal in allocating ports in order not

to waste memory. Consider, for example, a scenario where

processors p1 and p2 are allocated one word of memory each

in all of the b memories. If Max � 1, then no other processor

can then get any memory because all ports are allocated,

and the resulting utilization (measured when some processor

cannot satisfy a memory allocation request) is nearly zero.

Of course, the memory allocator could finesse this particular

issue by compacting all of p1 and p2’s requests to fit in as

few memory banks as possible. But this example should

indicate that it is unclear whether perfect memory allocation

is possible while respecting the 2 port constraint at every

memory.

Now consider the offline problem of memory allocation.

Imagine that the input is a collection of memory requests

per processor (e.g., 5 words for processor 1, 10 for processor

2, etc.). We say that an allocation is feasible if every proces-

sor’s request is satisfied and the no more than two processors

are allocated to any one memory. Ideally, we want a fast al-

gorithm that will guarantee a feasible allocation as long as

the input is feasible (i.e., the sum of processor requests is

less than total memory size).

We will show that a very fast O(n) algorithm exists for

optimal memory allocation for feasible inputs as long as b >

n. This algorithm is sufficient for practical implementations

because one can constrain the design to use more smaller

memories (often called memory banks) than the number of

processors. (As n grows, there is an increased interconnect

cost as b grows, but this is not a problem for n < 64). While

the speed of allocation is usually not as important as reads

and writes to memory, fast allocation algorithms allow faster

reconfiguration of data structures in this memory structure

and are important in their own right.

Even practical problems give rise to theoretical problems

that have a life of their own. The practical problem can be

abstracted as a theoretical problem of bin packing with an

additional constraint. We show that for the general case of

arbitrary b and n, the problem of finding a feasible allocation

is NP-complete (it should not surprise the reader than an

NP-complete problem is efficiently solvable in a special case;

consider the case of computing a Hamiltonian cycle, which

is trivial if the graph has only a small number of cycles.)

We deal with the NP-completeness by presenting an ap-

proximate algorithm that produces memory utilization that

is within a factor of 3/2 of optimal. Practically, this means

that if the designer wishes to use a smaller number of mem-

ory banks than the number of processors, he or she should

overdesign the total memory capacity by a factor of 3/2.

Fortunately, the approximation algorithm is exactly opti-

mal in the case of b > n, so we describe only one algorithm

for both cases.

In the rest of this paper we abstract the problem as a bin

packing problem with the 2-port constraint abstracted as a

“two type” constraint. We also normalize the memory sizes

to 1 (instead of Max) without loss of generality by allowing

fractional inputs (called weights) for each processor.

While this version of the paper mostly focuses on the of-

fline problem, in practice the set of processors will keep get-

ting new memory requests. When a new memory request

occurs that causes the assignment of processors to memo-

ries to change, one has to reconfigure the crossbar and pos-

sibly move data around between memories. Thus the on-

line problem becomes one of minimizing data movement to

deal with allocation (e.g., weight) changes while maintain-

ing good memory utilization. There appears to be a tradeoff

here as well. At the end of the paper we briefly describe a

very simple algorithm for the dynamic case that works well

in practice.

We are unaware of any related work in architecture that

relates buffer allocation and pipelining. A result that can

be made applicable is the use of randomization [9] in stor-

ing memory words so that with high probability memory

words are evenly distributed across b memory banks. Simi-

lar notions of randomizing accesses to memory date back to

Valiant [13] and Ranade [8], as well as some recent work [3].

The use of randomization has several problems: first, ran-

domization prevents the use of synchronous pipelines that

rely on tight timing guarantees; second, randomization leads

to poor contention bounds. For example, using MAPLE, we

calculated that for 16 processors making random requests

to 16 memories, the probability that at least 3 memory ac-

cesses go to the same memory is > 0.805. In other words,

there is an 80 % chance that at least 3 memory accesses go

to at least one memory.



Thus while randomization is an interesting option, in this

paper we examine deterministically layouts that limit con-

tention to at most 2 processors per memory.

2. ABSTRACTING THE PROBLEM
Here is the formulation the bin packing problem that is

motivated by the above memory allocation problem.

Suppose we have an unlimited number of bins each of

capacity 1. We are given a list of weights, say,

W = (w1, w2, w3, . . . , wn), where wi is nonnegative and can

be greater than 1 in general. We say W can be packed into

b bins if there is a way to partition “items” Ij of type j with

weight wj , for 1 ≤ j ≤ n, such that all parts fit into b bins.

In other words, for each k, the parts that are grouped into

the k-th bin have total weight at most 1.

In this paper, we focus on the following constrained bin

packing problem:

Problem: For a given list W , find a way to pack W into a

minimum number of bins such that each bin can have parts

of at most two types.

An immediate question is to decide if this problem is easy

or hard to solve. In the next section, we will show that the

above problem is indeed NP-complete and thus is probably

computationally intractable (see [6], for a survey).

Then we proceed to discuss approximation algorithms.

We will consider a fast and robust algorithm that gives ap-

proximate solutions in linear time (in n). The solution this

algorithm gives is optimum if the total sum of the weights

is no smaller than the number of types. In general, the so-

lutions are always within a factor of 3/2 of the optimum.

Several examples are given to indicate the sharpness of this

worst case performance ratio.

We also examine bin packing problems with more general

constraints. For example, for a fixed integer r > 2, we con-

sider the bin packing problem such that each bin can have

parts of at most r different types. This problem (and others)

will be discussed in the final section.

3. OUR BIN PACKING PROBLEM IS
NP-COMPLETE

We will prove the NP-completeness of the bin packing

problem with the constraint that each bin can have at most

two types. The transformation is from the 3-partition prob-

lem which can be stated as follows (see [6]):

3-PARTITION

Instance: A set A of 3m elements, a bound B ∈ Z+,

and a size s(a) ∈ Z+ for each a ∈ A such that

B/4 < s(a) < B/2 and
P

a∈A s(a) = mB.

Question: Can A be partitioned into m disjoint sets A1,

A2, . . . , Am such that for 1 ≤ i ≤ m,P
a∈Ai

s(a) = B (note that each Ai must

therefore contain exactly 3 elements from A)?

Garey and Johnson [7] showed the 3-PARTITION prob-

lem is NP -complete by using transformation from the prob-

lem of 3-dimensional matching. In fact, they showed that

the 3-PARTITION problem is NP -complete in the strong

sense (see [6]).

For a given instance of the 3-PARTITION problem as de-

scribed above, we consider the following bin packing prob-

lem::

(*) We are given a list W of 3m weights

wa =
1

2
+

s(a)

2B

Determine if W can be packed into 2m bins such that no

bin contains more than two types.

It suffices to show that the 3-PARTITION problem has

an affirmative solution if and only if the above problem (*)

has a solution.

First we consider the easy direction. Suppose the 3-PARTITION

problem has a solution A1, A2, . . . , Am. For each i, we can

pack the weights w(a), for a ∈ Ai into two bins since

X

a∈Ai

wa =
3

2
+
X

a∈Ai

s(a)

2B
= 2

and wi satisfies

3

8
< wi =

1

2
+

s(a)

2B
<

3

4
.

So, W can be packed into 2m bins when each bin has two

types and thus problem (*) is solved.

Now suppose problem (*) has a solution with a packing

into 2m bins. Clearly, each bin contains parts summing up

to 1 since
P

a wa = 2m.

First, we observe that a weight type can not be partitioned

into more than 2 parts. Suppose the contrary. There is a

weight type, say w1, that is partitioned into k parts which

are contained in k bins where k ≥ 3. One of the parts is

less than 1/4 since w1 < 3/4. This bin that contains this

small part can contain another part with weight at most

3/4. Thus, this bin can not have parts summing up to 1,

which is impossible.

Second, we claim that the number t of types of weights

that are packed in two bins is exactly m. Suppose t is more

than m. Then, the total number of parts is more than 4m.

Since at most two parts can be packed into one bin, we need

more than 2m bins, which is a contradiction. Now, suppose

that t is less than m. Since there are at most 2t bins that

can contain parts of two types, there are at least two bins

that can contain at most one type. Those two bins can not

have parts summing up to 1, which is again a contradiction.

Hence, there are exactly m weights S that are each parti-

tioned into two parts. We write

S = {aj1 , aj2 , . . . , ajm}
We consider Ai consisting of aji and the types wa that are

contained in bins containing parts of waji
. Clearly Ai, i =

1, . . . , m, is a partition of A. Furthermore, we have

X

a∈Ai

wa =
3

2
+
X

a∈Ai

s(a)

2B
= 2

This implies that
X

a∈Ai

s(a) = B



Thus, this gives a solution to the 3-PARTITION problem.

Hence, we have shown the following:

Theorem 1. The bin packing problem with the constraint

that each bin contains at most two types is NP-complete.

4. A GRAPH REPRESENTATION
Before we discuss approximation algorithms for our bin

packing problem and their worst case analyses, we consider

a graph representation of a packing.

Suppose a list of weights W = (w1, w2, . . . , wn) is packed

into unit bins so that no bin holds more than two types of

weights. Let P denote such a packing. We associate a graph

GP with P defined as follows:

(1) GP has n vertices, each of which represents a type.

(2) The edges of Gp correspond to the bins in one-to-one

fashion. If the bin contains only one type, it corresponds

to a loop on that type. If the bin contains two types, it

corresponds to an (ordinary) edge between the two types.

(3) If the bin is partially filled, we say the corresponding

edge is a weak edge (or loop).

For example, suppose that W = (1/2, 2/3, 1/4) has three

types as shown in Figure 4. One packing configuration P is

given in Figure 5 and the associated graph GP appears in

Figure 6.

w 1 =
1
2 w 2 =

2
3

w 3 =
1
4

Figure 4: Weights of three types

B 1 B 2

Figure 5: A packing P

There are, of course, different ways to pack W into two

bins so that each bin contains at most two types. Another

packing configuration Q is given in Figure 7 and its associ-

ated graph GQ is shown in Figure 8.

5. SOME BASIC PROPERTIES OF THE
ASSOCIATED GRAPHS

Here we examine several basic properties of the associated

graphs of bin packings for a given list of weights W . These

properties provide the foundation for the reduction steps in

the approximation algorithms to be discussed in the next

section.

In this paper, we use the convention that a cycle must

have at least two vertices. So, by definition, a loop is not a

cycle. An edge is either a loop or an ordinary edge with two

distinct endpoints.

Lemma 1. Suppose that P is a packing of a list of weights

W = (w1, w2, . . . , wn) into b bins, where no bin contains

weights of more than two types. If the associated graph GP

contains a cycle, we can find another packing P ′ which uses

no more than b bins with its associated graph containing no

cycle.

Proof: Suppose GP contains a cycle C with edges B1, B2, . . . , Bt.

(Here we use Bi to denote both an edge and a bin, if there

is no confusion.) We may assume that Bi contains w′′
i , w′

i+1

for 1 ≤ i ≤ t − 1 and Bt contains w′′
t , w′

1 where w′
i and w′′

i

are parts of weights of type i. We also may assume that all

w′
i and w′′

i are positive since C is a cycle.

Now, without loss of generality, assume that w′
1 has the

smallest size among all w′
i and w′′

i . We consider a new pack-

ing P ′ of W such that P ′ is the same as P except for the bins

Bi, 1 ≤ i ≤ t. P ′ contains the following bin configuration B′
i

instead of Bi. We reorganize the parts of type i weights. In-

stead of two parts of sizes w′
i and w′′

i , we have two new parts

of type i of sizes new w′
i = w′

i −w′
1 and new w′′

i = w′′
i + w′

1.

B′
i consists of new w′′

i and new w′
i+1 for 1 ≤ i ≤ t− 1 while

new Bt consists of only new w′′
t . Clearly, P ′ is still a valid

packing and GP ′ does not contain C. In fact, GP ′ contains

the same edges as GP except for Bt since B′
t is either a loop

or empty.

By the above procedure, we can eliminate one cycle at

a time while the number of bins used stays the same or

decreases. Eventually, we will reach a packing with its asso-

ciated graph containing no cycle and the number of bins is

no more than what we started with.

A graph that contains no cycle is a forest plus some pos-

sible loops. We recall that a weak edge in GP corresponds

to a partially filled bin in P .

Lemma 2. Suppose that P is a packing of a list of weights

W = (w1, w2, . . . , wn) into b bins, where no bin contains

w 1

w 2

w 3

Figure 6: The graph GP



B 1 B 2

Figure 7: Another packing Q

w 1

w 2

w 3

Figure 8: The graph GQ

weights of more than two types. If the associated graph GP

contains two weak edges in the same connected component,

we can find another packing P ′ which uses no more than

b bins with its associated graph satisfying the property that

every connected component contains at most one weak edge.

Proof: First we apply Lemma 1 so that there is no cycle in

the associated graph of the packing. Suppose a connected

component of GP contains two weak edges A1 and A2 (which

might be loops). The two weak edges cannot have the same

vertices, since this would form a 2-cycle, contradicting our

initial hypothesis. There must be a path (that is, a sequence

edges so that two consecutive edges share a common vertex),

say, with edges A1 = B1, B2, . . . , Bt = A2. (Here we allow

the case that A1 and/or A2 are loops while all other Bi’s are

ordinary edges.) We may assume that Bi contains w′′
i , w′

i+1

for 1 ≤ i ≤ t, where w′
i and w′′

i are parts of weights of type

i. We also may assume that B1 and Bt are weak edges so

that g1 = 1 − w′′
1 − w′

2 > 0. and g1 = 1 − w′′
t − w′

t+1 > 0.

Without loss of generality, we assume g0 ≤ g1. We consider

two cases:

Case 1: Suppose g0 ≤ w′′
i , for all 1 ≤ i ≤ t − 1.

We consider a new packing P ′ of W such that P ′ is the

same as P except for the bins Bi, 1 ≤ i ≤ t. P ′ contains B′
i

(instead of Bi) which is defined as follows:. We reorganize

the parts of type i weights for 2 ≤ i ≤ t − 1. Instead of two

parts of sizes w′
i and w′′

i , we have two new parts of type i of

sizes new w′
i = w′

i + g0 and new w′′
i = w′′

i − g0. B′
i contains

new w′′
i and new w′

i+1 for 2 ≤ i ≤ t−1, and new B1 contains

w′′
1 and new w′

2. Also, bin B′
t contains new w′′

t and old w′
t+1.

Again, P ′ is still a valid packing and, in GP ′ , the edge B′
1 is

not a weak edge. In fact, GP ′ contains one fewer weak edge

than GP does.

Case 2: Suppose g0 > w′′
j , for some j, 1 ≤ j ≤ t − 1.

We consider a new packing P ′ of W such that P ′ is the

same as P except for the bins Bi, 1 ≤ i ≤ j. P ′ contains B′
i

(instead of Bi) which is defined as follows:. We reorganize

the parts of type i weights for 2 ≤ i ≤ j. Instead of two

parts of sizes w′
i and w′′

i , we have two new parts of type i

of sizes new w′
i = w′

i + w′′
j and new w′′

i = w′′
i − w′′

j , for

1 ≤ i ≤ j. B′
i contains new w′′

i and new w′
i+1 for 2 ≤ i ≤ j,

and new B1 contains w′′
1 and new w′

2. Clearly, P ′ is still a

valid packing and GP ′ has one more connected component

since B′
j is a loop.

By repeating the above process, either the number of weak

edges decreases or the number of connected components in-

creases while we never use more bins. This process must

stop after a finite number of steps. At that point, in the

final packing no component has two weak edges.

6. APPROXIMATION ALGORITHMS
We now describe a simple algorithm for bin packing sub-

ject to the constraint that no bin contains weights of more

than two types.

Algorithm A:

For a given list of weights W = (w1, w2, . . . , wn), we pack

greedily. Put w1 or part of it of weight 1 into the first bin.

For each i, we do the following:

(1) Place the maximum possible part of wi (or the

remainder of wi−1) into a partially filled bin

if it has only weights of no more than one type.

Otherwise, put it into a new bin.

(2) Check if a cycle is formed in the associated graph.

If it does, use the steps as described in the proof of

Lemma 1 to transform the packing into one

without any cycle.

(3) Check if there is more than one weak edge in a

connected component. If there is, use the steps as

described in the proof of Lemma 2 to transform

the packing into one containing at most one weak

edge in each connected component.

(4) Check if there are two weak loops. If there are,

repack so we get either on partial bin with two

types or one full bin with two types and a partial

filled bin of one type.

After we repeatedly use the above procedure, the resulting

bin packing can have at most two types in each bin and sat-

isfies the property that there is no cycle and there is at most

one weak edge in any connected component of its associated

graph.

We want to show that the packing that is generated by

the above algorithm has a worst case upper bound given in

the following:

Theorem 2. We are given a list of weights and a packing

P of a list W in which no bin contains more than two types

of weights. Suppose that the associated graph GP contains

no cycle and each connected component has at most one weak

edge. Then the number of bins in P is within a factor of 3/2

of the optimum.



Proof: Suppose the list W = (w1, w2, . . . , wn) has total sum

of weights w =
Pn

i=1 wi. Let OPT denote the number of

bins needed in the optimum packing. Clearly, we have

OPT ≥ max{w, n/2} (1)

Our proof needs the following strengthening of the above

inequality:

Claim 1:

OPT ≥ max{w, w∗/2} (2)

where w∗ =
P

idwi/2e. Clearly, w∗ ≥ n.

In the other direction, we want to show that the number

of bins in P , denoted by |P | satisfies the following:

Claim 2:

|P | ≤ dw + w∗

2
e.

Furthermore, we claim

Claim 3:

dw + w∗

2
e ≤ 3

2
max{w, w∗/2}

If all three claims hold, we have

|P | ≤ dw + w∗

2
e ≤ 3

2
max{w, w∗/2} ≤ 3

2
OPT

as desired. It remains to prove these three claims.

Proof of Claim 1:

It is enough to show that OPT ≥ w∗/2 (since it is straight-

forward to see that OPT ≥ w). For each i, any packing

contains at least dwie parts of type i weight. Since each bin

can have at most two parts of different types, the number

of parts is at most 2 · OPT . Thus we have 2 · OPT ≥ dwie
and Claim 1 is proved.

Proof of Claim 2:

Suppose P has a bin which is filled with just one type, say

w1. (That is, GP has a loop which is not weak). Let P ′

denote the packing of the list of weights W ′ which is the

same as W except that w′
1 = w1 − 1. By the induction

hypothesis, it is true for P ′ (which has a smaller number of

bins). This implies

|P ′| ≤ dw′ + (w′)∗

2
e

Since |P | = 1 + |P ′|, w′ = w − 1, (w′)∗ = w∗ − 1, we have

|P | ≤ dw + w∗

2
e

We may assume that each filled bin involves weights of two

types. We consider a connected component A of GP . We

denote wA =
P

i∈A wi and w∗
A =
P

i∈Adwie. It is enough

to show that the number of edges in A is at most (wA +

w∗
A)/2. This is true if there is no weak edge. We consider

the remaining two possibilities:

Case 1: There is one weak (ordinary) edge.

Let ν(A) denote the number of vertices in A. The number of

edges is exactly ν(A)−1. On the other hand, wA ≥ ν(A)−2

since there are at least ν(A) − 2 filled bins. We then have

wA + w∗
A ≥ wA + ν(A) ≥ 2ν(A) − 2

which is greater than twice the number of edges in A, and

this case is finished.

Case 2: There is one weak loop.

Let ν(A) denote the number of vertices in A. The number

of edges is exactly ν(A). On the other hand, wA ≥ ν(A)− 1

since there are at least ν(A) − 1 filled bins. We have

wA + w∗
A ≥ wA + ν(A) ≥ 2ν(A) − 1

Thus

dwA + w∗
A

2
e = ν(A)

which is equal to the number of edges in A. So, Claim 2 is

proved.

Proof of Claim 3:

We want to show that

dw + w∗

2
e ≤ 3

2
max{w, w∗/2}

We consider two cases:

Case a: dw∗/2e ≤ w.

We then have

dw + w∗

2
e ≤ 3

2
w ≤ 3

2
OPT

Case b: dw∗/2e ≥ w.

It follows that

dw + w∗

2
e ≤ 3

2
dw∗/2e ≤ 3

2
OPT

This completes the proof of Theorem 2

As an immediate consequence, we have

Theorem 3. Algorithm A always generates a bin packing

which has size within a factor of 3/2 of the optimum.

To consider the complexity of Algorithm A, we examine

the following:

• From (1), the associated graph GP has every vertex

with degree at most 2. Namely, for each i, every bin

that contains some part of type i, with the exception

of at most two bins, contains part of type i with weight

exactly of value 1.

• There are only a linear number of steps involving (2)

since all cycles are vertex-disjoint.

• To check (3), we note that each connected component

is a path. There are at most a linear number of steps

needed to transform the packing into one containing

at most one weak edge in each connected component.

• There are at most n/2 steps used in checking (4).

Thus, Algorithm A runs in time O(n), where n is the number

of types.

7. AN IMPROVED ALGORITHM
In this section, we consider a modified version of the ap-

proximation algorithm given in Section 6. We will show that

the modified algorithm gives the optimum solution when the



total weight is greater than or equal to the number of types.

In general, the modified algorithm gives an approximation

solution within a factor of 3/2 of the optimum.

The modified algorithm, which we call Algorithm B, is

exactly the same as Algorithm A in Section 6 except that

for each i, in addition to (1)-(4), we add the following:

(5) Suppose there is a loop that is not weak (associated with

a filled bin, say B1, in one type j) and suppose that there

is weak (ordinary) edge {k, l} (associated with a partially

filled bin, say B2) not in the same connected component as

B1. We reconfigure the two bins as follows:

Suppose B2 contains parts of weights w′
k and w′′

l . We par-

tition the weight of type j in B1 into two parts w′
j (of size

the same as w′
k ) and w′′

j of size 1 − w′
k.

Check if there is more than one weak edge in the (updated)

connected component that contains j, k and l. If it does,

repeat (3) until every component contains at most one weak

edge. The resulting packing has its associated graph con-

taining one fewer loops (that are not weak). This process

will stop after a finite number of steps.

The resulting bin packing using Algorithm B has a associ-

ated graph G with no cycle and each connected component

having at most one weak edge. In addition, if there is a loop

which is not weak, then all other components have no weak

edges.

Suppose the total weight w =
P

i wi is greater than or

equal to n, the number of types. From the reduction steps

in the algorithm, G can have at most n − 1 ordinary edges

and there is at most one weak loop. Since the total weight is

at least n, there is at least one loop that is not weak. Thus

there is no weak edge outside of the connected component

A that contains the loop. In A, there is at most one weak

edge. So altogether, there is at most one weak edge. This

implies that the number of bins is exactly dwe which is opti-

mum. When w < n, we can still use Theorem 2 to show the

resulting packing is within a factor of 3/2 of the optimum.

We have proved the following:

Theorem 4. Algorithm B generates bin packing that is

optimum if the total weight is at least as large as the number

of types. In general, the bin packing using Algorithm B has

size within a factor of 3/2 of the optimum.

Here we will given an example which shows that Algo-

rithm A and B can generate bin packing with the number

of bins off by a factor (3/2 + o(1)) of the optimum.

Suppose that k is an integers. We are given a list W of

weights where the first 2(k +1) weights are of size k/(k +1)

and then the next 2(k + 1) weights are of size 1/(k + 1).

Using Algorithm A or B, we will end up with a packing

which uses the first 2k bins to pack the first k + 1 weights

fully without any waste. Then the next group of bins each

contain two weights of size 1/(k + 1). Altogether, 3k + 1

bins are used. Nevertheless, the optimum packing consists

of 2(k + 1) bins each contain one weight of size k/(k + 1)

and one weight of size 1/(k + 1). Thus we have the ratio

#bins by Alg A

Opt
=

3k + 1

2(k + 1)
=

3

2
− 1

k + 1

which is arbitrarily close to 3/2 when k is large.

8. DYNAMIC MEMORY ALLOCATION
So far we have only dealt with approximation and exact

algorithms for static memory allocation. How can we get

good dynamic memory allocation algorithms that maintain

overall efficiency? First, assume that all nodes in the data

structure are of the same size and that we can do com-

paction [12] so that we move nodes around without impact-

ing the correctness of the search process. For example, this

can be done by storing backpointers to all other nodes that

refer to the node in slow memory maintained by software

and by automatically adjusting pointers without affecting

search [12].

We simply maintain an invariant such that each stage uses

at most one partially filled (PF) bin, where a PF bin is

one which is not completely full. This prevents the case

when a single stage is allocated a lot of memory at all stages

and then proceeds to deallocate all but a little memory at

all stages, thereby “wasting” a large number of read ports

and causing poor efficiency. This invariant can easily be

maintained by compaction. For example, when a deallocate

is done that violates this invariant, the stage that has a PF

bin must have another PF bin from which we can relocate

(compact) the newly created PF bin.

Maintaining this invariant requires at most one node copy

for each node allocate or deallocate and at most doubles

the update time. More importantly, it guarantees that each

stage wastes at most one Read Port and so the overall num-

ber of read ports is at most n. Since each empty or near-

empty bin must waste both its Read Ports in order not be

unsable, the number of near empty stages when memory

runs out is at most n/2. Thus the overall efficiency is at

least 1 − n/2b where b is the number of bins. For example,

if n = b, the efficiency is at least 50%. It can be improved

by further increasing the number of bins.

These ideas can be extended to nodes that have sizes that

are powers of two or even arbitrary sizes by using a compact-

ing version of the buddy system together with the invariant

we just described. For node sizes that are powers of two

we obtain the same efficiency as above (this is an important

case for router tries that use power of two node size). For

arbitrary node sizes, there is a further factor of two loss for

rounding up a node size to the closest power of two.

While there are clearly deeper algorithms for this purpose

that we are studying (akin to the optimal algorithms above),

we hope that these simple dynamic algorithms convince the

reader that 2-port memory algorithms can be extended eas-

ily to the dynamic case albeit with some loss in efficiency

below 100%.



9. CONCLUSIONS
When all the theory is said and done, what are the prac-

tical lessons? The most important is that it is possible to

share memory across parallel stages in an almost perfect

manner (regardless of individual demands) if we use two-

port instead of one-port memories, each of which can be as-

signed to a stage using some form of partial crossbar switch.

In practice, one would simply choose the parameters such

that the number of memories is larger than the number of

processor stages. In that case, the approximation algorithm

we presented will provide 100% efficiency.

In essence, we are finessing a difficult problem (allocating

across 1-port memories) by changing the model. The new

models are practical. We know at least one implementation

of Model 4 (in fact, this paper was abstracted from this

second design) that scales to multiple OC-768 speeds. On

the theoretical front, we can consider the general case of

packing bins so that each bin contains at most r bins for

some fixed integer r. In this case, we can formulate the

associated hypergraphs of a packing instead of just associated

graphs.

10. ACKNOWLEDGEMENT
The authors would like to thank John Holst of Procket

Corporation who built hardware to implement the model

described in this paper, and whose initial ideas about mem-

ory allocation was the genesis of this paper.

11. REFERENCES
[1] A. Basu and G. Narlikar, Fast Incremental Updates

for Pipeline Forwarding Engines, InfoCom 2003.

[2] C. Berge, Graphs and Hypergraphs, North-Holland,

Amsterdam, 1976.

[3] Guy E. Blelloch Phillip B. Gibbons Yossi Matias

Accounting for Memory Bank Contention and Delay in

High-Bandwidth Multiprocessors, IEEE Transactions

on Parallel and Distributed Systems, volume 8, 1997.

[4] D. Culler, J, Singh, and A. Gupta. Parallel Computer

Architecture, A Hardware/Software Approach, Morgan

Kaufman , 1999.

[5] M. Degermark, A. Brodnik, S. Carlsson, and Stephen

Pink, Small forwarding tables for fast routing lookups,

Proc. SIGCOMM, (1997), 3-14.

[6] M. R. Garey and D. S. Johnson, Computer and

Intractability, A Guide to the Theory of

NP-completeness, W. H. Freeman and Co., San

Francisco, 1979.

[7] M. R. Garey and D. S. Johnson, Complexity results

for multiprocessor scheduling under resource

constraints, SIAM J. Comput., (1975), 397-411.

[8] A. Ranade, How to emulate shared memory. Journal

of Computer and System Sciences, 42:307-326, 1991.

[9] B. Rau, Pseudo-randomly interleaved memory. In

Proceedings Int. Symp. on Computer Architecture,

1991.

[10] T.V. Lakshman and D. Staliadis, High Speed

Policy-based Packet Forwarding Using Efficient

Multi-dimensional Range Matching, Proc. ACM

SIGCOMM ’98, 1998.

[11] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous,

Survey and Taxonomy of IP Address Lookup

Algorithms, IEEE Network, March/April 2001.

[12] S. Sikka and G. Varghese, Memory Efficient State

Lookups with Fast Updates, in Proceedings of

SIGCOMM 2000, August 2000.

[13] L. Valiant, A bridging model for parallel computation.

Communications of the ACM, 33(8), 1990.


