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Floorplan representation is a fundamental issue in designing a floorplanning algorithm. In this
paper, we first present a twin binary trees structure for mosaic floorplans. It is a nonredundant
representation. We then derive the exact number of configurations for mosaic floorplans and slicing
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1. INTRODUCTION

Floorplanning is becoming more and more important in VLSI physical design
because circuit size is growing rapidly and hierarchical design with IP blocks
is now widely used to reduce the design complexity. Unfortunately, many floor-
planning problems are NP-complete, so most floorplanning algorithms use ei-
ther analytical force-directed methods or perturbations with random searches
and heuristics. Floorplan representation thus becomes a fundamental issue
since the efficiency of these basic operations relies on the geometrical expres-
sion of circuit blocks.

There are two important characteristics of an efficient floorplan representa-
tion. The first is the number of the combinations of a representation. A com-
bination of a representation is a distinct coding in that representation. It is
possible that two distinct combinations of a representation method actually
correspond to the same floorplan. We refer to this case as the redundancy of
the representation. A method that can represent more general floorplans and
has less redundancy is desirable. The second aspect is the time complexity of
the transformation between a representation and its corresponding floorplan.
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Since this transformation is the most frequently used operation of a floorplan-
ner, we want its time complexity to be as low as possible.

1.1 State-of-The-Art in Floorplan Representations

The representation of a floorplan has been intensively studied over the past
few decades. Most of these representations have addressed the completeness of
a floorplan topology. For a floorplan with a slicing structure [Otten 1982], the
v-h tree was one of the earliest representations [Szepieniec and Otten 1980]. A
binary tree representation was also widely used. The leaves of the binary tree
correspond to the blocks and each internal node defines a vertical or horizontal
merge operation of the two descendents. It is known that an upper bound on the
number of possible configurations for this binary tree representation is given by
the expression O(n!25n−3/n1.5) [Knuth 1997], where n is the number of blocks
in the floorplan.

For a more general nonslicing floorplan, the earliest representation is the
constraint graph, for example, the Grason graph [Otten 2000; Grason 1970]
and the polar graph [Grason 1970; Kozminsky and Kinnen 1985]. Later, in the
mid-1990s, two efficient representations, sequence pair [Murata et al. 1995]
and the bounded-sliceline grid [Nakatake et al. 1998], were proposed.

Murata et al. [1995] proposed a sequence pair (SP) representation. They used
two sets of permutations to represent the topological relations between blocks.
Thus the number of combinations of the SPs is O((n!)2). It takes O(n log log n)
time to transform between an SP and its corresponding block level placement
[Tang and Wong 2001].

Nakateke et al. [1998] introduced a bounded-sliceline grid (BSG) approach.
A special n-by-n grid was devised for placing n blocks. This approach has
n!
(n2

n

)
combinations and contains a lot of redundancy. The time complexity of

the transformation is O(n2).
More recently, Hong et al. [2000] proposed a corner block list (CB) repre-

sentation of a mosaic floorplan. Mosaic floorplans cover all slicing floorplans
and all nonslicing floorplans with n rectangles for n blocks. The concept of a
mosaic floorplan was also previously referred to as a floorplan with no empty
rooms. Sakanushi and Kajitani [2000] also proposed an equivalent representa-
tion for mosaic floorplans named the quarter-state sequence (Q-sequence). The
CB representation has a relatively small combination number O(n!23n−3/n1.5)
compared to the SP or the BSG, and the time complexity of the transformation
is O(n).

Guo et al. [1999] proposed an ordered tree (O-tree) representation of a
nonslicing floorplan. An O-tree represents partial topological information,
which together with the dimensions of all the blocks describes an exact floor-
plan. The O-tree has a combination number O(n!22n−2/n1.5), which is smaller
than that for CBs. The approach produces a floorplan in time O(n).

1.2 Our Contributions

In this paper, we find the exact numbers of slicing and mosaic floorplans. An
efficient representation of nonslicing floorplans is developed. We also study the
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Fig. 1. Combinations of floorplans and representations.

Table I. Exact Number of Combinations of Different Floorplan Configurations and
Representations

Number of Combinations of Combinations of Combinations of Combinations of
blocks O-tree slicing floorplan mosaic floorplan sequence pairs
1 1 1 1 1
2 2 2 2 2
3 5 6 6 6
4 14 22 22 24
5 42 90 92 120
6 132 394 422 720
7 429 1,806 2,074 5,040
8 1,430 8,558 10,754 40,320
9 4,862 41,586 58,202 362,880

10 16,796 206,098 326,240 3,628,800
11 58,786 1,037,718 1,882,690 39,916,800
12 208,012 5,293,446 11,140,560 479,001,600
13 742,900 27,297,738 67,329,992 6,227,020,800
14 2,674,440 142,078,746 414,499,438 87,178,291,200
15 9,694,845 745,387,038 2,593,341,586 1,307,674,368,000
16 35,357,670 3,937,603,038 16,458,756,586 20,922,789,888,000
17 129,644,790 20,927,156,706 105,791,986,682 355,687,428,096,000

relationships between some of these representations. Our contributions in this
paper include the following results:

(1) We find the exact numbers of two kinds of floorplans: mosaic floorplans
and slicing floorplans. The number of mosaic floorplans is a Baxter num-
ber [Baxter 1964; Chung et al. 1978], and that of slicing floorplans is a
Schröder number [Etherington 1940]. The combination numbers of SPs,
mosaic floorplans, slicing floorplans, and O-trees are illustrated on a log
scale in Figure 1. The combination numbers are normalized by n!, which
is the number of permutations of n blocks. The slopes of the lines for
mosaic floorplans, slicing floorplans, and O-tree structures are the con-
stants 0.89, 0.76, and 0.59, respectively. On the other hand, the slope of
the line for sequence pair increases with a rate of log n. Table I provides the
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Fig. 2. An example of a mosaic floorplan.

exact numbers of the combinations for a number of blocks ranging from
1 to 17.

(2) We present a new representation, a “twin binary trees” structure, for mosaic
floorplans. We also revisit the v-h tree representation for slicing floorplans.
These two structures have zero redundancy because they give an exact
one-to-one mapping to their corresponding floorplans.

(3) We study the relationships between SPs, O-Trees, CBs, twin binary
trees, and v-h trees. This study points out the redundancy of different
representations.

2. THE NUMBER OF FLOORPLANS AND REPRESENTATIONS
WITH A ONE-TO-ONE MAPPING

In this section, we describe the one-to-one mapping representations for mosaic
and slicing floorplans, respectively. We then derive the exact numbers of the
two different kinds of floorplans.

2.1 Mosaic Floorplans and Twin Binary Trees Representations

Mosaic floorplans were introduced in Hong et al. [2000]. Mosaic floorplans have
the following characteristics:

(1) There is no empty space within the floorplan, that is, each rectangle is as-
signed to one and only one block. In the floorplan area, except the four cor-
ners of the chip, the segment intersection forms a “T-junction.” A T-junction
is composed of a noncrossing segment and a crossing segment. The non-
crossing segment has one end touching the crossing segment.

(2) The topology is equivalent before and after the noncrossing segment of the
T-junction slides to adjust the block sizes.

(3) There is no degenerate case where two distinct T-junctions meet at the same
point.

Figure 2 illustrates a mosaic floorplan example. In general, we can summa-
rize the above by noting that the set of slicing floorplans is a subset of the set
of mosaic floorplans, which in turn is a subset of the set of general floorplans
(Figure 3).

2.1.1 Encoding Mosaic Floorplans with Twin Binary Trees. We now pro-
pose a tree structure representation that captures the topological relationships
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Fig. 3. Categories of floorplans.

Fig. 4. An example of an augmented binary tree.

of the blocks. Given a mosaic floorplan with n blocks, our representation consists
of a pair of binary trees. Each binary tree has n nodes, and each node corre-
sponds to one block in the floorplan.

Definition 2.1.1 (Augmented Binary Tree). Given a binary tree t, the aug-
mented binary tree t∗ is a tree generated by the following augmentation: To
each node in tree t, we add a left child node with label 0 if the node has no left
child, and a right child node with label 1 if it has no right child.

Figure 4 gives an example of an augmented binary tree. A binary tree t with
six nodes is drawn on the left. The augmented binary tree t∗ of the binary tree
t is drawn on the right. The augmented nodes of the tree t∗ are drawn in a light
color and the augmented edges are shown as dashed lines.

Definition 2.1.2 (The Order I(t) and the 2-Labeling of a Binary Tree t).
Given a binary tree t and its augmented binary tree t∗, we carry out in-order
traversals on them. The traversal visits the nodes in a recursive order, left
branch first, root second, and right branch last. The order of a binary tree
t, I(t), is the node sequence of the tree t from the in-order traversal. The
2-labeling, 2(t), is the leaf label sequence of tree t∗ ignoring the first and the
last bits.

For example, in Figure 4, t is a binary tree with 6 nodes and t∗ is its corre-
sponding augmented binary tree. The in-order traversal visits the augmented
binary tree in the sequence 0A1B0D0E1C0F1. The order of the binary tree is
I (t) = ABDECF, and the 2-labeling is 2(t) = 10010.
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Fig. 5. An example of twin binary trees.

The Properties of the 2-labeling are as follows:

(1) The first bit encountered is always 0 and the last bit encountered is always
1. Therefore we ignore these two bits in the 2-labeling of a binary tree
(Figure 4).

(2) The length of 2(t) is equal to n − 1 if the binary tree t has n nodes. For
example, the binary tree t in Figure 4 has six nodes and the length of
labeling 2(t) is 5.

(3) The in-order traversal on the augmented binary tree t∗ visits the leaf nodes
and the internal nodes alternately. Therefore when the pth internal node
is visited, the number of traversed bits in 2(t) is p − 1. For example in
Figure 4, node C is the fifth node traversed. The number of bits in 2(t)
traversed before node C is 4 (1001).

We denote the bit-wise complement of 2(t) by 2c(t), that is, the two strings
have equal length, |2c(t)| = |2(t)|, and each bit b in 2(t) is replaced by 1− b in
2c(t). For example if 2(t) = 10010, then 2c(t) = 01101.

Definition 2.1.3 (Twin Binary Trees). Let Treen be the set of binary trees
with n nodes. The set of twin binary trees TBTn is defined as follows: TBTn =
{(t1, t2)|t1, t2 ∈ Treen, I(t1)= I(t2), and 2(t1) = 2c(t2)}.

Figure 5 shows an example of twin binary trees with n = 7. Each tree, t1 and
t2, has seven nodes. The orders of these two trees are I (t1) = I (t2) =ABCDEFG.
The 2-labeling 2(t1) is 100101 and 2(t2) is 011010. Thus, 2(t1) = 2c(t2). Note
that the first and the last labels are not included in the2-labelings. In Figure 5,
we denote both of these two labels by a cross.

Definition 2.1.4 (0◦ T-Junctions, 90◦T-Junctions, 180◦T-Junctions, and 270◦T-
Junctions). In a mosaic floorplan, except for the four corners of the boundary
rectangle, a T-shaped intersection has four different orientations (Figure 6).
We call these four kinds of intersections 0◦T-junctions, 90◦T-junctions, 180◦T-
junctions, and 270◦T-junctions, respectively.

Definition 2.1.5 (C+-Parent and C+-Child ). Given a mosaic floorplan, as-
sume that block A is not the up-right corner block of the floorplan. The T-junction
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Fig. 6. Four different types of T-junctions.

at the up-right corner of A is either a 0◦ T-junction or a 270◦ T-junction. Let B
be the block adjacent to A by the noncrossing segment at the corner of that
T-junction. B is called the C+-parent of A and A is called the C+-child of B
(Figures 6(a) and 6(b)).

Definition 2.1.6 (C−-Parent and C−-Child ). Given a mosaic floorplan, as-
sume that block A is not the bottom-left corner block of the floorplan. The
T-junction at the bottom-left corner of A is either a 90◦ T-junction or a 180◦

T-junction. Let B be the block adjacent to A by the noncrossing segment at the
corner of that T-junction. B is called the C−-parent of A and A is called the
C−-child of B (Figures 6(c) and 6(d)).

The following three properties describe the tree properties of the C+- and
C−-relations.

PROPERTY 2.1.7. Except for the upper-right corner block of the floorplan, each
block of the floorplan has exactly one C+-parent. Except for the bottom-left corner
block of the floorplan, each block of the floorplan has exactly one C−-parent.

PROPERTY 2.1.8. Each block of the floorplan has at most one C+-child adjacent
to its left edge and at most one C+-child adjacent to its bottom edge.

PROPERTY 2.1.9. Each block of the floorplan has at most one C−-child adjacent
to its right edge and at most one C−-child adjacent to its top edge.

The algorithm converting a mosaic floorplan to twin binary trees (MFTB)
is shown in Figure 7. Given a mosaic floorplan, we denote each block with a
node. For each block i and its C+-parent j , we have node j branch to node i.
Depending on the direction of the T-junction, if the C+-parent j is on the right-
hand side of the block i, we set node i to be the left child of node j . Otherwise,
node i is set to be the right child of node j . The result is a tree, τ+, rooted at the
upper-right corner block of the floorplan. Similarly, we connect each node to its
C−-parent and get a tree τ− rooted at the bottom-left corner block.

LEMMA 2.1.10. Algorithm MFTB produces a unique pair of binary trees τ+
and τ−.

PROOF. Both the trees τ+ and τ− are binary trees because of Properties 2.1.8
and 2.1.9. The resulting tree pair produced by the algorithm MFTB is unique
because of Properties 2.1.7 to 2.1.9. Because for each block, there is at most one
C+-child adjacent to its bottom edge, and at most one C+-child adjacent to its
left edge, the algorithm MFTB builds a unique τ+. Similarly, algorithm MFTB
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Fig. 7. The algorithm to produce the twin binary tree representation of a mosaic floorplan.

builds a unique τ− for the mosaic floorplan. Therefore, the algorithm MFTB
outputs a unique pair of binary trees.

Figure 8 shows an example of the twin binary trees representation of a mo-
saic floorplan. In Figure 8(a), the mosaic floorplan in Figure 2 is redrawn. In
Figure 8(b), we present the binary tree representation, (τ+, τ−), for the floor-
plan in Figure 8(a). To make the derivation of the twin binary trees clear, in
Figure 8(a), we mark the upper-right corner of each block with a circle. These
circles correspond to the nodes in τ+. We mark the lower-left corner of each block
with a cross. These crosses correspond to the nodes in τ−. The line segments
between adjacent circles are marked with bold solid lines, which correspond to
the edges in τ+. The line segments between adjacent crosses are marked with
bold dashed lines, which correspond to the edges in τ−.

In Theorem 2.1.11, we shall prove that the resulting binary tree pair,
(τ+, τ−), is a twin binary trees representation.

THEOREM 2.1.11. The MFTB algorithm produces a pair of binary trees
(τ+, τ−) satisfying two properties:r Order of the Trees: I(τ+) = I(τ−).r 2-labeling: 2 (τ+) = 2C (τ−).

PROOF. See Appendix 1.

For the time complexity of algorithm MFTB, we have the following theorem.
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Fig. 8. A twin binary trees representation of a mosaic floorplan.

THEOREM 2.1.12. The time complexity of algorithm MFTB is O(n), where n
is the number of blocks in the floorplan.

PROOF. Algorithm MFTB scans through all the n blocks in the floorplan
once. For each block, it checks the T-junction at the upper-right end, finds its
C+-neighbor and adds an edge in τ+. This can be done in O(1) time. It also
checks the T-junction at the lower-left corner, finds its C−-neighbor and adds
an edge in τ−. This can also be done in O(1) time. Therefore, the time complexity
of algorithm MFTB is O(n).

2.1.2 Decoding Twin Binary Trees into a Mosaic Floorplan. Given a pair
of twin binary trees, we can find the corresponding mosaic floorplan for it.
(Figure 9). The floorplan is described with a horizontal constraint graph GH and
a vertical constraint graph GV. Each vertex of the constraint graph represents
a line segment in the floorplan and each edge between vertices represents a
block (Figure 9(b)).

We first introduce the relations of the leaf nodes on the augmented twin
binary trees and the line segments in the mosaic floorplan. Then we present
the algorithm TBMF to decode the twin binary trees into a mosaic floorplan.

Figure 9(a) shows an example of augmented twin binary trees (τ+∗,τ−∗). The
original twin binary trees are drawn with character-labeled nodes and solid
line edges. The leaves are now marked with numbers. Likewise, we also mark
with numbers the vertices of the constraint graphs GH and GV (Figure 9(b)).
We have the following properties regarding the leaf nodes on the augmented
twin binary trees:

(1) The leaves of the augmented twin binary trees (τ+∗,τ−∗) correspond to the
line segments in the floorplan. The type of the leaf node represents the direc-
tion of the line segment. If the leaf is a left child in τ+∗ or a right child in τ−∗,
it represents a horizontal line segment. If the leaf is a right child in τ+∗ or a
left child in τ−∗, it represents a vertical line segment. For example, the leaf
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Fig. 9. The twin binary trees representation of a mosaic floorplan.

marked 3 in τ+∗ of Figure 9(a) represents a horizontal line segment
(Figure 9(b)), and the leaf marked 5 in τ−∗ represents a vertical line segment.

(2) The kth leaves of τ+∗ and τ−∗ represent the kth line segments in the corre-
sponding floorplan.

Definition 2.1.13 (The Directed Ancestor Set). Given a node k in the binary
tree t, the directed ancestor set of k, D(k, t), is defined as follows:

D(k, t) = {v|v is a node in the tree t and node k can be reached by consecu-
tive left branches from node v if k is a left child, or node k can be reached by
consecutive right branches from node v if k is a right child}.

For example, in the binary tree τ+∗ of Figure 9(a), leaf 3 is a left child of node
D, and leaf 3 can be reached by two consecutive left branches from node F. Thus,
the directed ancestor set of leaf 3 in τ+∗, D(3, τ+∗) = {D, F}.

By using either consecutive left branches or right branches, a leaf can always
be reached from some internal node. Hence, each internal node e of the binary
tree t is in exactly two different directed ancestor sets of the leaf node. Based
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on this property, we have procedure FindD(t) to find the directed ancestor sets
of all leaf nodes in the binary tree t.

Procedure FindD(t)
Precondition: t is the root of an augmented binary tree. For all the leaf nodes k, the
global variables D(k, t) are initialized to empty sets.
/∗ Use t.left and t.right to denote the left and right child, respectively.t.lda and t.rda
represent the leaf node which can be reached by consecutive left branches and
consecutive right branches, respectively. ∗/

1. If t.left is a leaf node in t
2. Then t.lda= t.left
3. Else call procedure FindD(t.left)
4. t.lda= t.left.ldat
5. If t.right is a leaf node in t
6. Then t.rda= t.right
7. Else call procedure FindD(t.right)
8. t.rda= t.right.rda
9. Add node t to the sets D(t.lda, t) and D(t.rda, t)

10. Return

The following is the property of the directed ancestor set of a leaf node:

The directed ancestor set of a leaf of the augmented twin binary trees represents
the blocks on each side of a line segment. If leaf k is a left child in the augmented
binary tree τ+∗, leaf k corresponds to the horizontal segment k in a floorplan,
and the directed ancestor set D(k, τ+∗) represents the blocks lying just below
the line segment k. Similarly, if leaf k is a right child in τ+∗ , then D(k, τ+∗)
represents the blocks lying just right of the line segment k.

For example, in the binary tree τ+ of Figure 9(a), the directed ancestor set of
the leaf node 3 is the set {D, F}, so the two blocks, D and F lie right below the
horizontal line segment 3 of the floorplan.

The algorithm TBMF for decoding twin binary trees to a floorplan is listed
in Figure 10. The input to the algorithm is a pair of twin binary trees, (τ+, τ−),
with n nodes each. The output is the constraint graphs of the corresponding
mosaic floorplan. We first construct the augmented twin binary trees, τ+∗ and
τ−∗ by Definition 2.1.1 and find the directed ancestor set of each leaf node in
the augmented twin binary trees by Definition 2.1.13.

To generate the constraint graphs of the corresponding mosaic floorplan, we
traverse in augmented binary trees τ+∗ and τ−∗ in order (Definition 2.1.2). Let
node e+ be the kth leaf traversed in tree τ+∗ and node e− be the kth leaf traversed
in tree τ−∗. If this node pair represents a vertical line segment, we add a new
node v to the horizontal constraint graph GH. For each element in the directed
ancestor set D(e−, τ−∗), we create a new link leaving vertex v in GH. Also, for
each element in set D(e+, τ+∗), we make the corresponding link e in GH go into
the node v. Similarly, if the leaf node pair represents a horizontal line segment,
we add a new vertex v to the vertical constraint graph GV. For each element in
the directed ancestor set of D(e+, τ+∗), we create a new link going into vertex v
in GV. Also, for each element in the set D(e−, τ−∗), we make the corresponding
link in GV go out from v.
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Fig. 10. The algorithm to construct a mosaic floorplan from a pair of twin binary trees.

For example, the second leaf node (labeled 1) of tree τ+∗ in Figure 9(a) is
the right child of node A. Its directed ancestor set is {A}. The second leaf node
(labeled 1) of τ−∗ is the left child of node B. Its directed ancestor set is {B, D}.
This leaf pair corresponds to a vertical line segment. Thus, we add a vertex v
in GH, direct the link A to vertex v, add links B and D and direct them from
vertex v.

Note that the first pair and the last pair of leaves in the augmented binary
trees are two special cases. The first leaf e+ in tree τ+∗ represents the top
boundary line of the floorplan. We add the sink node T to the vertical constraint
graph GV. The first leaf e− in tree τ−∗ represents the left boundary line of the
floorplan, so we add the source node S to the horizontal constraint graph GH.
The operation on the last pair is similar.

Figure 9(b) draws the resulting constraint graph for the floorplan defined
by the twin binary trees in Figure 9(a). The horizontal constraint graph GH is
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drawn with dark colored nodes and solid line edges, while the vertical constraint
graph GV is drawn with light colored nodes and dash line edges.

THEOREM 2.1.14. The time complexity for algorithm TBMF is O(n), where n
is the number of nodes in each twin binary tree.

PROOF. The first three steps of TBMF can all be done in time O(n). The
fourth step of TBMF also runs in O(n) time, because the procedure FindD visits
each node of the tree exactly once. The remaining steps add the edges to the
constraint graph. The total number of edges in GH and GV is 2n, because each
block corresponds to one edge in GH and one in GV. Each edge can be added in
time O(1). Therefore, the total running time of algorithm TBMF is O(n).

THEOREM 2.1.15. There is a one-to-one mapping between a pair of twin bi-
nary trees with n nodes and a mosaic floorplan with n blocks.

PROOF. Given a mosaic floorplan, algorithm MFTB outputs a unique pair
of twin binary trees corresponding to the floorplan. This is true because of
Lemma 2.1.10 and Theorem 2.1.11. Conversely, given a pair of twin binary trees,
algorithm TBMF finds a unique mosaic floorplan corresponding to it. Because
of the property of the directed ancestor set of a leaf node in an augmented tree,
we know that the directed ancestor set of a leaf node represents the blocks in
each side of a line segment.

2.1.3 The Exact Number of Mosaic Floorplans. The preceding two sections
established a one-to-one correspondence between twin binary trees and a mo-
saic floorplan, so we can count the number of mosaic floorplans by counting the
number of the twin binary trees.

THEOREM 2.1.16. The number of distinct mosaic floorplans with n blocks is
equal to the nth Baxter number:

B(n) =
(

n+ 1
1

)−1( n+ 1
2

)−1 n∑
k=1

(
n+ 1
k − 1

)(
n+ 1

k

)(
n+ 1
k + 1

)
.

PROOF. Dulucq and Guibert [1998] proved that the exact number of dis-
tinct twin binary trees with n nodes is the Baxter number B(n)[Baxter 1964].
Hence, from Theorem 2.1.15, we can deduce that the number of distinct mosaic
floorplans with n blocks is equal to B(n).

2.2 The Exact Number of Slicing Floorplan Configurations

A slicing floorplan was usually represented by a binary tree, which can be
obtained by recursively cutting a rectangle into exactly two parts by either
a vertical or a horizontal line. This representation is intuitive and simple to
implement. However, there is redundancy in this representation. For example,
the floorplan in Figure 11 can be mapped to two different binary trees.

In order to find the exact number of different slicing floorplans of n blocks,
we adopt another representation called a v-h tree [Szepieniec and Otten 1980].
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Fig. 11. Example of redundancy in a slicing tree representation.

Fig. 12. A v-h tree representation of a slicing floorplan.

We restate the definition of a v-h tree representation for a slicing floorplan
below:

Definition 2.2.1 (A v-h Tree Representation of a Slicing Floorplan). A tree
with the following properties is called a v-h tree of a slicing floorplan with n
blocks:

(1) The tree is a rooted ordered tree with each node representing a rectangle
in the floorplan.

(2) The rectangles obtained by slicing a rectangle are represented as the chil-
dren of the node representing the sliced rectangle. These children are or-
dered according to their relative position.

(3) The root of the tree is the whole floorplan rectangle. The n leaves represent
the n blocks, which are not divided further into smaller rectangles in the
floorplan.

(4) The nodes in the same level of the tree form a generation. The generations
are formed alternatively by vertical and horizontal partition lines. We as-
sign a label V to each generation corresponding to vertically partitioned
rectangles, and a label H to each generation corresponding to horizontally
partitioned rectangles.

(5) To each leaf node, we assign the label of its corresponding block to it. To
each internal node, we assign the label of the generation it belongs to.

Figure 12 gives an example of a slicing floorplan and its corresponding v-h
tree representation. The root of the v-h tree is labeled V with four children.
Correspondingly, the chip is divided into four vertical strips. The left-most child
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of the root is then horizontally partitioned into three blocks. A v-h tree is an
ordered tree and thus can be represented naturally as a binary tree. A v-h tree
differs from the trees in both twin binary trees representations and O-Tree
representations in the sense that, in a v-h tree, only the leaf nodes represents
the blocks, while in the trees for twin binary trees and O-Trees each node
represents a block in the floorplan.

There is one-to-one correspondence between the v-h tree representation and
the slicing floorplan [Szepieniec and Otten 1980]. Therefore, we can count the
number of the slicing floorplans by counting the number of v-h trees. We have
the following theorem regarding the number of the slicing floorplans.

THEOREM 2.2.2. The number of slicing floorplans with n > 1 blocks is twice
the Schröder number An, defined by:

A0 = 1; A1 = 1;
An = (3(2n− 3)An−1 − (n− 3)An−2)/n.

PROOF. There are two different labels, V or H, for the root of a v-h tree. Thus,
from Etherington [1940] we see that the number of slicing floorplans with n > 1
blocks is twice the Schröder number An.

3. RELATIONSHIPS BETWEEN REPRESENTATIONS

In this section, we describe the relationships between the following four kinds
of representations: twin binary trees, sequential pair, corner block list, and
O-Tree.

To illustrate the relationships between these representations, we use three
examples: a slicing floorplan (Figure 13), a mosaic floorplan (Figure 15), and a
general floorplan (Figure 16).

3.1 Slicing Floorplan Example

The slicing floorplan in Figure 13 is first dissected into three strips vertically:
the left strip contains block A; the middle strip contains blocks B, C, and D;
and the right strip contains blocks E, F, and G. Second, the middle and the
right strips are cut horizontally into three pieces. The v-h tree representation
is shown in Figure 13. In Figure 13 we also include the twin binary trees rep-
resentation. The upper-right corner of each block is marked with a circle and
the bottom-left corner is marked with a cross. The upper-right corners are con-
nected to their C+-parents with solid lines. These solid lines and circles form
the τ+ of the twin binary trees. Similarly, the bottom-left corners are connected
to their C−-parents by dashed lines. These dashed lines and crosses form the
τ− of the twin binary trees.

Given a floorplan and the dimensions of the blocks, we can find a sequence
pair SP= (S1,S2) to represent the floorplan [Murata et al. 1995]. The S1of the SP
is the order of the blocks from upper-left to the right-bottom, and S2 is the order
of the blocks from bottom-left to upper-right. Thus, many SPs may correspond
to the same floorplan. For example, in Figure 13, block F can either be above
block D or to the right of block D. Thus, we have different SP representations
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Fig. 13. Different representations for a slicing floorplan.

(SP1, SP2, SP3) (Figure 13). With the given block dimensions, the three SPs,
SP1, SP2, and SP3, produce the same floorplan.

For the floorplan in Figure 13, there are quite a few different O-tree repre-
sentations. For example, block F is right adjacent to blocks B and C; thus, node
F can be the child of either B or C in an O-tree representation. Two different
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Fig. 14. Rotation of the floorplan in Figure 15.

O-tree representations are shown in Figure 14. An O-tree can be mapped to a
binary tree by converting the sibling relations to left child branches and con-
verting the descendent relations to right child branches of a binary tree [Chang
et al. 2000]. In Figure 13, O-tree OT2 and the τ− of the twin binary trees are
identical after the tree conversion.

For further discussion, we define the 90◦ rotation of a floorplan as follows:

Definition 3.1 (90◦ Rotation of a Floorplan). We use F90 to denote the floor-
plan obtained by rotating floorplan F, 90◦ counterclockwise.

For example, Figure 14 shows the F90◦ rotation of the floorplan F in Figure 13.
The CB (S, L, T) representation of F90 has S = ABCDEFG (Figure 14), which
is identical to I(τ ), the order of the twin binary trees representation (τ+,τ−) of
F (Figure 13).

We traverse τ+ of the twin binary trees in Figure 13 in a depth-first order
and get the in-order sequence of τ+: I(τ+) = ABCDEFG. This sequence is the
same as the first sequence of SP2. The corner block list representation, CB= (S,
L, T), is given at the bottom of Figure 13. We note that the block sequence
S=ADCBGFE of CB is identical to the second sequence of SP3.

3.2 A Mosaic Floorplan Example

Figure 15 describes an example of a mosaic floorplan. A v-h tree is not avail-
able to represent this kind of floorplan. We illustrate the other four represen-
tations. The twin binary trees are marked by circles and crosses as shown in
Figure 15. Two SPs, SP1 and SP2, out of many possible choices, are described
in the figure. The in-order traversal of the τ+ in the twin binary trees repre-
sentation produces the sequence I(τ+) = ABCDFE, which is same as the first
sequence of SP1 and SP2. In Figure 15, an O-tree representation is also given.
Its binary tree representation is identical to the τ− of the twin binary trees after
tree conversion. The CB representation is next to the O-tree representation in
Figure 15. Its sequence S=FADEBC is same as the second sequence of SP1.

3.3 A General Floorplan Example

Figure 16 illustrates a general floorplan. Only the O-tree and the sequence pair
are capable of representing this general floorplan. The O-tree and SP represen-
tations are shown in the figure.
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Fig. 15. A mosaic floorplan and its different representations.

3.4 Statements of the Relationships

According to the observations in the above examples, we can derive the following
relationships as shown in Figure 17:

LEMMA 3.1.1. Given a mosaic floorplan F, the order of its corresponding twin
binary trees TBT (τ+, τ−), I(τ+), is identical to the sequence S in the corner block
list CB= (S, L, T) of the floorplan F 90.

PROOF. See Appendix 2.

LEMMA 3.1.2. Given a mosaic floorplan and its corresponding corner block
list CB= (S, L, T), there exists a sequence pair SP = (S1, S2) corresponding to
the same floorplan such that the second sequence of SP is same as the sequence
S of the corner block list.

PROOF. See Appendix 3.

LEMMA 3.1.3. Given a mosaic floorplan and its corresponding twin binary
trees (τ+, τ−), there exists a sequence pair SP = (S1, S2) corresponding to the
same floorplan such that the first sequence of SP is the same as I(τ+).
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Fig. 16. A general floorplan with its O-tree and SP representations.

Fig. 17. Summary of the relationships between floorplan representations.

PROOF. This follows by applying Lemmas 3.1.1 and 3.1.2.

LEMMA 3.1.4. Given a mosaic floorplan and its corresponding twin binary
trees TBT (τ+, τ−), there exists an O-tree corresponding to the same floorplan
such that τ− is identical to the O-tree after the tree conversion from a binary tree
to an ordered tree.

PROOF. Suppose that node i is the right child of node j in binary tree τ−.
Then from line 10 of algorithm MFTB, we see that block i is adjacent to the
right-hand edge of block j . Thus, we have node i as a child of node j in the
O-tree representation.

Suppose node i is the left child of node j in the binary tree τ−. Then from line
11 of algorithm MFTB, we derive that block i is adjacent to the top edge of block
j . Thus, we have node i as the sibling of node j in the O-tree representation.

The above two cases convert the binary tree τ− to an ordered tree, and they
are clearly representations of the same floorplan. This completes the proof.

4. CONCLUSIONS

We have shown that the numbers of mosaic floorplan and slicing floorplan con-
figurations are Baxter numbers and Schröder numbers, respectively. A new
tree structure representation, called twin binary trees, is proposed to represent
mosaic floorplans. This representation is concise in the sense that the trans-
formation between the representation and the floorplan is one-to-one. We also
identify the relationships between several representations, where the proposed
twin binary trees serve as a bridge for these relationships.
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APPENDIX 1: PROOF OF THEOREM 2.1.11

THEOREM 2.1.11. The MFTB algorithm produces a pair of binary trees
(τ+, τ−) satisfying two properties:r Order of the Tree: I(τ+) = I(τ−).r 2-labeling: 2 (τ+) = 2C(τ−).

PROOF. We prove the theorem by induction on the number of blocks. When
the number of blocks is 1, the statement is true because both τ+ and τ− contain
only one node and both 2(τ+) and 2(τ−) are empty strings. Assume the state-
ment is true when the number of blocks is n. We show that the statement is
also true when the number of blocks is n+ 1.

We follow the block deletion operation proposed by Hong et al. [2000]. An
(n+ 1)-block floorplan can be reduced to an n-block floorplan by deleting the
block at its upper-right corner. Note that for a mosaic floorplan, the block at
the upper-right corner of the floorplan is unique. We call this block the corner
block of the floorplan. There are two orientations of the T-junction at the lower-
left end of the corner block, that is, 90◦ and 180◦. Corresponding to these two
orientations of the T-junction, Hong et al. [2000] proposed H-deletions and V-
deletions. To simplify the discussion, we assume the operation is an H-deletion
(a T-junction with a 180◦ orientation) (Figure 18(a)). The argument for a V-
deletion is similar.

Let us denote the corner block as block A; block B is left of block A at the
lower-left corner of block A, the floorplan of n+ 1 blocks by FP, and the floorplan
of n blocks (after H-deletion) by F. The corresponding binary tree pairs produced
by the MFTB algorithm are (τ+P, τ−P) for floorplan FP and (τ+, τ−) for floorplan
F. By the induction assumption, the pair of binary trees (τ+, τ−) satisfies the
“order of the tree” and the twin binary trees properties.

Figure 18 shows the relationships of the binary trees τ+ and τ+P and of the
binary trees τ− and τ−P. We list the properties of binary trees τ+P, τ+, τ−P and
τ−, as follows:

Properties of the binary tree τ+P : include the following:

(1) Node A is the root of binary tree τ+P. The root branches out to two subtrees,
left subtree TLB and right subtree TRB. We use node R+ denote the root of
subtree TLB.

(2) Node B is in subtree TLB.
(3) Node B has no right child because the lower-right end of block B has a

T-junction in a 180◦ orientation.

Properties of the binary tree τ+ include the following:

(1) Binary tree τ+ is similar to binary tree τ+P except that node A is deleted.
Node B inherits the right subtree TRB of node A.

(2) Node B is a descendent of root R+ through consecutive right branches be-
cause block B is at the right edge of the floorplan (Figure 18(b)).

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.



Floorplan Representations: Complexity and Connections • 75

Fig. 18. The H-deletion and the corresponding transformation of τ+ and τ−.
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The property of the binary tree τ−P is as follows:

Node A is a leaf node and a right child of node B (Figure 18(c)).

The property of the binary tree τ− is as follows:

Binary tree τ− is identical to binary tree τP
− except that node A is

deleted (Figure 18(c)). Thus, node B has no right child.

The proof of order of the tree property goes as follows. We show the relations
(i) between I(τ+P) and I(τ+), and (ii) between I(τ−P) and I(τ−), hold. By our
induction assumption, I(τ+) and I(τ−) are identical. From (i) and (ii), we can
conclude that I(τ+P) and I(τ−P) are identical.

(i) I(τ+P) is identical to I(τ+) except that A is inserted to the right of B. Node A
is the next of node B in the sequence of the traversal because in binary tree
τ+P, node B has no right child (Property 3 of τ+P), node B is a descendent of
node R+ via consecutive right branches (Properties 1 and 2 of τ+), and node
A is the parent of node R+ (Property 1 of τ+P). (Figure 18b)).

(ii) I(τ−P) is identical to I(τ−) except that A is inserted to the right of B: the
statement is true because node A is the right child of node B in binary tree
τ−P. (Figure 18(c)).

The proof of the 2-labeling property goes as follows. We first decompose
2(τ+) and 2(τ−) according to subtrees. We then write 2(τ+P) and 2(τ−P) using
the same notation. Finally, we show 2(τ+P) = 2C(τ−P) from the assumption
that 2(τ+) = 2C(τ−P).

(1) We decompose 2(τ+) into the following expression (Figure 18(b)):

2(τ+) = 2(τ+, B)02(TRB). (2.1)

The bit 0 is inserted between 2(τ+, B) and 2(TRB) because the bit 0 is the
first label of tree TRB (property 1 of 2-labeling).

(2) We decompose 2(τ−) into the following expression (Figure 18(c)):

2(τ−) = 2(τ−, B)12r (τ−). (2.2)

The bit 1 is appended right after2(τ−, B) because node B has no right child
(Property 1 of tree τ−). We use 2r (τ−) to denote the rest of the sequence in
2(τ−).

(3) We describe 2(τ+P) as follows:

2(τ+P) = 2(τ+, B)102(TRB). (2.3)

The bit 1 is inserted between2(τ+, B) and 02(TRB) (Equation (2.1)) because
node B has no right child in τ+P (Property 3 of tree τ+P).

(4) We express 2(τ+P) as follows:

2(τ−P) = 2(τ−, B)012r (τ−). (2.4)

The bit 0 is inserted between 2(τ−, B) and 12r (τ−) (Equation (2.2)) because
node S has no left child in τ−P (Property 1 of tree τ−P).

(5) By our induction assumption, the two strings 2(τ+) and 2(τ−) are bit-wise
complements. From Formulas (2.1) and (2.2), we have 2(τ+, B)02(TRB) =
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2C(τ−, B)02C(τ−). Because |2(τ+, B)| = |2C(τ−, B)| (Property 3 of 2-
labeling), we find that 2(τ+, B)102(TRB)=2C(τ−, B)102C(τ−).

Thus, from Formulas (2.4) and (2.3), we see that 2(τ+P) = 2C(τ−P).
The Special Case That Subtree TRB Is an Empty Set. For such a case, in

trees τ+ and τ−, node B is the last node traversed. We have 2(τ+) = 2(τ+, B)
and 2(τ−) = 2(τ−, B). Therefore, from Properties 1 and 2 of tree τ+, we have
2(τ+P ) = 2(τ−, B)1, and from Figure 9(c), we have 2(τ−P) = 2(τ−, B)0. These
two equalities conclude the proof.

APPENDIX 2: PROOF OF LEMMA 3.1.1

LEMMA 3.1.1. Given a mosaic floorplan F, the order I(τ+) of its corresponding
twin binary trees TBT (τ+, τ−) is identical to the sequence S in the corner block
list CB(S, L, T) of floorplan F90.

PROOF. The proof will be given by induction on the number of blocks.
When the number of blocks is 1, the statement is true, since both floorplan

F and floorplan F90 have only one block and I(τ+) and S both contain the only
block in the sequence, so I(τ+) = S.

Assume the statement is true when the number of blocks is n. We show that
the statement is also true when the number of blocks is n+ 1.

We follow the block deletion operation proposed by Hong et al. [2000]. Given
an (n+ 1)-block floorplan (FP)90, we get an n-block floorplan F90 by block dele-
tion. There are two kinds of deletions: H-deletions and V-deletions.

The case of V-deletion is shown in Figure 19(a). After deleting the right corner
block A, floorplan (FP)90 is transformed to floorplan F90. Thus, the S sequence
in the corner block representation of floorplan (FP)90 is the concatenation of the
S sequence for floorplan F and block A.

In the figure, we marked the edges and nodes of the binary tree τ− of the
twin binary trees representation for F and FP. The edges of tree τ− are marked
by bold dashed lines and the nodes are marked by crosses. Using the algorithm
MFTB, we know that block R− is the root of the binary tree τ P

− , and it remains
to be the root of binary tree τ−. Block A is the right-most descendant of the trees
τ+P and τ−P, where (τ+P, τ−P) is the twin binary representation of FP. After the
deletion of block A, τ+P remains the same except that node A is removed. Thus,
I(τ+P) is the concatenation of I(τ+) and block A.

By the induction assumption, I(τ+) is identical to the S sequence for F. There-
fore, I(τP) is identical to the S sequence for FP. Hence, the statement is true for
n+ 1 blocks.

The case for H-deletion is similar to the V-deletion case except that we con-
sider the change of τP

− in the process of deletion (Figure 19(b)). The statement
is also true for this case. This completes the proof.

APPENDIX 3: PROOF OF LEMMA 3.1.2

LEMMA 3.1.2. Given a mosaic floorplan and its corresponding corner block
list CB = (S, L, T), there exists a sequence pair SP = (S1, S2) corresponding to
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Fig. 19. H-and V-deletions and the corresponding transformations of τ+ and τ−.

the same floorplan such that the second sequence of SP is same as the sequence
S of the corner block list.

PROOF. When the number of blocks is 1, the statement is true because both
the sequence S and the sequence S2 contain the only block in the floorplan.

Assume the statement is true for the floorplan F with n blocks. We show that
the statement is also true for the floorplan FP with n+ 1 blocks.

We use the deletion technique similar to the one used in the proof of
Lemma 3.1.1.

The case of H-deletion is shown in Figure 20(a). We marked the negative locus
for each block in the figure, which was used in Murata et al. [1995] to derive the
second sequence of the sequential pair. The H-deletion will not change other
blocks’ loci, except that the most outside locus for block A is removed. This
implies the S2 for floorplan FP is identical to the S2 for floorplan F with block A
appended. By the definition of the corner block list, the S sequence for floorplan
FP is identical to the S sequence for floorplan F with block A appended. Thus,
by the induction assumption, the S sequence is identical to the S2 sequence for
floorplan FP.

In the case of V-deletion (Figure 20(b)), only the loci of the blocks right below
block A (blocks B and C in Figure 20(b)) are modified. However, the order of the
loci is kept since they never cross each other. Therefore, the statement is also
true by similar reasoning as in the H-deletion case. This completes the proof.
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Fig. 20. The H- and V-deletions and the corresponding transformations of loci.
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