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Abstract. Let H denote the hypergeometric 3F2 function over Fp whose
three numerator parameters are quadratic characters and whose two denomi-
nator parameters are trivial characters. In 1992, Koike posed the problem of
evaluating H at the argument 1/4. This problem was solved by Ono in 1998.
Ten years later, Evans and Greene extended Ono’s result by evaluating an in-

finite family of 3F2(1/4) over Fq in terms of Jacobi sums. Here we present five
new 3F2(1/4) over Fq (involving characters of orders 3, 4, 6, and 8) which are
conjecturally evaluable in terms of eigenvalues for Hecke eigenforms of weights
2 and 3. There is ample numerical evidence for these evaluations. We motivate
our conjectures by proving a connection between 3F2(1/4) and twisted sums
of traces of the third symmetric power of twisted Kloosterman sheaves.

1. Introduction

Let Fq be a field of q elements, where q is a power of an odd prime p. Let A, B,
C, D, E, φ, 1 denote complex multiplicative characters on F∗

q , where the last two
characters have orders 2 and 1, respectively. By convention, these characters map
0 to 0. Recall the definition of the Jacobi sum

(1.1) J(A,B) =
∑
x∈Fq

A(x)B(1− x).

Following Greene [15, Cor. 3.14], we define the hypergeometric function 3F2(z) over
Fq by

3F2

(
A,B,C

D,E
z

)
=(1.2)

BCDE(−1)

q2

∑
x,y∈Fq

B(x)DB(1− x)C(y)EC(1− y)A(1− xyz), z ∈ F∗
q .

For z = 0, the sum in (1.2) degenerates into a product of two Jacobi sums, but
the convention is to define 3F2(0) = 0. This paper concerns evaluations of 3F2(z)
at the argument z = 1/4 only. For evaluations at other arguments, see [6], [7], [8],
[25], [26].
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For the moment, let q = p. In the special case where the three numerator
parameters are quadratic and the two denominator parameters are trivial, the hy-
pergeometric function 3F2(z) over Fp can be expressed as the following elegant
double sum of Legendre symbols:

(1.3) H := 3F2

(
φ, φ, φ

1, 1
z

)
=

1

p2

∑
x,y∈Fp

(
xy(1− x)(1− y)(1− xyz)

p

)
.

In 1992, Koike [20] posed the problem of evaluating H at the argument z = 1/4.
Ono [25] solved this problem in 1998 by proving that for p > 3,

(1.4) 3F2

(
φ, φ, φ

1, 1

1

4

)
= φ(3)(4x2 − p)/p2,

where x = 0 when p ≡ 2 (mod 3), and p = x2 + 3y2 when p ≡ 1 (mod 3). In 2009,
Evans and Greene [7] extended (1.4) for general q relatively prime to 3 by proving
that if S is any character on Fq which is not trivial, cubic, or quartic, then

(1.5) 3F2

(
S, S3, S
S2, Sφ

1

4

)
=

{
φ(−1)S(4)q−1, if q ≡ 2 (mod 3)

φ(−1)S(4)q−1(1 + u+ u−1), if q ≡ 1 (mod 3),

where u = J(S, ψ)/J(S, ψ) and ψ denotes a cubic character on Fq when q ≡
1 (mod 3). Ono’s result (1.4) is the special case q = p, S = φ of (1.5). As
was pointed out in [7], there is an analogue of (1.5) for classical hypergeometric
functions which is much easier to prove.

The primary purpose of this paper is to address Ono’s “Open Problem 11.38” [26,
p. 204] by offering conjectural evaluations for five new 3F2(1/4) over Fq. These eval-
uations appear to have no known classical analogues. The first three conjectures,
presented in Section 2, give evaluations in terms of eigenvalues a(p) for Hecke eigen-
forms of weight 3 with quadratic nebentypus. The last two conjectures, presented
in Section 3, give evaluations in terms of eigenvalues a(p) for Hecke eigenforms of
weight 2 with trivial nebentypus. Numerical evidence provided in Tables 1–5 leaves
little room for doubt that the conjectures are correct. In Section 4, we discuss the
motivation and theoretical basis for the conjectures.

There are a number of papers that discuss relations between hypergeometric
functions over finite fields and modular forms; see for example [2], [9], [14], [24],
[25], [26], [27] and the references therein. To our knowledge, the five eigenforms in
Sections 2–3 have not arisen in previous work on this topic.

2. Evaluations of 3F2(1/4) in terms of weight 3 newforms

Conjectures 1–3 below evaluate the hypergeometric function over Fq defined by

F (C, q) := 3F2

(
C,C,C
1, Cφ

1

4

)

when C is cubic, quartic, and sextic, respectively. The evaluations are in terms
of Hecke eigenvalues a(p) for three different Hecke eigenforms of weight 3 with
quadratic nebentypus. For simplicity, Conjecture 1 is stated only for q = p, p ≡
1 (mod 3) and q = p2, p ≡ 2 (mod 3), but it can be canonically extended for all q;
see (2.4). Similar remarks apply to Conjectures 2 and 3.
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Conjecture 1. Let f(u) =
∞∑

m=1
a(m)e2πium be the weight 3 newform on Γ0(243)

with nebentypus χ(d) =
(
d
3

)
and eigenfield Q(

√
−1). Suppose that q ≡ 1 (mod 3),

and let C be any cubic character on Fq.

Define H3(q) := −qC(3) + q2φ(−1)C(48)F (C, q). Then

(2.1) H3(q) =

{
a(p), if q = p, p ≡ 1 (mod 3)

a(p)2 + 2p2, if q = p2, p ≡ 2 (mod 3).

Table 1. Evidence for Conjecture 1

p ≡ 1 (mod 3) p ≡ 2 (mod 3)
p a(p) H3(p) p a(p) a(p)2 + 2p2 H3(p

2)

7 11 11 5 6i 14 14
13 5 5 11 12i 98 98
19 -19 -19 17 −18i 254 254
31 -13 -13 23 −30i 158 158
37 17 17 29 48i -622 -622
43 29 29 41 −30i 2462 2462
61 -22 -22 47 −24i 3842 3842
67 98 98 53 36i 4322 4322
73 38 38 59 6i 6926 6926

Conjecture 2. Let f(u) =
∞∑

m=1
a(m)e2πium be the weight 3 newform on Γ0(12)

with nebentypus χ(d) =
(−1

d

)
and eigenfield Q(

√
−3). Suppose that q ≡ 1 (mod 4),

and let C be any quartic character on Fq. Define H4(q) := −q + q2C(−1)F (C, q).
Then

(2.2) H4(q) =

{
a(p), if q = p, p ≡ 1 (mod 4)

a(p)2 + 2p2, if q = p2, p ≡ 3 (mod 4).

Table 2. Evidence for Conjecture 2

p ≡ 1 (mod 4) p ≡ 3 (mod 4)
p a(p) H4(p) p a(p) a(p)2 + 2p2 H4(p

2)

5 -2 -2 7 −4
√
−3 50 50

13 2 2 11 4
√
−3 194 194

17 10 10 19 12
√
−3 290 290

29 -26 -26 23 −16
√
−3 290 290

37 26 26 31 4
√
−3 1874 1874

41 58 58 43 −28
√
−3 1346 1346

53 -74 -74 47 40
√
−3 -382 -382

61 26 26 59 −52
√
−3 -1150 -1150

73 -46 -46 67 4
√
−3 8930 8930
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Conjecture 3. Let f(u) =
∞∑

m=1
a(m)e2πium be the weight 3 newform on Γ0(972)

with nebentypus χ(d) =
(
d
3

)
and eigenfield Q(

√
−1), whose first few eigenvalues are

as given in Table 3. Suppose that q ≡ 1 (mod 6), and let C be any sextic character
on Fq. Define H6(q) := −qC(−3) + q2C(48)F (C, q). Then

(2.3) H6(q) =

{
a(p), if q = p, p ≡ 1 (mod 6)

a(p)2 + 2p2, if q = p2, p ≡ 5 (mod 6).

Table 3. Evidence for Conjecture 3

p ≡ 1 (mod 6) p ≡ 5 (mod 6)
p a(p) H6(p) p a(p) a(p)2 + 2p2 H6(p

2)

7 -1 -1 5 6i 14 14
13 -7 -7 11 −12i 98 98
19 5 5 17 30i -322 -322
31 -49 -49 23 −6i 1022 1022
37 5 5 29 24i 1106 1106
43 -43 -43 41 42i 1598 1598
61 -70 -70 47 0 4418 4418
67 -94 -94 53 −84i -1438 -1438
73 -10 -10 59 −114i -6034 -6034

Tables 1–3 provide numerical evidence for Conjectures 1–3, respectively. The
eigenvalues a(p) in Table 1, found in William Stein’s online Modular Forms Explorer
(MFE) database [30], correspond to MFE eigenform #396295. The eigenvalues in
Table 2 correspond to MFE eigenform #391417. Since MFE does not include weight
3 eigenforms with levels as large as 972, we obtained the eigenvalues a(p) for Table 3
using a Sage program largely developed by William Stein [29].

Conjecture 1 suggests the existence of a 2-dimensional cohomology group on
which a Frobenius σ acts, such that a(p) = trace(σ) is the p-th Fourier coefficient
of the given weight 3 newform of level 243 with nebentypus χ and such that for
each t ≥ 1 for which q = pt ≡ 1 (mod 3),

trace(σt) = H3(q).

Such σ has eigenvalues α and χ(p)α (see [17, eq. (6.57)]) with

a(p) = trace(σ) = α+ χ(p)α, αα = p2.

Thus for p ≡ 2 (mod 3), we have

trace(σ2) = α2 + α2 = a(p)2 + 2p2,

in agreement with (2.1). More generally, for each t ≥ 1 such that q = pt ≡
1 (mod 3),

trace(σt) = αt + αt = q(βt + β−t) = 2qPt((β + β−1)/2),

where β = α/p and Pt(x) is the t-th Chebyshev polynomial of the first kind defined
by

Pt

(
y + y−1

2

)
=

yt + y−t

2
.
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Thus we could extend Conjecture 1 to hold for all q by replacing (2.1) by

(2.4) H3(q) =

{
2q Pr ( a(p)/(2p) ) , if q = pr, p ≡ 1 (mod 3)

2q Pr

(
(a(p)2 + 2p2)/(2p2)

)
, if q = p2r, p ≡ 2 (mod 3).

Similar remarks apply to Conjectures 2 and 3.

3. Evaluations of 3F2(1/4) in terms of weight 2 newforms

Conjectures 4 and 5 below evaluate the hypergeometric function over Fq defined
by

f(C, q) := 3F2

(
C,C3, C

C
2
, Cφ

1

4

)

when C is sextic and octic, respectively. The evaluations are in terms of Hecke
eigenvalues a(p) for two different Hecke eigenforms of weight 2 with trivial neben-
typus. As before, the conjectures may be extended for all q but with a formulation
slightly simpler than (2.4); see (3.3).

Conjecture 4. Let f(u) =
∞∑

m=1
a(m)e2πium be the weight 2 newform on Γ0(972)

with trivial nebentypus and eigenfield Q(
√
2). Suppose that q ≡ 1 (mod 6), and let

C be any sextic character on Fq.

Define h6(q) := C(12)J(C,C) − qC(−3)J(C,C)f(C, q). Then

(3.1) h6(q) =

{
a(p), if q = p

a(p)2 − 2p, if q = p2.

Table 4. Evidence for Conjecture 4

p ≡ 1 (mod 6) p ≡ 5 (mod 6)
p a(p) h6(p) p a(p) a(p)2 − 2p h6(p

2)

7 2 2 5 3
√
2 8 8

13 -1 -1 11 3
√
2 -4 -4

19 5 5 17 −3
√
2 -16 -16

31 -7 -7 23 −3
√
2 -28 -28

37 -4 -4 29 −6
√
2 14 14

43 5 5 41 −6
√
2 -10 -10

61 5 5 47 0 -94 -94

67 11 11 53 3
√
2 -88 -88

73 -1 -1 59 −3
√
2 -100 -100

Conjecture 5. Let f(u) =
∞∑

m=1
a(m)e2πium be the weight 2 newform on Γ0(768)

with trivial nebentypus and eigenfield Q(
√
3), whose first few eigenvalues are as

given in Table 5. Suppose that q ≡ 1 (mod 8), and let C be any octic character on
Fq. Define h8(q) := C(−4)J(C,C) − qC(−1)J(C,C)f(C, q). Then

(3.2) h8(q) =

{
a(p), if q = p

a(p)2 − 2p, if q = p2.
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Table 5. Evidence for Conjecture 5

p ≡ 1 (mod 8) p �≡ 1 (mod 8)
p a(p) h8(p) p a(p) a(p)2 − 2p h8(p

2)

17 6 6 5 2
√
3 2 2

41 6 6 7 2
√
3 -2 -2

73 -2 -2 11 0 -22 -22
89 -6 -6 13 0 -26 -26
97 -2 -2 19 −4 -22 -22

113 -6 -6 23 −4
√
3 2 2

137 6 6 29 −2
√
3 -46 -46

193 2 2 31 2
√
3 -50 -50

233 18 18 37 −4
√
3 -26 -26

Tables 4–5 provide numerical evidence for Conjectures 4–5, respectively. The
eigenvalues a(p) in Table 4 correspond to MFE eigenform #53240, while the eigen-
values in Table 5 correspond to MFE eigenform #51561.

Conjecture 5 suggests the existence of a 2-dimensional cohomology group on
which a Frobenius σ acts such that a(p) = trace(σ) is the p-th Fourier coefficient
of the given weight 2 newform of level 768 and such that for each t ≥ 1 for which
q = pt ≡ 1 (mod 8),

trace(σt) = h8(q).

Such σ has eigenvalues α and α with

a(p) = trace(σ) = α+ α, αα = p.

Thus

trace(σ2) = α2 + α2 = a(p)2 − 2p,

in agreement with (3.2). More generally, for each t ≥ 1 such that q = pt ≡
1 (mod 8),

trace(σt) = αt + αt = q1/2(βt + β−t) = 2q1/2Pt((β + β−1)/2),

where β = α/p1/2 and Pt(x) is the t-th Chebyshev polynomial of the first kind.
Thus we could extend Conjecture 5 to hold for all q by replacing (3.2) by

(3.3) h8(q) = 2q1/2 Pt

(
a(p)

2p1/2

)
.

A similar remark applies to Conjecture 4.

4. Motivation and theoretical basis for the conjectures

For u ∈ Fq and the map Trace : Fq → Fp, define the additive character

ζu = exp

(
2πiTrace(u)

p

)
.

For a ∈ F∗
q and a multiplicative character C on F∗

q , consider the twisted Kloosterman
sum

(4.1) K(Ck, a) :=
∑
x∈F∗

q

Ck(x)ζx+a/x = −gk(a)− hk(a),
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where gk(a) and hk(a) are the Frobenius eigenvalues for the twisted Kloosterman
sheaf at a, each with absolute value q1/2. The eigenvalues gk(a), hk(a) are the zeros
of the quadratic polynomial X2 +XK(Ck, a) +Ck(−a)q [18, (7.4.1.3, 7.4.1.4)]. In
the case a = 0, K(Ck, a) becomes the Gauss sum G(Ck), which has absolute value
q1/2 unless Ck is trivial. A twisted sum of traces of the n-th symmetric power of
these twisted Kloosterman sheaves is

(4.2) Tn(C, k, 	) :=
∑
a∈F∗

q

C
�
(a)(gk(a)

n + gk(a)
n−1hk(a) + · · ·+ hk(a)

n).

For brevity, write Tn(C, k, 1) = Tn(C, k). The following theorem converts the prob-
lem of evaluating the 3F2(1/4) in Conjectures 1–5 to the problem of evaluating
certain T3(C, 0) and T3(C, 2) in terms of Hecke eigenvalues.

Theorem. In the notation of Conjectures 1–5,

H3(q) = −T3(C, 0)C(3)/G2(C), for cubic C;(4.3)

H4(q) = −T3(C, 0)/G
2(C), for quartic C;(4.4)

H6(q) = −T3(C, 0)C(−3)/G2(C), for sextic C;(4.5)

h6(q) = T3(C, 2)C(48)G(C2)/q2, for sextic C;(4.6)

h8(q) = T3(C, 2)G(φ)/q2, for octic C.(4.7)

Before proving the Theorem, we provide some motivation, first by pointing out
several previously known or conjectured relationships between Tn(C, k, 	) and Hecke
eigenforms for trivial and quadratic characters C on Fp. For this discussion, let
q = p.

We first look at some untwisted Tn, i.e., Tn(1, 0). It is known [23], [28] that

(−T5(1, 0)− 1)/p2

is the p-th Fourier coefficient of a weight 3 eigenform on Γ0(15) with quadratic
nebentypus of conductor 15, namely MFE#391476. It is also known [16] that

(−T6(1, 0)− 1)/p2

is the p-th Fourier coefficient of a weight 4 eigenform on Γ0(6) with trivial neben-
typus, namely MFE#76747. We have conjectured [5] that( p

105

)
(−T7(1, 0)− 1)/p2 = |a(p)|2 − p2,

where a(p) is the p-th Fourier coefficient of a weight 3 eigenform on Γ0(525) with
a quartic nebentypus of conductor 105. We also conjecture that

(−T8(1, 0)− 1)/p2 = a(p) + p2,

where a(p) is the p-th Fourier coefficient of a weight 6 newform on Γ0(6) with trivial
nebentypus, namely MFE#72259.

We now put in a quadratic twist and look at some Tn(φ, 0). In 1960, the Lehmers
[21] essentially showed that

−φ(−1)T3(φ, 0)/p

is the p-th Fourier coefficient of a weight 3 eigenform on Γ0(12) with nebentypus
χ(d) =

(
d
3

)
, namely, the eigenform η(2z)3η(6z)3. This p-th Fourier coefficient
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vanishes when p ≡ 2 (mod 3), and it equals 4x2 − 2p when p = x2 + 3y2. (There is
a misprint in the value reported in [22, p. 1888].) We conjecture that

−T4(φ, 0)/p

is the p-th Fourier coefficient of a weight 4 eigenform on Γ0(8) with trivial neben-
typus, namely, the eigenform η(2z)4η(4z)4. (This eigenform has been examined by
Ahlgren and Ono [1].) For n = 5, we conjecture that

−
( p

15

)
φ(−1)T5(φ, 0)/p = |a(p)|2 − p2,

where a(p) is the p-th Fourier coefficient of a weight 3 eigenform on Γ0(300) with
nebentypus χ(d) =

(
d
3

)
, namely MFE#397060. For n = 6, we conjecture that

−T6(φ, 0)/p = a(p) + p2,

where a(p) is the p-th Fourier coefficient of a weight 6 eigenform on Γ0(24) with
trivial nebentypus, namely MFE#72299.

There are also conjectural formulas for certain Tn(C, k, 	) when C has order
exceeding 2. We list several of these in the Appendix; most are due to Katz [19].

We now indicate how the Theorem led to the formulation of Conjectures 1–5.
We conjecture that no prime p > n divides the putative newform level correspond-
ing to Tn, so accordingly, no prime p > 3 should divide the levels of eigenforms
corresponding to (4.3)–(4.7). We found the corresponding levels 243, 12, 972, 972,
and 768 by searching systematically through levels of the form 2a3b. Our decision
on which weights to employ was based on the generic bound [4, Cor. 3.3.4, p. 206]

(4.8) Tn(C, k, 	) = O(q(n+1)/2), q → ∞,

where the implied constant depends only on n. This bound suggested search-
ing weight 3 newforms for (4.3)–(4.5) and weight 2 newforms for (4.6)–(4.7), be-
cause Deligne’s bound for the p-th Fourier coefficient of a weight w newform is
O(p(w−1)/2).

We do not know if the generic bound in (4.8) holds in general for all C, k, 	, p.
It is an open problem to classify the exceptional cases. D. Wan and N. Katz have
kindly pointed out that (4.8) holds without exception when k = 0. By a theorem
of Katz [18, p. 8], the classical Kloosterman sheaf KL (with k = 0) has geometric
monodromy group Sp(2), and thus Symn = Symn(KL) is irreducible. As Symn has
no geometrically trivial component, its second cohomology group vanishes, from
which (4.8) follows if C� is trivial. For general C� with k = 0, we have a sheaf

which is the tensor product of the rank 1 character C
�
with Symn. Its geometric

monodromy group is the same as that for Symn, so (4.8) follows for general C� with
k = 0. For a different approach in the case k = 0 which works for all characters
C� except φ, see [22, Theorem 1]. For general k, the second cohomology group for
Symn vanishes if and only if the (rational) Hasse-Weil zeta function L(Symn, t) is
actually a polynomial in t. For k = 0, this polynomial has been studied in detail
by Fu and Wan [10, 11, 12, 13].

Proof of Theorem. By (4.1)–(4.2),

(4.9) T3(C, k) = −
∑
a �=0

C(a)K(Ck, a)3 + 2
∑
a �=0

C(a)K(Ck, a)gk(a)hk(a).
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Replacing x by −a/x in (4.1), we see that

(4.10) K(Ck, a) = Ck(−a)K(Ck, a).

Multiplying (4.10) by gk(a)hk(a) and using (4.1), we obtain

(4.11) K(Ck, a)gk(a)hk(a) = Ck(−a)qK(Ck, a).

Thus the rightmost term in (4.9) equals

(4.12) 2qCk(−1)
∑
a �=0

Ck−1(a)K(Ck, a) = 2qCk(−1)G(Ck−1)G(C2k−1).

In accordance with the hypotheses in (4.3)–(4.7), assume from now on that k ∈
{0, 2}, that C has order 6 or 8 when k = 2, and that C has order 3, 4, or 6 when
k = 0. From (4.9) and (4.12),

(4.13) T3(C, 2) = −S3(2) + 2qG(C)G(C3), T3(C, 0) = −S3(0) + 2qG(C)2,

where

(4.14) S3(k) :=
∑
a �=0

C(a)K(Ck, a)3.

By (4.1),

S3(k) =
∑
a �=0

C(a)
∑

x,y,z �=0

Ck(xyz)ζx+y+z+a(1/x+1/y+1/z).

Since C is nontrivial, the sum on a vanishes when 1/x+ 1/y + 1/z = 0. Therefore

S3(k) = G(C)
∑

x,y,z �=0

Ck(xyz)C(1/x+ 1/y + 1/z)ζx+y+z.

Replace x by xz and y by yz to obtain

S3(k) = G(C)
∑
z �=0

C3k−1(z)
∑
x,y �=0

C(1/x+ 1/y + 1)Ck(xy)ζz(x+y+1).

Since C3k−1 is nontrivial, the sum on z vanishes if x+ y + 1 = 0. Thus

S3(k)

G(C)G(C3k−1)
=

∑
x,y �=0

C
3k−1

(x+ y + 1)C(x+ y + xy)Ck−1(xy).

With the change of variables r = x+ y and s = xy,

S3(k)

G(C)G(C3k−1)
=

∑
r

∑
s �=0

C(r + s)C
3k−1

(1 + r)Ck−1(s){1 + φ(r2 − 4s)}.

When r = 0, this equals (q − 1)δ0k, where δ00 = 1 and δ02 = 0. After replacing s
by sr2 for nonzero r, we get

S3(k)

G(C)G(C3k−1)
− (q − 1)δ0k

=
∑
r,s �=0

C2k−1(r)Ck−1(s)C
3k−1

(1 + r)C(1 + rs){1 + φ(1− 4s)}.

Replace r by −r and s by s/4 to see that

(4.15)
Ck−1(−4)S3(k)

G(C)G(C3k−1)
− Ck−1(−4)(q − 1)δ0k = A1(k) +A2(k),
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where

(4.16) A1(k) :=
∑
r,s �=0

C2k−1(r)Ck−1(s)C
3k−1

(1− r)C(1− rs/4)

and

(4.17) A2(k) :=
∑
r,s �=0

C2k−1(r)Ck−1(s)C
3k−1

(1− r)φ(1− s)C(1− rs/4).

Replace s by 4s/r in (4.16) to get

A1(k) = Ck−1(4)
∑
r,s �=0

Ck(r)C
3k−1

(1− r)Ck−1(s)C(1− s)

= Ck−1(4)J(Ck, C
3k−1

)J(Ck−1, C).

After some manipulation using the factorization of Jacobi sums into Gauss sums,
this yields

(4.18) A1(2) = qC(−4)
G(C)G(C3)

G(C)G(C5)
, A1(0) = C(−4).

By (1.2) and (4.17),

(4.19) A2(2) = Cφ(−1)q2f(C, q), A2(0) = Cφ(−1)q2F (C, q),

where F (C, q) and f(C, q) are the hypergeometric functions defined at the beginning
of Sections 2 and 3, respectively. Combining (4.13), (4.15), (4.18), and (4.19), we
obtain

(4.20) T3(C, 2) = qG(C)G(C3)− φ(−1)C(4)q2G(C)G(C5)f(C, q)

and

(4.21) −T3(C, 0)/G(C)2 = −q + φ(−1)C(4)q2F (C, q).

Formulas (4.3)–(4.5) now follow immediately from (4.21).
It remains to consider the case k = 2. Suppose first that C is sextic. By (4.20),

(4.22)
T3(C, 2)C(48)G(C2)

q2
=

C(48)G(C)G(φ)

G(C
2
)

− C(−3)qJ(C,C)f(C, q).

By the Hasse-Davenport product formula [3, Theorem 2.1.4], the first term on the
right of (4.22) equals C(12)J(C,C), and so (4.6) follows in view of the definition of
h6(q) in Conjecture 4. Finally, suppose that C is octic. By (4.20),

(4.23) T3(C, 2)G(φ)q−2 = J(C,C3)− C(4)qJ(C,C
3
)f(C, q).

By [3, eq. (2.1.2)], J(C,C3) = C(−4)J(C,C). Thus (4.7) follows in view of the
definition of h8(q) in Conjecture 5. �

5. Appendix

We list here some conjectured formulas for various Tn(C, k, 	) when q = p > n,
where C is a character on Fp of order 3, 4, 6, or 12. There is substantial numerical
evidence supporting those formulas involving explicit levels. The formulas involving
newforms of undetermined level are speculative and may require tweaking. As we
mentioned earlier, most of these conjectures are due to Katz [19].
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C cubic. Let q = p ≡ 1 (mod 3), and write r3 = r3(p) for the (unique) integer
satisfying

4p = r23 + 27t23, r3 ≡ 1 (mod 3).

Let C be a cubic character on Fq. For n = 4,

T4(C, 2, 0)/G(C)2 = −r3J(C,C), −T4(C, 0)/G(C)2 = a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients
on Γ0(54) with trivial nebentypus, namely MFE#76862. For n = 5,

T5(C, 1)/p
2 = r3 −

(p

5

)
p, T5(C, 2)/(pG(C)2) = r3 −

(p

5

)
C(15)J(C,C)2.

(We remark that −2 ReC(15)J(C,C) is the p-th Fourier coefficient of a weight 2
eigenform on Γ0(6075) with trivial nebentypus, namely MFE#416779.) For n = 6,

T6(C, 2, 0)/p
2 = p− r23, T6(C, 2, 2)/(pG(C)2) = pC(3)J(C,C)− p− J(C,C)2.

(We remark that −2 ReC(3)J(C,C) is the p-th Fourier coefficient of a weight 2
eigenform on Γ0(243) with trivial nebentypus, namely MFE#43739.) For n = 7,

T7(C, 2, 0)

pG(C)2
= (r23 − p)J(C,C)−

( p

105

)
C(105)p2, T7(C, 2)/p

3 = r3 − a(p),

where a(p) is the p-th coefficient of a weight 3 eigenform with integer coefficients on
Γ0(35) with nebentypus

(
d
35

)
, namely MFE#391997. (We conjecture further that

for
(

p
35

)
= 1,

a(p) = |c(p)|2 − 2p,

where c(p) is the p-th coefficient of a weight 2 eigenform on Γ0(175) with a quartic

nebentypus of conductor 35, with eigenfield Q((1 + i)
√
14).) For n = 8,

T8(C, 1)/p
3 = −r23 , T8(C, 2)/(p

2G(C)2) = p− r23 + C(6)J(C,C)3.

For n = 9,

T9(C, 1, 0)/p
3 = −

( p

105

)
p2 + (r33 − 2r3p).

For n = 10,

T10(C, 2, 0)

p2G(C)2
= p2−pr23+p2C(30)J(C,C)−J(C,C)4, T10(C, 2)/p

4 = p−r23−a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients
on Γ0(10), namely MFE#76751. For n = 11,

T11(C, 1)/p
5 = r33/p− 2r3 − a(p),

where a(p) is the p-th coefficient of a weight 3 eigenform with integer coefficients on
Γ0(1155) with nebentypus

(
d

1155

)
. (We conjecture further that for

(
p
33

)
=

(
p
35

)
= 1,

a(p) = |c(p)|2 − 2p,

where c(p) is the p-th coefficient of a weight 2 eigenform on Γ0(5775) with a quartic
nebentypus of conductor 1155.) For n = 12,

T12(C, 2, 0)/p
4 = 3pr23−2p2−r43,

T12(C, 2, 2)

p4G(C)2
= J(C,C)(2r3−r33/p)−C(90)a(p),
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where a(p) is the p-th coefficient of a weight 4 eigenform on Γ0(2700) with trivial

nebentypus, with eigenfield Q(
√
55). For n = 13,

T13(C, 2)/p
5 = r33 − 2pr3 +

( p

15015

)
(p2 − |c(p)|2),

where c(p) is the p-th coefficient of a weight 3 eigenform whose level is a multiple
of 15015, whose nebentypus has conductor 15015, and whose eigenfield contains
Q(

√
2,
√
3,
√
5,
√
11,

√
13). For n = 14,

T14(C, 1)/p
6 = 3r23 − r43/p− p− a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients
on Γ0(70), namely MFE#76919. Also for n = 14,

T14(C, 2)/(p
4G(C)2) = 3pr23 − r43 − p2 −

(p

5

)
C(630)J(C,C)2a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with trivial nebentypus

whose level divides a power of 30030 and whose eigenfield contains
√
286. For

n = 15,

T15(C, 1, 0)/p
7 = r53/p

2 − 4r33/p+ 3r3 −
( p

105

)
a(p),

where a(p) is the p-th coefficient of a weight 3 eigenform with integer coefficients on
Γ0(3003) with nebentypus

(
d

3003

)
. (We conjecture further that for

(
p
21

)
=

(
p

143

)
=(

p
5

)
,

a(p) = |c(p)|2 − 2p,

where c(p) is the p-th coefficient of a weight 2 eigenform on Γ0(39039) with quartic
nebentypus of conductor 3003.) For n = 16,

T16(C, 2)/p
6 = 3pr23 − r43 − 2p2 − a(p),

where a(p) is the p-th coefficient of a weight 6 eigenform with integer coefficients
on Γ0(70), namely MFE#72483. Also for n = 16,

T16(C, 2, 0)/(p
6G(C)2) = 3r23 − p− r43/p− J(C,C)6/p2 − C(315)a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with trivial nebentypus

whose level divides a power of 30030 and whose eigenfield contains
√
910. For

n = 17,

T17(C, 1)/p
7 = r53/p− 4r33 + 3pr3 +

( p

51051

)
(p2 − |c(p)|2),

where c(p) is the p-th coefficient of a weight 3 eigenform whose level is a multiple
of 51051, whose nebentypus has conductor 51051, and whose eigenfield contains
Q(

√
2,
√
5,
√
7,
√
13,

√
17). For n = 18,

T18(C, 2, 0)/p
8 = p− 6r23 + 5r43/p− r63/p

2 − a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients
on Γ0(210), namely MFE#77669. For n = 20,

T20(C, 1)/p
8 = −6pr23 + 5r43 − r63/p− a(p),

where a(p) is the p-th coefficient of a weight 6 eigenform with integer coefficients
on Γ0(210). For n = 21,

T21(C, 2, 0)/p
9 = r73/p

2 − 6r53/p+ 10r33 − 4pr3 +
( p

138567

)
(p2 − |c(p)|2),
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where c(p) is the p-th coefficient of a weight 3 eigenform whose level is a multiple
of 138567, whose nebentypus has conductor 138567 and whose eigenfield contains
Q(

√
2,
√
3,
√
5,
√
17,

√
19).

C quartic. Let q = p ≡ 1 (mod 4), and write p = a24 + b24 with a4 odd. Let C be
a quartic character on Fq. For n = 4,

T4(C, 0)/G(C)2 = −C(2)a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients on
Γ0(256) with trivial nebentypus, namely MFE#77957. For n = 6, if p ≡ 1 (mod 8),

T6(C, 1)/p
2 = p− 4a24, T6(C, 3)/p

2 = −p− a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients
on Γ0(12) with trivial nebentypus, namely MFE#76753. (We remark that 4a24 is
the square of the p-th coefficient of the weight 2 newform MFE#53509 on Γ0(32).)
For n = 8, if p ≡ 1 (mod 8),

T8(C, 1, 0)/p
2 = −(4a24 − 2p)2, T8(C, 1, 2)/p

3 = 2p− 4a24 − a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients
on Γ0(24) with trivial nebentypus, namely MFE#76775. For n = 10 and p ≡
1 (mod 8),

T10(C, 3)/p
3 = p2 − 4pa24 − a(p),

where a(p) is the p-th coefficient of a weight 6 eigenform with integer coefficients
on Γ0(120) with trivial nebentypus.

C sextic. Let q = p ≡ 1 (mod 6), and let C be a sextic character on Fq. For n = 3
and p ≡ 1 (mod 12),

T3(C, 1, 4)/(G(C
2
)G(C3)) = −C(36)a(p),

where a(p) is the p-th coefficient of a weight 3 eigenform on Γ0(972) with nebentypus(
d
3

)
and eigenfield Q(i

√
6). For n = 4,

T4(C, 0)/G(C)2 = −
(
−1

p

)
a(p),

where a(p) is the p-th coefficient of a weight 4 eigenform with integer coefficients
on Γ0(216) with trivial nebentypus, namely MFE#77695. Also for n = 4,

T4(C, 2)/p
2 = −a(p),

where a(p) is the p-th coefficient of a weight 2 eigenform with integer coefficients
on Γ0(24) with trivial nebentypus, namely MFE#53504. For n = 4 and n = 6,(

−1

p

)
T4(C, 2, 3)

pG(C)G(C3)
=

(
−1

p

)
T4(C, 4)

pG(C)G(C3)
= 1 + T6(C, 2, 3)/p

3 = −a(p),

where a(p) is the p-th coefficient of a weight 2 eigenform with integer coefficients
on Γ0(216) with trivial nebentypus, namely MFE#43627. For n = 5,

T5(C, 4)/p
2 =

(
−5

p

)
(p− c(p)2),
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where c(p) is the p-th coefficient of a weight 2 eigenform on Γ0(2700) with trivial

nebentypus and eigenfield Q(
√
10), namely MFE#382443. For n = 6 and p ≡

1 (mod 12),

T6(C, 5, 3)/p
2 = −p− a(p), T6(C, 1, 0)/p = p2 − c(p)2,

where a(p) is the p-th coefficient of the aforementioned weight 4 eigenform with
integer coefficients on Γ0(54) with trivial nebentypus, namely MFE#76862, and
where c(p) ≡ 2 (mod 3) is the p-th coefficient of a weight 3 eigenform with integer
coefficients on Γ0(27) with nebentypus

(
d
3

)
, namely MFE#391774.

C duodecic. Let q = p ≡ 1 (mod 12), and let C be a duodecic character on Fq.
For n = 3,

T3(C, 4, 3)/p
3/2 = C3(s)a(p),

where s ∈ Fp is defined up to sign by s2 = −3 and where, up to sign, a(p) is the
p-th coefficient of a weight 2 eigenform on Γ0(108) with quadratic nebentypus of

conductor 12 and eigenfield Q(
√
−2,

√
6). For n = 4,

T4(C, 8)/(pG(C9)) = −C9(−6)a(p),

where a(p) is the p-th coefficient of a weight 2 eigenform with integer coefficients
on Γ0(768) with trivial nebentypus, namely MFE#51550.

Note added in proof. Some of the conjectures in the Appendix have been proved
in a paper of Booher, Etropolski, and Hittson to appear in Int. J. Number Theory.
Our conjecture for T4(φ, 0) has been proved in a submitted paper by Dummit,
Goldberg, and Perry.
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