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1. Introduction. Let Q(
√
−k) be an imaginary quadratic field with

(fundamental) discriminant −k and class number h. Define

U =
{
u ∈ Z : 0 < u < k and

(−k
u

)
= 1
}

and R =
1
k

∑

u∈U
u.

If k 6∈ {3, 4, 8}, R is an integer with

R = φ(k)/4− h/2
(see [7, Lemma 2.1]). When k 6∈ {3, 4, 8}, choose integers t, w such that

k = tw, t prime > 2.

For a prime p with
(−k
p

)
= 1, let r denote the smallest positive integer such

that
q := pr ≡ 1 (mod k).

Assume that k 6∈ {3, 4, 8}. There are integers C,D, unique up to sign,
such that [10]

(1.1) 4ph = C2 + kD2, p -C.

In accordance with [7, Theorem 3.1], we choose the sign of C so that C is
uniquely determined by the congruences (1.2)–(1.4) below. If w = 1, then

(1.2) C ≡ 2(−p)−R (mod t);

if w > 1 and −1 ≡ pb (modw) for some positive integer b (taken minimal),
then

(1.3) C ≡
{

2ph/2(−1)R+φ(k)/(4b) (mod t) if p = 2,
2ph/2(−1)R+φ(k)(w+1+pb)/(4bw) (mod t) if p > 2;
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if −1 is not a power of p (modw), then

(1.4) C ≡
{

2ph/2(−1)R (mod t) if p = 2,
2ph/2(−1)R+φ(k)(q−1)/(4kr) (mod t) if p > 2.

The significance of the choice of C uniquely determined by (1.1)–(1.4) is
that C simultaneously satisfies Stickelberger’s [10] classical congruence

(1.5) C ≡
∏

u∈U
[pu/k]!−1 (mod p),

where [x] denotes the greatest integer ≤ x. This is proved in [7].
The first object of this paper is to extend (1.5) by determining C

(mod p2). More than just a routine application of the Gross–Koblitz formula
is needed to accomplish this in a usefully explicit way. Our determination for
odd p is formulated in terms of expressions Bu (defined in (2.2)) that can be
computed (mod p2) for large p relatively rapidly (as indicated near the end
of this section). A fast computation of C yields in particular a fast compu-
tation of Eisenstein’s binomial coefficients (mod p2), in view of Corollaries
2.3 and 4.2.

The results for p > 2 are presented in Section 2 (Theorem 2.2). Those
for p = 2 are presented in Section 3 (Theorem 3.1). We remark that in
the case p = 2, Stickelberger’s congruence (1.5) is trivial (since C (mod 2)
always equals 1, by (1.1)). In contrast, the determination of C (mod 4) is
nontrivial, and the results are rather surprising (see Theorem 3.3).

Theorem 2.2 has the following counterparts for the exceptional cases
k ∈ {3, 4, 8}. Fix a prime p with

(−k
p

)
= 1. For k = 4, there are integers a, b

(with a unique) such that

(1.6) p = a2 + b2, a ≡ 1 (mod 4)

and

(1.7) a ≡ (2p−1 + 1)−1
(

[p/2]
[p/4]

)
+
p

2

(
[p/2]
[p/4]

)−1

(mod p2).

This is proved in Chowla, Dwork and Evans [3]; for a simpler proof, see
[2, Theorem 9.4.3]. For k = 3, there are integers a, b (with a unique) such
that

(1.8) 4p = a2 + 27b2, a ≡ −1 (mod 3)

and

(1.9) a ≡
(

[2p/3]
[p/3]

)
+ p

(
[2p/3]
[p/3]

)−1

(mod p2).
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This is proved in [2, Theorem 9.4.2]. Finally, for k = 8, there are integers
C,D (with C unique) such that

(1.10) 4p = C2 + 8D2, C ≡ 2(−1)[p/8]+[p/2] (mod 8)

and

(1.11) C ≡ p
(

[p/2]
[p/8]

)−1

+
(

[p/2]
[p/8]

)
(2− 2p−1 − y/8) (mod p2),

where

(1.12) y =
√

2(2−
√

2)q−1 −
√

2(2 +
√

2)q−1.

This is proved for the case p ≡ 1 (mod 8) in [2, Theorem 9.4.5]. The proof
for the remaining case p ≡ 3 (mod 8) is more complicated and is given in
Section 4 (Theorem 4.1). The complications arise because such p does not
split into first degree primes in Q(

√
−k).

Application of the binomial theorem in (1.12) shows that y ∈ Z, so
that (1.11) makes sense even though

√
2 does not exist (mod p) when p ≡ 3

(mod 8). From a computational point of view, it would be too slow to use the
binomial expansion to compute the integer y (mod p2) when p is large. It is
faster to find y (mod p2) by computing (2±

√
2)q−1 (mod p2) via the method

of successive squarings. Similar considerations apply to the computation of
the integers Bu (defined in (2.2)) which appear in Theorem 2.2.

In Corollaries 4.2 and 2.3, we apply Theorems 4.1 and 2.2 to give con-
gruences for Eisenstein’s binomial coefficients

([p/2]
[p/8]

)
and

([3p/7]
[p/7]

)
(mod p2)

in the cases k = 8 and k = 7, respectively (cf. [2, Section 12.9]). This solves
Research Problem #26 posed in [2, p. 498].

Evaluations of binomial coefficients (mod p2) are of more than just the-
oretical interest. For example, Crandall, Dilcher and Pomerance [6] have
employed such evaluations to speed up computations in the search for Wil-
son primes.

2. Determination of C (mod p2) when p > 2. Throughout this sec-
tion, p is an odd prime with

(−k
p

)
= 1. For ζk = exp(2πi/k) and s ∈ Z,

define

(2.1) As =
1
k

k−1∑

j=1

ζ−sjk {(1− ζjk)q−1 − 1}

and

(2.2) Bs = As − A0.

The following lemma generalizes a result proved for r = 1 in [2, p. 280].
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Lemma 2.1. For 1 ≤ s ≤ k, Bs is a rational integer multiple of p satis-
fying

(2.3) Bs = Bk−s ≡
p

k

∑

0<j<ps/k

1
j

(mod p2).

Proof. For any integer s, since q is odd,

k(As − As−1) =
k−1∑

j=1

ζ−sjk (1− ζjk)((1− ζjk)q−1 − 1)

=
k−1∑

j=0

ζ−sjk ((1− ζjk)q − (1− ζjk))

=
k−1∑

j=0

ζ−sjk

q−1∑

m=1

(
q

m

)
(−ζjk)m

=
q−1∑

m=1

(
q

m

)
(−1)m

k−1∑

j=0

ζ
j(m−s)
k .

Therefore,

(2.4) As − As−1 =
∑

0<m<q
m≡s (mod k)

(−1)m
(
q

m

)
.

Thus for s ≥ 0,

(2.5) Bs =
s∑

ν=1

(Aν − Aν−1) ∈ Z.

Since
(1− ζjk)q−1 = (ζ−jk − 1)q−1 = (1− ζ−jk )q−1,

we see from (2.1) that Ak−s = As, so that by (2.2),

Bk−s = Ak−s − A0 = As −A0 = Bs = Bs.

It remains to prove the congruence in (2.3). Since
(
q
m

)
= (q/m)

(
q−1
m−1

)
, it

follows from (2.4) that

As −As−1 ≡
∑

0<m<q
m≡s (mod k)
pr−1‖m

(−1)m
(
q

m

)
(mod p2).

Since (
q − 1
m− 1

)
=

(q − 1) . . . (q − (m− 1))
1 . . . (m− 1)

≡ (−1)m−1 (mod p),
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we have, writing m = pr−1n,

As − As−1 ≡ −p
∑

0<n<p
n≡sp (mod k)

1
n

(mod p2).

Thus

As − As−1 ≡ −p
∑

0<n<p
n≡sp (mod k)

1
n− sp = −p

∑

−sp<i<(1−s)p
k|i

1
i

(2.6)

=
p

k

∑

(s−1)p/k<j<sp/k

1
j

(mod p2),

where we have written n − sp = i = −kj. The congruence in (2.3) with
1 ≤ s ≤ k now follows from (2.5) and (2.6).

The following theorem generalizes (1.5).

Theorem 2.2. If k 6∈ {3, 4, 8} and p > 2, then

C ≡ ph
∏

u∈U
[pu/k]!(2.7)

+ (−(p− 1)!)R
∏

u∈U
[pu/k]!−1

(
1 +

∑

u∈U
uBu

)
(mod p2).

Proof. In [7, (2.28)], we wrote (C + D
√
−k)/2 as a product of Gauss

sums. The Gross–Koblitz formula [8], [2, (11.2.12)] expresses these Gauss
sums in terms of p-adic gamma functions. Specifically, it shows that there is
an embedding of Q(

√
−k) into the field Qp of p-adic rationals which maps

(C +D
√
−k)/2 to a product of p-adic gamma functions, viz.,

(2.8) (C +D
√
−k)/2 =

∏

u∈U
Γp(u/k) (in Qp).

Here Γp(z) is the p-adic gamma function, defined as in [2, (9.3.3)] to be the
limit of

(−1)N
∏

0<j<N
p-j

j

as the positive integer N p-adically approaches the p-adic integer z. By (1.1)
and (2.8),

(2.9) (C −D
√
−k)/2 = ph

∏

u∈U
Γp(u/k)−1.

Adding (2.8) and (2.9), we obtain

(2.10) C = ph
∏

u∈U
Γp(u/k)−1 +

∏

u∈U
Γp(u/k).
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By (2.10) and (1.5),

(2.11)
∏

u∈U
Γp(u/k) ≡

∏

u∈U
[pu/k]!−1 (mod p),

so that (2.10) becomes

(2.12) C ≡ ph
∏

u∈U
[pu/k]! +

∏

u∈U
Γp(u/k) (mod p2).

It remains to show that
∏

u∈U
Γp(u/k) ≡ (−(p− 1)!)R

∏

u∈U
[pu/k]!−1

(
1 +

∑

u∈U
uBu

)
(mod p2),

which is equivalent, by Lemma 2.1, to

(2.13)
∏

u∈U
Γp(u/k)−1

≡ (−(p− 1)!)−R
∏

u∈U
[pu/k]!

(
1−

∑

u∈U
uBu

)
(mod p2).

Define

(2.14) c = max(r, 2).

Note that k | (pc − 1). By [2, (9.3.8)],

(2.15) Γp(1− u/k) ≡ Γp(1 + (pc − 1)u/k) (mod p2).

Since 1 + (pc − 1)u/k is a positive integer,

(2.16) Γp(1 + (pc − 1)u/k) = ±
∏

1≤j≤(pc−1)u/k
p-j

j,

by definition of Γp.
For x ∈ R, define

L(x) = x− k[x/k].

Since pL(u/p) = k[L(u/p)p/k] + u, we have

u(pc − 1) = k[L(u/p)p/k] + pcu− pL(u/p),

which yields

(2.17) (pc − 1)u/k = [L(u/p)p/k] + p(upc−1 − L(u/p))/k.

For each nonnegative integer x,

(xp+ 1) . . . (xp+ p− 1) ≡ (p− 1)! (mod p2),

so it follows from (2.17) that
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∏

1≤j≤(pc−1)u/k
p-j

j ≡ (p− 1)!(up
c−1−L(u/p))/k(2.18)

×
[L(u/p)p/k]∏

j=1

(j+(upc − pL(u/p))/k) (mod p2).

The rightmost product on j in (2.18) is congruent to

[L(u/p)p/k]!
(

1 +
upc − pL(u/p)

k

[L(u/p)p/k]∑

j=1

1
j

)

≡ [L(u/p)p/k]!
(

1− pL(u/p)
k

[L(u/p)p/k]∑

j=1

1
j

)
(mod p2).

Taking the product over all u ∈ U in (2.15), (2.16), and (2.18), we thus
obtain

(2.19) ±
∏

u∈U
Γp(1− u/k)

≡ (p− 1)!R(pc−1−1)
∏

u∈U
[pu/k]!

(
1−

∑

u∈U
uBu

)
(mod p2).

By the reflection formula for Γp [2, (9.3.5)], the left member of (2.19) equals
±∏u∈U Γp(u/k)−1. Thus (2.19) becomes

(2.20) ±
∏

u∈U
Γp(u/k)−1

≡ (p− 1)!R(pc−1−1)
∏

u∈U
[pu/k]!

(
1−

∑

u∈U
uBu

)
(mod p2).

The ambiguous sign on the left of (2.20) must be + by (2.11). Finally,
the power of (p − 1)! in (2.20) can be simplified to (−(p − 1)!)−R, since
(p− 1)!p ≡ −1 (mod p2). This completes the proof of (2.13).

The following corollary gives a congruence (mod p2) for Eisenstein’s bi-
nomial coefficient

([3p/7]
[p/7]

)
in the case k = 7.

Corollary 2.3. Let k = 7 and let p be an odd prime with
(−7
p

)
= 1,

i.e., with p ≡ 1, 2, or 4 (mod 7). Then

Z :=
(

[3p/7]
[p/7]

)
(2.21)

≡ (−1)[3p/7](p/C + C(B1 + 2B2 − 3B3 − 1)) (mod p2).

Proof. For brevity, write pi = [ip/7], i = 1, 2, 3, 4. Since p ≡ 1, 2, or 4
modulo 7, it follows that Z = p3!/(p1!p2!). For k = 7, we have h = 1, U =
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{1, 2, 4}, and R = 1. By (2.7),

(2.22) C ≡ p1!p2!p4!p− (p− 1)!(1 +B1 + 2B2 + 4B4)
p1!p2!p4!

(mod p2).

Since p3 + p4 = p− 1, we have

(2.23) p3!p4! ≡ −(−1)p3 (mod p).

By (2.22) and (2.23),

(2.24) C ≡ −(−1)p3p/Z − (p− 1)!Z(1 +B1 + 2B2 + 4B4)
p3!p4!

(mod p2).

By (2.23) and (2.24),

(2.25) C ≡ −Z(−1)p3 (mod p).

Combining (2.24) and (2.25), we obtain

(2.26) C ≡ p/C − (p− 1)!Z(1 +B1 + 2B2 + 4B4)
p3!p4!

(mod p2).

Solving (2.26) for Z and using the equality B4 = B3, we obtain

(2.27) Z ≡ (p/C − C)(1−B1 − 2B2 − 4B3)Y (mod p2),

where

(2.28) Y =
p3!p4!

(p− 1)!
.

We proceed to compute Y (mod p2). Since

(p− 1)! = (p− 1) . . . (p− p3) · p4! ≡ (−1)p3p3!p4!
(

1− p
p3∑

j=1

1/j
)

≡ (−1)p3p3!p4!(1− 7B3) (mod p2),

we see that

(2.29) Y ≡ (−1)p3(1 + 7B3) (mod p2).

By (2.27) and (2.29),

Z ≡ (p/C − C)(−1)p3(1 + 3B3 −B1 − 2B2) (mod p2),

which proves (2.21).

Example 2.4. Let k = 7 and p = 37. Then R = h = 1, p1 = 5, p2 = 10,
p3 = 15, p4 = 21, −B2 ≡ B1 ≡ 74 (mod 372), B3 = B4 ≡ 814 (mod 372),
and

4p = 148 = C2 + 7D2 with C = ±6, D = ±4.

Congruence (1.2) becomes

C ≡ 2(−37)−1 ≡ −1 (mod 7)
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and congruence (2.7) becomes

C ≡ 37p1!p2!p4!− 36!(1 +B1 + 2B2 + 4B4)
p1!p2!p4!

≡ 6 (mod 372).

Both of these congruences must hold for the same choice of C = ±6, which
in this case is C = 6. With C = 6, congruence (2.21) becomes

Z ≡ −37/6− 6(B1 + 2B2 − 3B3 − 1) ≡ 265 (mod 372).

To verify this, note that

Z =
(

15
5

)
= 3003 = 2(372) + 265.

3. Determination of C (mod p2) when p = 2. We begin by discussing
properties of the 2-adic gamma function Γ2, which can be defined just as
we defined Γp below (2.8), with p replaced by 2. (Although Γp is defined in
[2, (9.3.3)] for p > 2 only, this definition is also valid for p = 2, because the
congruence [2, (9.3.2)] holds for p = 2 whenever the modulus exceeds 4.)

Given a 2-adic integer

z = z0 + z12 + z24 + z38 + . . . , zi ∈ {0, 1},
we have the reflection formula

(3.1) Γ2(z)Γ2(1− z) = (−1)M(z),

where
M(z) = z1 + 1.

(The reflection formula [2, (9.3.5)] for Γp, which was used below (2.19), does
not reduce to (3.1) when p = 2; it holds only for p > 2.) To verify (3.1),
note that for integers n,N with n > 2 and 0 < N < 2n,

(3.2)
∏

0<j<N
j odd

j
∏

0<j<2n+1−N
j odd

j ≡ (−1)M(N) (mod 2n),

and when N approaches z (2-adically) in (3.2), we obtain (3.1) by the con-
tinuity of Γ2(z) and M(z).

We shall need the Gross–Koblitz formula [2, (11.2.12)] for p = 2. This
formula was originally presented [8] for p > 2, but it has been proved for
p = 2 as well (see Coleman [4], [5]).

Theorem 3.1. Suppose that p = 2 and
(−k
p

)
= 1, so that k ≡ 7 (mod 8)

(with k squarefree). Let H denote the class number of Q(
√
−8k). Then

(3.3) C ≡ 2h + (−1)R+H/4 (mod 4).

In particular , C ≡ −1 (mod 4) when k = 7, while for k > 7,

(3.4) C ≡ (−1)R+H/4 (mod 4).
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Proof. We need only prove (3.3), since (3.4) follows from (3.3) and the
fact that h > 1 when k > 7, k ≡ 7 (mod 8).

In light of the proof of Theorem 2.2 and the remarks preceding Theo-
rem 3.1, we see that (2.12) is valid for p = 2 as well as for p > 2. Thus,

C ≡ 2h +
∏

u∈U
Γ2(u/k) (mod 4).

It remains to prove that

(3.5)
∏

u∈U
Γ2(u/k) ≡ (−1)R+H/4 (mod 4).

By (3.1),

(3.6)
∏

u∈U
Γ2(u/k)Γ2(1− u/k) = (−1)

∑
u∈U

M(u/k)
.

Since k ≡ 7 (mod 8), it is easily checked that M(u/k) is odd if and only if
u ≡ 0 or 3 (mod 4). Thus

(3.7)
∑

u∈U
M(u/k) ≡ N(0, 3, 4, 7) (mod 2),

where N(a, b, c, d) denotes the number of elements in U congruent to one of
a, b, c, d modulo 8. Combining (3.5)–(3.7), we see that it remains to prove

(3.8)
∏

u∈U
Γ2(1− u/k) ≡ (−1)R+H/4+N(0,3,4,7) (mod 4).

Since the congruence [2, (9.3.8)] holds for p = 2 (as well as for p > 2)
when the modulus exceeds 4, it can be proved, analogous to the proof of
(2.15)–(2.16), that

(3.9) Γ2(1−u/k) ≡ Γ2(1+(2r−1)u/k) = (−1)u+1
∏

1≤j≤(2r−1)u/k
j odd

j (mod 4).

It follows that Γ2(1 − u/k) ≡ ±1 (mod 4), with Γ2(1 − u/k) ≡ −1 (mod 4)
if and only if (2r − 1)u/k ≡ 3, 4, 5, or 6 (mod 8). Thus Γ2(1 − u/k) ≡ −1
(mod 4) if and only if u ≡ 3, 4, 5, or 6 (mod 8), and so

∏

u∈U
Γ2(1− u/k) ≡ (−1)

∑
u∈U

u+
∑
u∈U

1 +N(3,4,5,6)
(3.10)

= (−1)R+N(7,0,1,2) (mod 4).

By (3.8) and (3.10), it remains to prove that

(3.11)
∑

u∈U
u≡1,2,3,4 (mod 8)

1 ≡ H/4 (mod 2).
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We have

(3.12) 2
∑

u∈U
u≡1,2,3,4 (mod 8)

1 = A+B,

where

(3.13) A =
k−1∑

j=1
(j,k)=1

j≡1,2,3,4 (mod 8)

1, B =
k−1∑

j=1
j≡1,2,3,4 (mod 8)

(
j

k

)
.

We proceed to prove that 4 divides A. For the Möbius function µ,

(3.14) A =
k−1∑

j=1
j≡1,2,3,4 (mod 8)

∑

d|k
d|j

µ(d) =
∑

d|k
µ(d)

k/d−1∑

n=1
n≡d,2d,3d,4d (mod 8)

1,

where we have written j = dn. The inner sum on n in (3.14) is congruent
to 0, 3, 1, or 0 (mod 4) according as d ≡ 1, 3, 5, or 7 (mod 8). Thus,

(3.15) A ≡
∑

d|k
d≡5 (mod 8)

µ(d)−
∑

d|k
d≡3 (mod 8)

µ(d) (mod 4).

Write k = p1 . . . pν , where the pi are distinct primes. By (3.15),

(3.16) A ≡
∑

d|k
d≡5 (mod 8)

µ(d)(1− (−1)ν) (mod 4).

If ν is even, then (3.16) shows that 4 |A, so suppose that ν is odd. If ν = 1,
then 4 |A because there are no terms in the sum in (3.16) (since k ≡ 7
(mod 8)). Thus suppose that ν is odd ≥ 3. By (3.16),

A ≡ 2
∑

d|k
d≡5 (mod 8)

µ(d) ≡ 2
∑

d|k
d≡5 (mod 8)

1(3.17)

=
1
2

∑

d|k

∑

χ (mod 8)

χ(5d) =
1
2

∑

χ (mod 8)

χ(5)
∑

d|k
χ(d)

=
1
2

∑

χ (mod 8)

χ(5)
ν∏

i=1

(1 + χ(pi)) (mod 4).

Each product on i above is divisible by 8, since
ν∏

i=1

(1 + χ(pi)) = 0 or 2ν .

By (3.17), this completes the proof that 4 |A.
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In view of (3.11)–(3.12), it now suffices to prove that

(3.18) B = H/2.

Since
k−1∑

j=1
j≡3,4 (mod 8)

(
j

k

)
=

k−1∑

j=1
j≡3 (mod 8)

{(
j

k

)
+
(
k − j
k

)}
= 0,

(3.19) B =
k−1∑

j=1
j≡1,2 (mod 8)

(
j

k

)
.

Write k = 8f + 7. Since
(

2
k

)
= 1, (3.19) yields

B =
f∑

m=0

(
8m+ 1
k

)
+

f∑

m=0

(
8m+ 2
k

)
(3.20)

=
f∑

m=0

(
m+ f + 1

k

)
+

f∑

m=0

(
m+ 2f + 2

k

)

=
3f+2∑

m=f+1

(
m

k

)
=

∑

k/8<j<3k/8

(
j

k

)
= 2

∑

k/4<j<3k/8

(
j

k

)
,

where the last equality follows from the last statement in Berndt [1, Cor. 7.2,
p. 281]. On the other hand, by [1, (7.6), p. 282],

(3.21)
∑

k/4<j<3k/8

(
j

k

)
= H/4.

Combining (3.20) and (3.21), we obtain (3.18).

Example 3.2. Let k = 143 and p = 2. Then h = 10, R = φ(k)/4− h/2
= 115, H = 12, and

4ph = 4096 = C2 + 143D2 with C = ±53, D = ±3.

By (1.3) with w = 11, t = 13, and b = 5,

C ≡ 26(−1)115+120/20 = −64 (mod 13).

By (3.4)
C ≡ (−1)115+12/4 = 1 (mod 4).

Both of these congruences must hold for the same choice of C = ±53, which
in this case is C = 53.

The following theorem expresses the results of Theorem 3.1 in a form
independent of class numbers.
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Theorem 3.3. Suppose that p = 2 and
(−k
p

)
= 1, so that k ≡ 7 (mod 8)

(with k squarefree). Then C ≡ −1 (mod 4), if k = 7; C ≡ δ (mod 4), if k
is a prime > 7, where δ = ±1 is defined by

δ ≡ ((k − 1)/2)!(−1)(k+1)/8 (mod k);

C ≡
( 2Q
P

)
(mod 4), if k = PQ for primes P,Q; and C ≡ 1 (mod 4), if k has

more than two prime factors.

Proof. Theorem 3.3 can be deduced from (3.3) by applying known con-
gruences for class numbers modulo powers of 2. Such congruences are dis-
cussed in the second chapter of the book of Urbanowicz and Williams [11].
Specifically, for prime k > 7, one uses a theorem of Mordell [9], [11, Theorem
8, p. 52] together with a result of Berndt [1, Corollary 7.4], [11, p. 59]. For
k = PQ, one uses the results in [11, p. 60] and [11, Theorem 13, p. 62].
Finally, when k has more than two prime factors, one uses the facts that
H/4 and R = φ(k)/4− h/2 are both even; this is a consequence of Gauss’s
theory of genera [11, (1), p. 51].

4. Determination of C (mod p2) when k = 8

Theorem 4.1. Let k = 8 and let p be a prime with
(−8
p

)
= 1, i.e., with

p ≡ 1 or 3 (mod 8). Then there are integers C,D (with C unique) such that
(1.10) and (1.11) hold.

Proof. This is proved for p ≡ 1 (mod 8) in [2, Theorem 9.4.5], so assume
that p ≡ 3 (mod 8). In [2, Theorem 12.9.6], it is shown that there are inte-
gers C,D satisfying (1.10) such that (C + D

√
−8)/2 equals a certain octic

Eisenstein sum. This Eisenstein sum can in turn be expressed as a quotient
of an octic Gauss sum over a quadratic Gauss sum, by [2, Theorem 12.1.1].
Using the Gross–Koblitz formula [2, (11.2.12)] and the fact that

(q − 1)/8 = (3p− 1)/8 + p(p− 3)/8,

we find that the analog of (2.8) is

(4.1) (C +D
√
−8)/2 = Γp

(
1
8

)
Γp

(
3
8

)
Γp

(
1
2

)−1

(in Qp).

Therefore,

(C −D
√
−8)/2 = pΓp

(
1
8

)−1

Γp

(
3
8

)−1

Γp

(
1
2

)
,

and addition of these equalities yields
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(4.2) ±C = pΓp

(
1
8

)−1

Γp

(
3
8

)−1

+ Γp

(
1
8

)
Γp

(
3
8

)
,

since Γp
(

1
2

)
= ±1 by the reflection formula. The proof of (2.20) works for

k = 8, and shows that the analog of (2.20) is

(4.3) ± Γp
(

1
8

)−1

Γp

(
3
8

)−1

≡ (p− 1)!(p−1)/2
[
p

8

]
!
[

3p
8

]
!(1−B1 − 3B3) (mod p2).

Equivalently,

(4.4) ± Γp
(

1
8

)
Γp

(
3
8

)

≡ (p− 1)!(1−p)/2
[
p

8

]
!−1
[

3p
8

]
!−1(1 +B1 + 3B3) (mod p2).

Write τ = (p − 1)/2. We proceed to examine the factor (p − 1)!−τ in
(4.4). Since τ !2 ≡ 1 (mod p),

(p− 1)! = (p− 1) . . . (p− τ) · τ !(4.5)

≡ −τ !2 + p
τ∑

j=1

1/j ≡ −τ !2 + 8B4 (mod p2).

Write

(4.6) τ ! = ε+ xp, where x ∈ Z, ε = ±1.

Then τ !2 ≡ 1 + 2εxp (mod p2), so that by (4.5),

(4.7) (p− 1)! ≡ −1− 2εxp+ 8B4 (mod p2).

Since τ is odd, the binomial theorem and (4.7) yield

(p− 1)!τ ≡ −1− 4B4 + εxp (mod p2),

so by (4.6),

(4.8) (p− 1)!−τ ≡ −1 + 4B4 − εxp ≡ 4B4 − ετ ! (mod p2).

By (4.8) and (4.6),

(4.9) (p− 1)!−τ/τ ! ≡ ε(4B4 − 1) (mod p2).

Therefore (4.4) becomes

±Γp
(

1
8

)
Γp

(
3
8

)
≡
(

[p/2]
[p/8]

)
(1− 4B4)(1 +B1 + 3B3)(4.10)

≡
(

[p/2]
[p/8]

)
(1 +B1 + 3B3 − 4B4) (mod p2).
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Consequently, (4.2) becomes

(4.11) ± C ≡ p
(

[p/2]
[p/8]

)−1

+
(

[p/2]
[p/8]

)
(1 +B1 + 3B3 − 4B4) (mod p2).

The congruence for C (mod p) in [2, Theorem 12.9.7] shows that the + sign
in (4.11) is correct. To complete the proof of (1.11), it remains to show that

(4.12) 1 +B1 + 3B3 − 4B4 ≡ 2− 2p−1 − y/8 (mod p2),

where y is the integer defined by (1.12). The proof of (4.12) proceeds just
as the analogous proof in [2, Theorem 9.4.5] (with q = p2 in place of p).

The following corollary gives a congruence (mod p2) for Eisenstein’s bi-
nomial coefficient

([p/2]
[p/8]

)
when k = 8.

Corollary 4.2. Let k = 8, and let p be a prime with
(−8
p

)
= 1, i.e.,

with p ≡ 1 or 3 (mod 8). Then

(4.13) W :=
(

[p/2]
[p/8]

)
≡ (C − p/C)(2p−1 + y/8) (mod p2),

where y is defined in (1.12).

Proof. By (1.11),

(4.14) C ≡ p/W +W (2− 2p−1 − y/8) (mod p2).

In particular, since p divides y by (4.12),

(4.15) C ≡W (mod p).

By (4.14) and (4.15),

(4.16) C ≡ p/C +W (2− 2p−1 − y/8) (mod p2).

Solving (4.16) for W yields

W ≡ (C − p/C)(2− 2p−1 − y/8)−1 (mod p2),

and (4.13) follows.

Example 4.3. Let k = 8 and p = 43. Then h = 1, y ≡ 1462 (mod 432),([p/2]
[p/8]

)
=
(21

5

)
= 20349, and

4p = 172 = C2 + 8D2 with C = ±10, D = ±3.

The congruence in (1.10) becomes

C ≡ 2(−1)5+21 = 2 (mod 8)

and the congruence (1.11) becomes

C ≡ 43
20349

+ 20349
(

2− 242 − 1462
8

)
≡ 10 (mod 432).
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Both of these congruences must hold for the same choice of C = ±10, which
in this case is C = 10. With C = 10, (4.13) becomes

W ≡
(

10− 43
10

)(
242 +

1462
8

)
≡ 10 (mod 432).

To verify this, observe that

W = 20349 = 11(432) + 10.
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