Problems and Conjectures

in the

Combinatorial Theory

of Macdonald Polynomials

WHAT IS COMBINATORICS?

Answer:

The study of relations between combinatorial structures and the resulting interactions with other mathematical disciplines

What are combinatorial structures?

Answer:

<u>Visual</u> representations of mathematical constructs

GOOGLING "Visual representations" gives

Visual representations are a powerful way for students to access abstract math ideas. Drawing a situation, graphing lists of data, or placing numbers on a number line all help to make abstract concepts more concrete, whether done online or offline.

What is a Parking Function?

RICHARD STANLEY'S Definition

Easy: Let $\alpha = (a_1, \ldots, a_n) \in \mathbb{P}^n$ Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be the increasing rearrangement of α . Then α is a parking function if and only $b_i \leq i$.

This is a mathematical construct

A two line representation used for computer programming purposes

3	5	7	10	1	2	8	11	4	6	9	12
0	1	2	3	1	2	3	1	0	1	2	0

HOW DID WE GET TO THIS REPRESENTATION?

A Parking function is a preference function that parks the cars THEOREM

A preference function is a Parking Function

if and only if the number of cars that want to park in the first k places

is greater or equal to k

Parking functions and Dyck Paths

From an online lecture of Richard Stanley

A result in Enumerative Combinatorics

A POWERFUL TOOL IN ENUMERATION

THE CYCLIC LEMMA

- \bullet Let $\mathcal M$ be an ordered multiset of lattice vectors in the plane
- Suppose that ∑_{V∈M} V is never parallel to ∑_{V∈M} V for any M̃ ⊂ M
 Call the segment (0,0) ↔ ∑_{V∈M} V the "cord" of M
 - \bullet Then there is one and only one cyclic rearrangement of ${\cal M}$

whose partial sum polygon has vertices all above the cord

Proof by example Construct the double path!

Counting Dyck Paths

Counting Parking Functions

m,n Rectangles

Given two relatively prime integers m, n

the corresponding "m, n-Rectange" has n rows and m columns.

The line joining (0,0) to (m,n) will be called the "main diagonal"

As we see in the example below for m = 5 and n = 7

the main diagonal splits (non trivially) each lattice cell that it touches it is easy to show that the number of split cells is m+n-1

the touched cells (purple) form what we call the "lattice Diagonal"

m,n "Dyck" paths

m, n-Dyck paths go from (0, 0) to (m, n) by NORTH and EAST steps always remaining weakly above the lattice diagonal

They are represented on the computer by vectors $U = (u_1, u_2, \ldots, u_n)$

whose coordinates give the horizontal distances of the NORTH steps

2 $area(\Pi)$ 2 $\left(\right)$ 2 3 4 5 1 \boldsymbol{a}

from the left side of the rectangle

these U vectors are characterized by the following requirements

$$u_1=0 \ u_{i-1}\leq u_i\leq rac{m}{n}(i-1)$$

$$rea(\Pi) \;\;=\;\; rac{(m-1)(n-1)}{2} - u_1 - u_2 - \cdots - u_n$$

The "dinv" of a path

The dinv of an m, n-path is given by the number of cells above the path whose arm and leg satisfy the following inequalities

