Problems and Conjectures

in the

Combinatorial Theory

of Macdonald Polynomials

WHAT IS COMBINATORICS?

Answer:
The study of relations between combinatorial structures and the resulting interactions with other mathematical disciplines

What are combinatorial structures?

Answer:
Visual representations of mathematical constructs

GOOGLING "Visual representations" gives
Visual representations are a powerful way for students to access abstract math ideas. Drawing a situation, graphing lists of data, or placing numbers on a number line all help to make abstract concepts more concrete, whether done online or offline.

What is a Parking Function?

RICHARD STANLEY'S Definition

Easy: Let $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{P}^{n}$ Let $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ be the increas ing rearrangement of α. Then α is parking function if and only $b_{i} \leq i$.

This is a mathematical construct

A Dyck Path and its area

A two line representation used for computer programming purposes

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 7 & 10 & 1 & 2 & 8 & 1 & 4 & 6 & 9 & 12 \\
\hline 0 & 1 & 2 & 3 & 1 & 2 & 3 & 1 & 0 & 1 & 2 & 0 \\
\hline
\end{array}
$$

HOW DID WE GET TO THIS REPRESENTATION?

A one way street with 8 parking spaces

eight cars wish to park in it

The large number is their order of arrival
The small number is their preferred parking place

The corresponding Preference Function
Each car proceeds to its preferred spot
if occupied it parks in the next available spot
This preference function Parked all the cars

x	$f(x)$
1	3
2	6
3	1
4	6
5	1
6	1
7	1
8	3

A one way street with 8 parking spaces

 eight cars wish to park in it

The large number is their order of arrival
The small number is their preferred parking place
The corresponding Preference Function \Longrightarrow
Each car proceeds to its preferred spot
if occupied it parks in the next available spot
This preference function did not park all the cars!

x	$\mathrm{f}(\mathrm{x})$
1	$(3$
2	6
3	
4	6
5	
6	
7	6
8	6

the number of cars that want to park in the first 5 places is less than 5 ...

A Parking function is a preference function that parks the cars

THEOREM

A preference function is a Parking Function
if and only if the number of cars that want to park in the first k places

$$
\text { is greater or equal to } k
$$

Parking functions and Dyck Paths

All preference functions constructed in this manner satisfy the necessary condition!
Remarkably this condition is also sufficient!!

From an online lecture of Richard Stanley
A A Computer Scientist!

A Probabilist!
Theorem (Pyke, 1959; Komputer Scientist!
Weiss, 1966). Let $f(n)$ be the num-
ber of parking functions of length n.
Then $f(n)=(n+1)^{n-1}$.

A result in Enumerative Combinatorics

A POWERFUL TOOL IN ENUMERATION

THE CYCLIC LEMMA

- Let \mathcal{M} be an ordered multiset of lattice vectors in the plane
- Suppose that $\sum_{V \in \widetilde{\mathcal{M}}} V$ is never parallel to $\sum_{V \in \mathcal{M}} V$ for any $\widetilde{\mathcal{M}} \subset \mathcal{M}$
- Call the segment $(0,0) \leftrightarrow \sum_{V \in \mathcal{M}} V$ the "cord" of \mathcal{M}
- Then there is one and only one cyclic rearrangement of \mathcal{M} whose partial sum polygon has vertices all above the cord

Proof by example

> Construct the double path!

Counting Dyck Paths

The number of paths with n red steps and $n+1$ blue steps is $\binom{2 n+1}{n}$
Since there is only one Dyck path in each circular rearrangement class
The number of Dyck paths with n red steps is $\frac{1}{2 n+1}\binom{2 n+1}{n}=\frac{1}{n+1}\binom{2 n}{n}$

Counting Parking Functions

\section*{| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |}

The number of m,n-Parking Functions is

$$
\mathbf{m}^{\mathrm{n}-1}
$$

Q.E.D.!!!

$$
m^{n} / m
$$

m,n Rectangles

Given two relatively prime integers m, n
the corresponding " m, n-Rectange" has n rows and m columns.
The line joining $(0,0)$ to (m, n) will be called the "main diagonal"
As we see in the example below for $m=5$ and $n=7$
the number of cells above the lattice diagonal is

$$
\frac{(m-1)(n-1)}{2}
$$

the main diagonal splits (non trivially) each lattice cell that it touches it is easy to show that the number of split cells is $m+n-1$ the touched cells (purple) form what we call the "lattice Diagonal"

m,n "Dyck" paths

m, n-Dyck paths go from $(0,0)$ to (m, n) by NORTH and EAST steps always remaining weakly above the lattice diagonal

They are represented on the computer by vectors $U=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$
whose coordinates give the horizontal distances of the NORTH steps

from the left side of the rectangle
these U vectors are characterized by the following requirements

$$
\begin{aligned}
& u_{1}=0 \\
& u_{i-1} \leq u_{i} \leq \frac{m}{n}(i-1)
\end{aligned}
$$

$$
\operatorname{area}(\Pi)=\frac{(m-1)(n-1)}{2}-u_{1}-u_{2}-\cdots-u_{n}
$$

The "dinv" of a path

The dinv of an m, n-path is given by the number of cells above the path whose arm and leg satisfy the following inequalities

