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Studentization vs. variance stabilization:
a simple way out of an old dilemma
Dimitris N. Politis

Abstract. Assume θ̂n is a statistic used to estimate a parameter θ on the basis
of data X1, . . . ,Xn. Further assume that θ̂n is consistent and asymptotically
normal, with asymptotic variance given by σ2(θ). Even if the functional for-
m of σ2(·) is known, its dependence on the unknown parameter θ creates a
dilemma as regards the construction of a confidence interval for θ. Should the
interval be based on the normal quantiles with estimated variance, i.e., stu-
dentization, or shall we transform the statistic θ̂n to Yn = g(θ̂n) such that the
asymptotic variance of Yn does not depend on θ, i.e., variance stabilization?
We show how this dilemma can be bypassed by a straightforward construc-
tion that applies rather generally, and just hinges on solving simple algebraic
equations. We illustrate the new approach on a host of examples, including
two examples in nonparametric function estimation. This paper is dedicated
to the memory of Dr. Dimitrios Gatzouras (1962-2020).

Key words and phrases: Bias correction, confidence intervals, Edgeworth
expansion, finite-sample coverage, probability density estimation, under-
smoothing.

1. INTRODUCTION

Let X1, . . . ,Xn be a set of observed data governed by
a probability law P . Suppose θ is a parameter of interest,
i.e., a feature of P , and θ̂n is a statistic used to estimate
θ on the basis of X1, . . . ,Xn. Further assume that θ̂n is
consistent and asymptotically normal at rate τn; here, τn
is some sequence diverging to∞ as n→∞.

The prototypical example is when X1, . . . ,Xn are in-
dependent, identically distributed (i.i.d.) with mean θ and
finite variance σ2. Let θ̂n = X̄ where X̄ = n−1

∑n
i=1Xi

is the sample mean; then, the Central Limit Theorem for
i.i.d. random variables (r.v.) implies

(1)
√
n(θ̂n − θ)

L
=⇒N

(
0, σ2

)
as n→∞

in which case the rate τn is tantamount to
√
n.

Nevertheless, the variance of the limiting normal distri-
bution will sometimes depend on the unknown parameter
θ; this is particularly common if the support of the data is
bounded below and/or above. In that case, eq. (1) has to
be modified to:

(2) τn(θ̂n − θ)
L

=⇒N
(
0, σ2(θ)

)
as n→∞
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where σ(·) is a continuous function taking only positive
values.

EXAMPLE 1.1. [Poisson] Suppose X1, . . . ,Xn are
i.i.d. with a Poisson distribution of mean θ. Since the
variance of a Poisson r.v. equals its mean, it follows that
σ2(θ) = θ. Hence, eq. (2) holds true with θ̂n = X̄ and
τn =

√
n.

Coming back to eq. (2), note that its Left-Hand-Side
(LHS) is not a pivot, since its large-sample distribution is
not free of parameters. To practically use eq. (2) in order
to construct a large-sample (1− α) 100% confidence in-
terval for θ — without resort to bootstrap — one of two
ways has been typically adopted:

• Studentization (ST): Since θ̂n is consistent for θ
and σ(·) is continuous, eq. (2) implies

(3) τn
θ̂n − θ
σ(θ̂n)

L
=⇒N (0,1) as n→∞

leading to the (asymptotic) (1 − α) 100% confi-
dence statement:1

1The treatment in this paper applies equally to one-sided confi-
dence bounds. In what follows, we focus on (symmetric) confidence
intervals in order to fix ideas, and also because they are the most pop-
ular in practice.
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(4) ∣∣∣∣∣τn θ̂n − θσ(θ̂n)

∣∣∣∣∣≤ z1−α2 ,
i.e., θ ∈ [θ̂n − z1−α

2

σ(θ̂n)

τn
, θ̂n + z1−α

2

σ(θ̂n)

τn
].

As usual, zβ = Φ−1(β) where Φ(·) denotes the s-
tandard normal distribution.

REMARK 1.1. On ‘studentization’. Note that we re-
fer to the above construction as ‘studentization’ because
the division by an estimated variance makes the LHS of
(3) be a ‘studentized’ — as opposed to standardized —
quantity. Despite the fact that the asymptotic normali-
ty (3) remains true, it would be ideal if we could cap-
ture the finite-sample deviations from normality that are
the result of such ‘studentization’. However, this is cum-
bersome to do analytically as it involves Edgeworth ex-
pansions whose validity must be verified on a case-by-
case basis. Alternatively, finite-sample refinements could
be captured via bootstrap simulation. We will not pursue
these issues further here but refer to Hall (1988, 1992) for
details.

• Variance Stabilization (VS): Let Yn = g(θ̂n)
where g(·) is a smooth (at least continuously differ-
entiable) monotone function; denote also Y = g(θ).
Assuming g′(θ) 6= 0, eq. (2) together with the delta-
method imply:

(5)
τn(Yn − Y )

L
=⇒N

(
0, [g′(θ)]2σ2(θ)

)
as n→∞.

If we can choose g(·) such that g′(x) = c/σ(x) for
some constant c, then g(·) is called a variance sta-
bilizing transformation, as it implies

(6) τn(Yn − Y )
L

=⇒N
(
0, c2

)
as n→∞

which, in turn, yields the (asymptotic) (1 − α)
100% confidence statement:∣∣∣∣∣τn g(θ̂n)− g(θ)

|c|

∣∣∣∣∣≤ z1−α2
i.e.,

g(θ̂n)− z1−α
2

|c|
τn
≤ g(θ)≤ g(θ̂n) + z1−α

2

|c|
τn

leading to the (asymptotic) (1 − α) 100% confi-
dence interval

(7)

θ ∈ [g−1
(
g(θ̂n)− z1−α

2

|c|
τn

)
,

g−1
(
g(θ̂n) + z1−α

2

|c|
τn

)
]

To simplify notation, here and throughout the paper, we
will denote cα = z1−α

2
/τn.

Example 1.1 [Poisson, continued] In the Poisson mean
case, the studentized confidence interval (4) reads

θ ∈

θ̂n − z1−α
2

√
θ̂n
n
, θ̂n + z1−α

2

√
θ̂n
n

 .
where θ̂n = X̄ . Since τn =

√
n here, the above can be

written more compactly as:

θ = θ̂n ± cα
√
θ̂n.

Furthermore, we can achieve variance stabilization (with
c= 1/2) by using the function g(x) =

√
x. Consequently,

the variance stabilized confidence interval (7) reads

θ ∈

[(√
θ̂n − z1−α

2

0.5√
n

)2

,

(√
θ̂n + z1−α

2

0.5√
n

)2
]

that can be compactly written as:

θ = θ̂n +
c2α
4
± cα

√
θ̂n.

Although both confidence intervals (4) and (7) have
asymptotic coverage probability 1 − α, they may suf-
fer from finite-sample inaccuracies. For example, the s-
tudentized statistic at the LHS of (3) may be quite non-
normal for small samples; recall the special case of S-
tudent’s t distribution that obtains when θ̂n = X̄ , and
the Xi are exactly Normal. Regarding variance stabiliza-
tion, the main issue is bias. To elaborate, in the case of
the sample mean θ̂n = X̄ , it follows that Eθ̂n = θ, but
Eg(θ̂n) 6= Eg(θ). Even though Eg(θ̂n)− Eg(θ) is typi-
cally of order o(1/

√
n), this bias can still be problematic

in moderate samples; see Ch. 4 of DasGupta (2008).
In the next section, we present a simple approach,

termed the Confidence Region (CR) method, that yield-
s confidence intervals devoid from the abovementioned
deficiencies; in particular, no transformation or studenti-
zation is needed. Section 3 discusses the possible prelimi-
nary use of a normalizing transformation, while Section 4
compares the proposed methods via a numerical simula-
tion. Applications to two problems in nonparametric func-
tion estimation are discussed in Sections 5 and 6.

We conclude the present section by giving two more
important examples. Recall the general definition cα =
z1−α

2
/τn.

EXAMPLE 1.2. [Gamma] Suppose X1, . . . ,Xn are
i.i.d. with a Gamma density Γ(β)−1 θ−βxβ−1 exp(−x/θ)
with β > 0 assumed known for simplicity. E.g., if β = 1,
then Xi has an Exponential density with mean θ. In the
general Gamma case, EXi = βθ, so letting θ̂n = β−1X̄
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we can verify that eq. (2) holds true with σ2(θ) = θ2, and
τn =

√
nβ .

Consequently, a studentized (1− α) 100% confidence
interval for θ is:

θ = θ̂n ± cαθ̂n.

In addition, it is easy to see that the natural logarithm
g(x) = logx achieves variance stabilization, leading to e-
q. (6) with c2 = β−1. The (1− α) 100% VS confidence
interval (7) reads

θ ∈
[
exp

(
log θ̂n − cα

)
, exp

(
log θ̂n + cα

)]
.

REMARK 1.2. On τn. When the asymptotic variance
of θ̂n involves a multiplicative constant, as in the above
Gamma example, we will absorb it in τn; this is in order to
have σ2(θ) has a simple form to work with, and compare
with other similar examples.

EXAMPLE 1.3. [Binomial] Suppose X1, . . . ,Xn are
i.i.d. Bernoulli (θ), so that θ̂n = X̄ is Binomial (n, θ). As
well known, eq. (2) holds true with σ2(θ) = θ(1− θ), and
τn =

√
n and the studentized (1 − α) 100% confidence

interval reads

(8) θ = θ̂n ± cα
√
θ̂n(1− θ̂n).

In the binomial case, the function g(x) = arcsin
√
x

achieves variance stabilization, leading to eq. (6) with
c2 = 1/4. The (1− α) 100% VS confidence interval (7)
reads

θ ∈
[
sin
(

arcsin θ̂n − cα/2
)
, sin

(
arcsin θ̂n + cα/2

)]
.

2. A SIMPLE WAY OUT OF THE DILEMMA

There is abundant literature on the dichotomy between
variance stabilization and studentization. For example, di-
viding by σ(θ̂n) may significantly alter the quantiles of
the distribution of θ̂n; hence, it can be said that the ST in-
terval (4) amounts to “looking up the wrong tables"; see
e.g. Hall (1988).

By contrast, variance stabilization may introduce bias
that also influences the confidence intervals. To see why,
consider the case where θ̂n is the sample mean X̄ of
i.i.d. data. Here EX̄ = θ but it is apparent that Eg(X̄) 6=
g(θ) in general. Although the delta method shows that√
n E

(
g(X̄)− g(θ)

)
= O(1/

√
n), this O(1/

√
n) ter-

m is of the same order of magnitude as the statisti-
cal error in approximating the true 1 − α/2 quantile of√
n E

(
g(X̄)− g(θ)

)
by the normal z1−α/2.

It is well known that variance stabilization is preferable
over studentization in the Poisson and Binomial exam-
ples; see Ch. 4 of DasGupta (2008) and the references
therein. In the Gamma example the situation is not so

clear; our Section 4 attempts to shed some light. Never-
theless, it is a false premise that a practitioner must choose
one of these two options; there is a third option that is
more straightforward.

To elaborate, note that in the context of eq. (2) we can
simply write

(9) τn
θ̂n − θ
σ(θ)

L
=⇒N (0,1) as n→∞

leading to the (asymptotic) (1− α) 100% confidence re-
gion

(10) {all θ :

∣∣∣∣∣τn θ̂n − θσ(θ)

∣∣∣∣∣≤ z1−α2 }.
The key observation here is that when σ(x) is of simple
enough functional form, e.g. when σ2(x) is a low-order
polynomial, the confidence region (10) may be turned in-
to a confidence interval using simple algebraic manipula-
tions.

We work out some important examples below; in what
follows, denote cα = τ−1n z1−α

2
, and assume n is large e-

nough so that cα < 1.

1. Case σ(x) =
√
x. Squaring both sides of the in-

equality in (10) and solving for θ leads to the fol-
lowing (asymptotic) (1 − α) 100% confidence in-
terval

(11) θ = θ̂n +
c2α
2
± cα

√
θ̂n + c2α/4 .

The above is applicable to the Poisson Example 1.1
using τn =

√
n; it can be compared to the intervals

obtained via studentization and variance stabiliza-
tion.

2. Case σ(x) = x. In this case, (10) is equivalent to
the (asymptotic) (1− α) 100% confidence interval

(12) θ ∈

[
θ̂n

1 + cα
,

θ̂n
1− cα

]
.

The above is applicable to the Gamma Example 1.2
using τn =

√
nβ ; it can be compared to the inter-

vals obtained via studentization and variance stabi-
lization.

3. Case σ(x) =
√
x(1− x). Here (10) is equivalent to

the (asymptotic) (1− α) 100% confidence interval

(13) θ =
2θ̂n + c2α ± cα

√
4θ̂n(1− θ̂n) + c2α

2(1 + c2α)

which is applicable to the Binomial Example 1.3
using τn =

√
n; it can be compared to the intervals

obtained via studentization and variance stabiliza-
tion.
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We will call the above method of constructing confidence
intervals, the Confidence Region (CR) method, to dis-
tinguish it from the intervals obtained via either variance
stabilization or studentization. Note that if the functional
form of σ(x) is more complicated, it may still be possible
to reduce the confidence region (10) to a confidence inter-
val (or a union of intervals) by solving an equation such as
cασ(θ) + θ = θ̂n numerically for θ, and then costructing
the relevant inequalities.

REMARK 2.1. On the Binomial. When applied to
the Binomial Example 1.3, the confidence interval (13)
was first proposed by Wilson (1927); it is one of the pre-
ferred intervals for a binomial proportion as discussed in
the comprehensive review of Brown et al. (2001) who
warn against using the ‘Wald’ interval, i.e., the studen-
tized interval (8). Furthermore, it is well known that the
binomial CLT — and its associated confidence interval-
s — can be aided by a continuity correction; alterna-
tively, the split-sample method of Decrouez and Hal-
l (2014) could be used. To describe it, let the i.i.d. sample
X1, . . . ,Xn be split into two subsamples, sayX1, . . . ,Xm

and Xm+1, . . . ,Xn with (sub)sample means X̄1 and X̄2

respectively. The split-sample estimator is θ̃n = (X̄1 +
X̄2)/2. If m 6= n−m but with m/(n−m)→ 1, then θ̃n
has the same asymptotic normal distribution as θ̂n = X̄
but devoid of the need for continuity correction. Never-
theless, since θ̃n and θ̂n have the same asymptotic normal
distribution, the interval (13) applies verbatim with θ̃n
instead θ̂n; see Thulin (2014). Notably, the split-sample
method can be applied to other lattice r.v.’s. Focusing
on the Poisson Example 1.1, we could construct a split-
sample estimator is θ̃n as above; then, the CR interval (11)
would apply verbatim with θ̃n instead θ̂n, and may yield
improved accuracy.

REMARK 2.2. On Bias-Correction. In anticipation
of the nonparametric examples in Sections 5 and 6, we
now discuss the construction of bias-corrected confidence
intervals. Suppose that instead of eq. (2) we have

(14) τn(θ̂n −Eθ̂n)
L

=⇒N
(
0, σ2(θ)

)
as n→∞

with

(15) τn(Eθ̂n − θ) = b(θ) + o(1) as n→∞

for some continuous function b(·) capturing the asymptot-
ic bias. If b(θ) = 0, then eq. (2) follows; but if b(θ) 6= 0,
then the following procedure can be used:

(a) Use eq. (14) with any of the abovementioned meth-
ods (ST, VS or CR) to construct an (asymptotic)
(1− α) 100% confidence interval for Eθ̂n; denote
this interval by [C,C].

(b) Note that C ≤Eθ̂n ≤C is equivalent to C− b(θ)
τn
≤

Eθ̂n− b(θ)
τn
≤C− b(θ)

τn
. Hence, an (asymptotic) (1−

α) 100% confidence interval for θ is

(16)
[
C − b(θ)

τn
, C − b(θ)

τn

]
.

Since θ is unknown, the above can be thought to be
an oracle statement.

(c) If θ̃n is a consistent estimator of θ (possibly d-
ifferent from θ̂n), then a practically useful Bias-
Corrected (BC) (asymptotic) (1− α) 100% confi-
dence interval for θ is

(17)

[
C − b(θ̃n)

τn
, C − b(θ̃n)

τn

]
.

The BC interval (17) has asymptotically correct coverage
level but it will not yield an improvement over the original
interval [C,C] unless θ̃n is accurate enough. For example,
if θ̃n has a slower rate of convergence as compared to θ̂n,
then the uncorrected interval [C,C] may be preferable. If
θ̃n and θ̂n have the same rate of convergence, then the
situation is not clear, and has to be examined given the
particulars of the problem at hand. Nevertheless, if θ̃n has
a faster rate of convergence than θ̂n, then the BC interval
(17) will be asymptotically equivalent to the oracle in-
terval (16), and therefore preferable; see Sections 5 and 6
for two interesting applications to nonparametric function
estimation.

3. ONE STEP FURTHER: NORMALIZING
TRANSFORMATIONS

The CR method for confidence intervals outlined in
Section 2 is just based on the limiting distribution (2). If
the Right-Hand-Side (RHS) of (2) is a good approxima-
tion to the distribution of the LHS for the problem at hand,
then the CR confidence intervals would be quite accurate.
For example, if the normality in (2) is exactly achieved,
e.g. θ̂n is the sample mean of Normal r.v.’s, then the cov-
erage of the CR confidence intervals would be exact; the
coverage of the ST or VS confidence intervals will not be
exact in such a case, since they both entail an adulteration
of the distribution of the statistic in question.

On the other hand, if the RHS of (2) is not a good ap-
proximation to the distribution of the LHS for the problem
(and sample size) at hand, then the coverage of the CR
confidence intervals may suffer. This motivates the (po-
tential) need for a normalizing (instead of variance sta-
bilizing transformation). Nevertheless, the caveat still ap-
plies in that any transformation may introduce bias that
— as skewness — is not captured in the Gaussian limit of
(2).

By the Berry-Esseen theorem, the speed of convergence
in (2) is often dictated by the skewness of θ̂n in the sample
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mean and related cases. Hence, a normalizing transfor-
mation may be constructed with the purpose of reducing
skewness which is defined as skew(θ̂n) = E(θ̂n−θ)3

V ar(θ̂n)3/2
.

The last section discussed the dichotomy between the
CR method and VS, i.e., using a variance stabilizing
transform. However, there is the additional dilemma on
whether to employ a variance stabilizing or a normalizing
transformation—see the seminal paper of Box and Cox
(1964). In view of the fact that Section 2 put forth the CR
method as an alternative to VS, we may now propose a
general procedure: first apply a normalizing transforma-
tion and afterwards employ the CR method whenever, of
course, the latter is feasible.

Let CRaN denote the above general procedure, i.e., ap-
plying the CR method after Normalization. The CRaN
proposal is then elaborated upon as follows:

1. Find a smooth, one-to-one function h(·), such that
skew(ζ̂n) = o(skew(θ̂n)) where ζ̂n = h(θ̂n), i.e.,
reduce the skewness by an order of magnitude.

2. Provided the bias of ζ̂n is negligible, apply the CR
method of Section 2 to ζ̂n, and construct a (1 −
α) 100% confidence interval for ζ = h(θ), say ζ ∈
[C,C].

3. Finally, invert the function h to construct a (1 −
α) 100% confidence interval for θ. For example,
if h is monotone increasing, then the confidence
interval is θ ∈ [h−1(C), h−1(C)]; if h is mono-
tone decreasing, then the confidence interval is θ ∈
[h−1(C), h−1(C)].

To give flesh to the above ideas, let us focus momentar-
ily on the case where θ̂n = X̄ , withX1, . . . ,Xn i.i.d. from
a distribution with mean θ and central moments µk =
E(X1 − θ)k. If the function h(·) is sufficiently smooth,
i.e., admitting a Taylor expansion such as

h(x) = h(θ) + h′(θ)(x− θ) +
1

2
h′′(θ)(x− θ)2 + · · ·

to some appropriate order, then eq. (2) implies

(18)
√
n(ζ̂n − ζ)

L
=⇒N(0, µ2[h

′(θ)]2) as n→∞;

however, for the above to be useful, the asymptotic vari-
ance must be expressed as a function of ζ . Furthermore,

(19)
Eζ̂n = h(θ) +

µ2[h
′′(θ)]

2n
+O(

1

n2
)

and V ar(ζ̂n) =
µ2[h

′(θ)]2

n
+O(

1

n2
)

implying that the bias of ζ̂n = h(X̄) is of small enough
order (since we are comparing V ar(ζ̂n) with (Eζ̂n −
h(θ))2); this underscores the importance of applying the
transformation on a statistic that is exactly unbiased,
whenever possible.

In addition, Example 6.1 in Ch. 14 of Shorack (2000)
yields2

(20)
E
(
ζ̂n −Eζ̂n

)3
=
µ3[h

′(θ)]3 + 3µ22[h
′(θ)]2h′′(θ)

n2
+ o(

1

n2
).

Hence, the defining property of a normalizing transforma-
tion is

µ3h
′(θ) + 3µ22h

′′(θ) = 0

which is a first order ordinary differential equation for
h′(x).

It is easy to check that for our three main Examples
1.1 (Poisson), 1.2 (Gamma), and 1.3 (Binomial), the nor-
malizing transformations are h(x) = x2/3, h(x) = x1/3,
and h(x) =

∫ x
0 [s(1− s)]−1/3ds respectively; these are all

different from their respective variance stabilizing trans-
formations.

Notably, we recognize θ′ = EX1 = βθ as the underly-
ing parameter for the Gamma distribution (instead of θ).
Therefore, as demonstrated in example 1.2, we need to
divide by β after calculating the quantiles. In the special
case of the Exponential distribution, however, β = 1 and
the two parameters θ′, θ coincide.

Example 1.1 (Poisson, continued) The normalizing
transformation is h(x) = x2/3. Then, eq. (18) reads
√
n(ζ̂n − ζ)

L
=⇒ N(0, 49θ

1/3). Recall that ζ = h(θ), i.e.,
ζ = θ2/3; hence, θ1/3 = ζ1/2, implyling

(21)
√
n(ζ̂n − ζ)

L
=⇒N(0,

4

9
ζ1/2) as n→∞.

To apply the CR method, we need to solve the relation∣∣∣ ζ̂n−ζζ1/4

∣∣∣ ≤ 2
3cα for ζ . Let C = [23cα]4, a = ζ̂n, and x = ζ .

Then, the CR relation is equivalent to

(22) [x− a]4 ≤Cx i.e., [x− a]4 −Cx≤ 0

that can be solved numerically for x > 0 to yield the de-
sired CRaN interval with approximate 95% confidence
level.

Example 1.2 (Gamma, continued) The normalizing
transformation is h(x) = x1/3. Then, eq. (18) read-

s
√
n(ζ̂n − ζ)

L
=⇒ N(0, 19β

−1/3 θ2/3). Recall that ζ =

(βθ)1/3, i.e., θ = ζ3

β ; hence,

(23)
√
n(ζ̂n − ζ)

L
=⇒N(0,

ζ2

9β
) as n→∞.

2Note, however, a typo in eq. (6) on p. 396 of Shorack (2000); the
correct expression for the third moment appears in his Example 6.3 on
p. 397.
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To apply the CR method, we need to solve the relation∣∣∣ ζ̂n−ζ
β−1/2 ζ

∣∣∣≤ 1
3cα for ζ which is one of the cases explicitly

addressed in Section 2. Thus, a (1− α) 100% confidence
interval for ζ is ζ ∈ [C,C] where

C =
ζ̂n

1 + β−1/2cα/3
and C =

ζ̂n

1− β−1/2cα/3
.

The CRaN interval with approximate 95% confidence lev-
el for θ is θ ∈ [C

3

β ,
C

3

β ].

Example 1.3 (Binomial, continued) The normalizing
transformation is h(x) =

∫ x
0 [s(1 − s)]−1/3ds. Then, eq.

(18) reads
√
n(ζ̂n − ζ)

L
=⇒ N(0, [θ(1 − θ)]1/3). In this

case, however, the inverse of the function h is not straight-
forward, and it is needed to re-express θ(1− θ) as a func-
tion of ζ . Because of the extensive literature on the Bino-
mial — see Remark 2.1 — we will not pursue this example
further here.

4. NUMERICAL COMPARISONS

In this section, we compare the aforementioned meth-
ods via simulation using the running examples, i.e., data
from Poisson, Gamma or Binomial distributions; in the
Gamma case, we assume that β = 1, in which case Gam-
ma reduces to the Exponential distribution with mean θ.

As mentioned in the last section, the CRaN method is
cumbersome in the Binomial case; instead, we include in
the simulation the CR method applied to the split-sample
estimator as described in Remark 2.1.

Tables 1–6 give the empirical coverage (CVR) and av-
erage length (LEN) of 95% confidence intervals based on
N = 1000 repetitions of each experiment.

With regards to the Poisson example, the length of a
confidence interval in CRaN method is nominal, i.e., the
largest root of (22) minus the smallest root of (22). We
use the confidence region {x : [x− a]4 −Cx≤ 0} to cal-
culate the coverage probability. The roots of the polynom-
inal [x−a]4−Cx≤ 0 are derived through the R function
polyroot().

REMARK 4.1. Suppose X1,X2, ...,Xn have an ex-
ponential distribution with mean θ. Then the (ST) method
implies

√
n θ̂n−θ

θ̂

L
=⇒N (0,1). Meanwhile, the (VS) method

implies
√
n(log(θ̂n)− log(θ))

L
=⇒N (0,1). The theoreti-

cal guarantee for (CR) is
√
n θ̂−θθ

L
=⇒N (0,1) and the the-

oretical guarantee for (CRaN) comes from 3
√
n θ̂

1/3−θ1/3
θ1/3

L
=⇒

N (0,1). Asymptotically all of these four results hold
true; but in a finite sample situation, if the distribution
of one of these statistics (i.e.,

√
n θ̂n−θ

θ̂
,
√
n(log(θ̂n) −

log(θ)),
√
n θ̂−θθ and 3

√
n θ̂

1/3−θ1/3
θ1/3 ) is closer to N(0,1),

then the associated confidence interval should have better
coverage probability. As an illustration, we plot the cumu-
lative distribution of those statistics in Figure 1. Statistics
based on (CR) and (CRaN) methods have distributions
that are close to the standard normal. On the other hand,
the (ST) method has a distribution that significantly de-
viates from the standard normal as compared to the other
methods.

5. APPLICATION: PROBABILITY DENSITY
ESTIMATION

Let X1, · · · ,Xn be i.i.d. with probability density f(·)
which is unknown (but assumed smooth). The kernel s-
moothed estimator of f(x) at some particular point x that
lies inside the support of f(·) is

(24) f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
)

where the kernel K(·) is assumed (for simplicity) to
be nonnegative, integrating to one, and being square-
integrable, i.e.,

(25)
K(s)≥ 0,

∫
K(s)ds= 1,

and
∫
K(s)2ds <∞.

A kernel K(·) satisfying (25) is called a second-order k-
ernel. The bandwidth h is a function of n but will not be
explicitly denoted as such.

Assume f(·) is (at least) twice continuously differen-
tiable, and that h→ 0 but hn→∞ as n→∞. In addi-
tion, suppose

(26)
∫
sK(s)ds= 0 and

∫
s2K(s)ds <∞

Then, a Taylor expansion yields

(27) Ef̂(x) = f(x) + h2
f ′′(x)

2

∫
s2K(s)ds+ o(h2)

and

(28) V arf(x) =
1

nh
f(x)

∫
K(s)2ds+ o(

1

nh
).

One can try to choose the bandwidth h with the goal
of minimizing the Mean Squared Error (MSE) of f̂(x).
Simple calculus shows that MSE-optimal estimation oc-
curs with h=Cf n

−1/5 where

(29) Cf =

(
f(x)

∫
K(s)2ds[

f ′′(x)
∫
s2K(s)ds

]2
)1/5

.

Under standard conditions — see e.g. Ch. 32 of DasGupta
(2008) — we further have

(30) τn(f̂(x)−Ef̂(x))
L

=⇒N(0, f(x)) as n→∞

where τn =
√
hn
[∫
K(s)2ds

]−1/2.
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TABLE 1
Empirical coverage (CVR) and average length (LEN) of 95% confidence intervals according to different methods with data from a Poisson

distribution with mean θ; sample size n= 50.

θ = 0.5 1 2 4

CVR LEN CVR LEN CVR LEN CVR LEN

ST METHOD 94.58% 0.3902 95.00% 0.5531 94.29% 0.7826 94.86% 1.1085
VS METHOD 93.67% 0.3902 94.33% 0.5531 94.70% 0.7826 94.96% 1.1085
CR METHOD 93.97% 0.3978 94.49% 0.5584 94.85% 0.7864 94.89% 1.1112
CRaN METHOD∗ 95.15% 0.3916 95.36% 0.5541 94.70% 0.7833 95.38% 1.1090

TABLE 2
Empirical coverage (CVR) and average length (LEN) of 95% confidence intervals according to different methods with data from a Poisson

distribution with mean θ; sample size n= 200.

θ = 0.5 1 2 4

CVR LEN CVR LEN CVR LEN CVR LEN

ST METHOD 94.56% 0.1958 95.06% 0.2770 94.94% 0.3919 94.90% 0.5542
VS METHOD 94.84% 0.1958 95.26% 0.2770 94.95% 0.3919 95.06% 0.5542
CR METHOD 94.87% 0.1967 95.23% 0.2777 95.01% 0.3923 95.21% 0.5545
CRaN METHOD∗ 94.84% 0.1959 95.69% 0.2771 94.69% 0.3920 95.06% 0.5542

TABLE 3
Empirical coverage (CVR) and average length (LEN) of 95% confidence intervals according to different methods with data from an Exponential

distribution with mean θ; sample size n= 50.

θ = 0.25 0.5 1 2

CVR LEN CVR LEN CVR LEN CVR LEN

ST METHOD 93.93% 0.1385 94.22% 0.2769 93.79% 0.5535 93.92% 1.1071
VS METHOD 94.82% 0.1402 95.00% 0.2804 94.72% 0.5606 94.78% 1.1214
CR METHOD 93.93% 0.1385 94.22% 0.2769 93.79% 0.5535 93.92% 1.0710
CRaN METHOD 95.03% 0.1425 95.13% 0.2849 94.84% 0.5695 94.96% 1.1392

TABLE 4
Empirical coverage (CVR) and average length (LEN) of 95% confidence intervals according to different methods with data from an Exponential

distribution with mean θ; sample size n= 200.

θ = 0.25 0.5 1 2

CVR LEN CVR LEN CVR LEN CVR LEN

ST METHOD 94.77% 0.0693 94.89% 0.1385 94.62% 0.2770 94.86% 0.5541
VS METHOD 94.97% 0.0696 94.99% 0.1390 94.92% 0.2778 95.03% 0.5560
CR METHOD 94.77% 0.0693 94.89% 0.1385 94.62% 0.2770 94.86% 0.5541
CRaN METHOD 94.86% 0.0698 95.06% 0.1395 94.90% 0.2790 95.12% 0.5581

TABLE 5
Empirical coverage (CVR) and average length (LEN) of 95% confidence intervals according to different methods with data from a Bernoulli

distribution with mean θ; sample size n= 50. For the split-sample estimator, the choice m= 23 was used.

θ = 0.07 0.13 0.25 0.5

CVR LEN CVR LEN CVR LEN CVR LEN

ST METHOD 86.81% 0.1345 89.50% 0.1822 93.91% 0.2367 93.30% 0.2743
VS METHOD 99.88% 0.2754 99.65% 0.2736 98.04% 0.2670 90.41% 0.2382
CR METHOD 97.85% 0.1456 96.82% 0.1840 95.12% 0.2312 93.30% 0.2646
CR with Split-Sample 96.32% 0.1455 96.40% 0.1840 95.07% 0.2311 94.86% 0.2646
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TABLE 6
Empirical coverage (CVR) and average length (LEN) of 95% confidence intervals according to different methods with data from a Bernoulli

distribution with mean θ; sample size n= 200. For the split-sample estimator, the choice m= 97 was used.

θ = 0.07 0.13 0.25 0.5

CVR LEN CVR LEN CVR LEN CVR LEN

ST METHOD 93.06% 0.0701 93.15% 0.0927 93.41% 0.1195 94.57% 0.1382
VS METHOD 99.93% 0.1381 99.59% 0.1373 97.26% 0.1340 91.35% 0.1197
CR METHOD 96.13% 0.0713 95.45% 0.0929 95.91% 0.1188 94.57% 0.1370
CR with Split-Sample 95.40% 0.0713 95.39% 0.0929 94.85% 0.1188 94.83% 0.1369

(a) Left tail, sample size n= 50 (b) Right tail, sample size n= 50

(c) Left tail, sample size n= 200 (d) Right tail, sample size n= 200

FIG 1. Cumulative distribution functions of different statistics(ST:
√
n θ̂n−θ

θ̂
, VS:

√
n(log(θ̂n) − log(θ)), CR:

√
n θ̂−θθ and CRaN:

3
√
n θ̂

1/3−θ1/3
θ1/3

). The black line plots the cumulative distribution function of a Gaussian N(0,1) random variable. ST statistic’s distribution
significantly deviates from a Gaussian distribution compared to other statistics.
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5.1 Estimating the MSE-optimal bandwidth using
flat-top kernels

To use the MSE-optimal bandwidth, we need to esti-
mate f(x) and f ′′(x) and plug them in eq. (31); let f̃(x)
be an estimate of f(x) for the purpose of plugging in eq.
(31), and let f̃ ′′(x) be its 2nd derivative at point x. Then,
we can let h̃= C̃f n

−1/5 where

(31) C̃f =

 f̃(x)
∫
K(s)2ds[

f̃ ′′(x)
∫
s2K(s)ds

]2


1/5

provided the denominator does not vanish. In order for the
MSE of f̂(x) using bandwidth h̃ to be asymptotically the
same as the MSE of f̂(x) using the oracle h=Cf n

−1/5,
the estimator f̃(x) must have a faster rate of convergence
than f̂(x); this can be accomplished by basing f̃(x) on a
higher-order kernel3 but this would then require having a
way to choose the bandwidth of f̃(x).

It turns out that there is a class of higher-order (ac-
tually, infinite-order) kernels, the so-called flat-top ker-
nels, that (a) achieve the fastest rate of convergence in
a given smoothness class; see e.g. Politis (2001); and
(b) it is straightforward to choose their bandwidth using
a graphical tool; see Politis (2003), and the R package
iosmooth(). Hence, one may optimally construct f̂(x)
using h̃= C̃f n

−1/5, with C̃f obtained as detailed in Poli-
tis (2003), e.g., based on a trapezoidal or other choice of
flat-top kernel.

5.2 Confidence intervals via ‘undersmoothing’

Eq. (30) can be used to construct confidence intervals
for the center of the asymptotic normal distribution which
is Ef̂(x). To turn these into intervals for f(x) there have
been two general approaches in the literature: ‘under-
smoothing’ vs. explicit bias correction.

Under an ‘undersmoothed’ choice of bandwidth h =
o(n−1/5), it follows that τn(Ef̂(x)− f(x))→ 0, and we
can write

(32) τn(f̂(x)− f(x))
L

=⇒N(0, f(x)) as n→∞

Note that this falls under the framework of Case 1 in Sec-
tion 2. Hence, an asymptotic (1 − α) 100% confidence
interval based on the CR method is given by eq. (11) with
θ̂n = f̂(x), and θ = f(x). In addition, the ST interval (4)
and the VS interval (7) can be constructed as well; the
variance stabilizing transformation here is g(x) =

√
x, as

in the Poisson example.
Undersmoothing has the advantage of simplicity: we

just ignore the bias. Nevertheless, although the bias of

3To estimate f ′′(x) accurately, we would need to additionally as-
sume that f(·) is (at least) four times continuously differentiable, with
4th derivative satisfying a Lipschitz condition.

f̂(x) is asymptotically negligible here, it may present
problems in finite samples. In addition, there is no rec-
ommendation on how we should choose h since the re-
quirement h= o(n−1/5) is rather vague.

5.3 Optimal confidence intervals via bias correction
and flat-top kernels

Hall (1992b) compared ‘undersmoothing’ to explicit
bias correction for confidence intervals in this setting, and
concluded that ‘undersmoothing’ is preferable. Howev-
er, to perform the bias correction, Hall (1992b) estimated
f ′′(x) using a second-order kernel with a possibly differ-
ent bandwidth. In retrospect, it is not hard to see is why
problems, both theoretical and practical, arose in his con-
struction. We now show how to construct confidence in-
tervals based on the MSE-optimal bandwidth and an ex-
plicit bias correction; the key is to use flat-top kernels
(with their own bandwidth) in order to estimate the pro-
portionaliy constant in the bias expansion just as in Sec-
tion 5.1.

Note that eq. (30) brings us to the set-up of Remark
2.2 with θ = f(x) and θ̂n = f̂(x) using a bandwidth h of
optimal order, i.e., proportional to n−1/5. Then,
(33)

τn(Ef̂(x)− f(x))→ τnh
2 f
′′(x)

2

∫
s2K(s)ds≡ b(θ)

where the above serves as the definition of b(θ) here. Now
let θ̃n = f̃(x) where f̃ is a flat-top estimator of f with
bandwidth chosen as detailed in Politis (2003). Then, the
procedure outlined in Remark 2.2 can be followed ver-
batim leading to bias-corrected confidence intervals for
θ using any of the three methods: ST, VS or CR; the
latter would follow the framework of Case 1 in Section
2. Most importantly, the data-based optimal bandwidth
h̃ = C̃f n

−1/5 can be used throughout this construction,
both for f̂(λ) and for τn. Note that h̃ can be obtained via
section 3.2 of Politis (2003); and the optimally tuned flat-
top estimator of f ′′(·) needed to estimate the bias can be
obtained via eq. (17) of Politis (2003).

EXAMPLE 5.1 (Normal density estimation). We gen-
erate i.i.d. standard normal random variables X1, ...,Xn,
then use the kernel estimator (24) to estimate the densi-
ty at x = 0.5. We adopt the three methods (e.g., studen-
tization, variance stabilization and the confidence region
method) to construct confidence intervals. The kernel K
is chosen as the standard normal density, i.e., K(x) =
1√
2π

exp(−x2/2), so
∫
K(s)ds = 1 and

∫
K2(s)ds =

1
2
√
π

. We use section 3.2 of Politis (2003) to construct the

optimal bandwidth h̃.
Our simulation considers all three situations:

(1) ‘undersmoothed’, in which case the bandwidth should
have order o(h̃)–to practically illustrate that, we use h̃

′
=
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TABLE 7
Empirical coverage (CVR) and average length (LEN) of 95%

confidence intervals according to different methods. The data are
generated by normal random variables with mean 0 and variance 1.
We estimate the density at point x= 0.5. The sample size is n= 200
and the number of repetitions is 1000. In this and the latter tables,

‘Without BC’ is short for ‘Without bias-correction’

Undersmoothed Bias-corrected Without BC

Data type CVR LEN CVR LEN CVR LEN

ST METHOD 94.8% 0.299 96.5% 0.130 92.3% 0.130
VS METHOD 95.8% 0.299 97.1% 0.130 93.6% 0.130
CR METHOD 96.5% 0.306 97.0% 0.131 95.1% 0.131

h̃/5 in (24).
(2) ‘Bias-corrected’, i.e., we use the optimal bandwidth h̃
in (24) and apply the bias-correction technique in section
5.3 to construct confidence intervals.
(3) ‘Without bias-correction’, in which case we use h̃ as
in (24) but do not apply bias-correction techniques in cre-
ating confidence intervals.
The results are demonstrated in table 7.

A visual representation of these processes is provided
in figure 2 that plots the true density f(x), the different
confidence intervals of level 95%, as well as the estima-
tor on which the confidence intervals are based, i.e., the
center of the intervals. The confidence intervals are point-
wise, meaning a 95% confidence interval was constructed
at each of a finite number of x points. Figure 2 is con-
structed from just one of the realizations of the data pro-
cess; its purpose is to illustrate the issues at hand.

The large width of the undersmoothed intervals is ap-
parent but also their unusual/unsmooth shape as a func-
tion of x. Table 7 confirms that the uncorrected intervals
tend to undercover. Both the undersmoothed and the bias-
corrected intervals achieve good coverage but the latter
have half the (average) width, so they are preferable.

EXAMPLE 5.2 (χ2 density estimation). In this exam-
ple, we generate i.i.d. random variables X1, ...,Xn with
X1 having a χ2 distribution with 5 degrees of freedom.
The result is demonstrated in figure 3 and table 8. As be-
fore the width of the undersmoothed confidence interval-
s is too large compared to the bias-corrected confidence
intervals while both construction yield good coverage.
As in example 5.1, the confidence intervals without bias-
correction tend to have undercoverage issues.

EXAMPLE 5.3 (Mixed normal density estimation).
In this example, we generate i.i.d. random variables
X1, ...,Xn from a mixed normal density given by

(34) h(x) = 0.3f1(x) + 0.3f2(x) + 0.4f3(x);

here f1(x) is a normal density with mean−2 and variance
1, f2(x) is a normal density with mean 1 and variance 4,
f3(x) is a normal density with mean 2 and variance 1.

(a) Undersmooth

(b) Bias-corrected

(c) Without bias-correction

FIG 2. 95% point-wise confidence intervals for the kernel density esti-
mator. The setting coincides with table 7.
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(a) Undersmooth

(b) Bias-corrected

(c) Without bias-correction

FIG 3. 95% point-wise confidence intervals for the kernel density esti-
mator. The setting coincides with table 8.

TABLE 8
Empirical coverage (CVR) and average length (LEN) of 95%

confidence intervals according to different methods. The data is
generated by χ2 distribution with 5 degrees of freedom. We estimate
the density at x= 3.0. The sample size is n= 200 and the number of

repetitions is 1000.

Undersmooth Bias-corrected Without BC

Data type CVR LEN CVR LEN CVR LEN

ST METHOD 94.9% 0.140 96.2% 0.061 88.8% 0.061
VS METHOD 95.7% 0.140 96.7% 0.061 90.5% 0.061
CR METHOD 96.2% 0.144 96.6% 0.061 92.6% 0.061

The mixed normal example is meant to be more chal-
lenging than the previous two. To make it even more
challenging, we estimate the density at x = 2.0 which is
the point of maximum curvature, and therefore maximum
(absolute) bias. The results are shown in figure 4 and ta-
ble 9. They are qualitatively similar to the previous two
example, albeit here the Bias-corrected intervals do not
fully capture the large bias and exhibit undercoverage.

TABLE 9
Empirical coverage (CVR) and average length (LEN) of 95%

confidence intervals according to different methods. The data is
generated by mixed normal distribution described in example 5.3. We
estimate the density at x= 2.0. The sample size is n= 500 and the

number of repetitions is 1000.

Undersmoothed Bias-corrected Without BC

Data type CVR LEN CVR LEN CVR LEN

ST METHOD 94.2% 0.141 87.2% 0.061 81.7% 0.061
VS METHOD 94.8% 0.141 88.2% 0.061 83.2% 0.061
CR METHOD 95.5% 0.143 88.5% 0.061 84.4% 0.061

As a summary, in the numerical experiments, the un-
dersmoothed confidence intervals have the desired cov-
erage probability but large width and unusual functional
shape. On the other hand, the bias-corrected confidence
intervals may yield slight undercoverage in a “difficult”
example such as the mixed normal. However, their width
is significantly smaller than the undersmoothed ones. The
comparison between the bias-corrected confidence inter-
vals and the confidence intervals without bias-correction
shows that the bias of eq. (33) is not negligible if the
practitioner adopts the optimal bandwidth, e.g., the band-
width chosen via section 3.2 of Politis (2003); the bias-
correction procedure would be needed in order to obtain
a consistent confidence interval when employing the op-
timal rate for the bandwidth.

All in all, it seems that the bias corrected interval-
s (using optimal smoothing) are preferable to the un-
dersmoothed ones. This goes against the recommenda-
tion of Hall (1992b) but note that our bias correction is
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(a) Undersmooth

(b) Bias-corrected

(c) Without bias-correction

FIG 4. 95% point-wise confidence intervals for the kernel density esti-
mator. The setting coincides with table 9.

achieved using estimates of bias derived from flat-top k-
ernels. By contrast, Hall (1992b) was deriving estimates
of bias derived from second order kernels using a different
bandwidth—a different technology.

Furthermore, the three methods ST, VS, and CR are
roughly comparable in the density estimation simulation
experiments. The CR method may yield slightly larger
coverage but the effect does not seem appreciable—at
least in the examples considered here.

6. APPLICATION: SPECTRAL DENSITY ESTIMATION

Let X1, · · · ,Xn be a stretch of a strictly stationary time
series with mean 0, autocovariance γ(k) =Cov(X0,Xk)
that is absolutely summable, and spectral density

f(λ) =
1

2π

∞∑
k=−∞

γ(k) exp(ikλ)

Define the periodogram

(35)

I(λ) =
1

2π

n∑
k=−n

γ̂(k) exp(ikλ)

with γ̂(k) =
1

n

n−|k|∑
t=1

XtXt+|k|

Note that I(λ) is approximately unbiased for f(λ) for λ ∈
(0, π) if

∑∞
k=0 k|γ(k)|<∞; however, it is not consistent.

In fact, under standard conditions,

I(λ)

f(λ)

L
=⇒ exp(1) as n→∞

for any fixed λ ∈ (0, π); see e.g. Proposition 10.3.2 in
Brockwel and Davis (1991).

To create a consistent estimator of f(λ) for some fixed
λ ∈ [0, π], we can taper the sample autocovariances before
creating the Fourier series, i.e., let

Iweight(λ) =
1

2π

n∑
k=−n

γ̂(k)×A(kh) exp(ikλ)

here A(·) : R→ [0,∞) is an even, Lipschitz continuous
function with support [−1,1] and A(0) = 1. In the time
series literature, A(·) is called a ‘lag-window’, see e.g.,
Politis and Romano (1995).

If we define W (λ) = 1
2π

∑n
k=−nA(kh) exp(i × kλ),

then we have

(36) Iweight(λ) =

∫ π

−π
I(x)W (λ− x)dx.

W (λ) is called the ‘spectral window’. Since convolu-
tion is a smoothing operation, it follows that Iweight
is a smoothed version of the periodogram. Assume
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limx→0 x
−2×(1−A(x)) = cA 6= 0 exists,

∑
k∈Z k

2|γ(k)|<
∞, and 1

h = o(n1/3). Then,

(37)
1

h2
(EIweight(λ)− f(λ))→ cAf

′′(λ);

see Shao and Wu (2007) who also show under standard
conditions that

(38) τn (Iweight(λ)−EIweight(λ))
L

=⇒N(0, f2(λ))

where

τn =

√
nh

(1 + κ(λ))×
∫ 1
−1A

2(x)dx

and

κ(λ) =

{
1 if λ= kπ,k ∈Z
0 otherwise.

Notice that

(39)

τn (Iweight(λ)− f(λ))

= τn (Iweight(λ)−EIweight(λ))

+τn (EIweight(λ)− f(λ)) .

if we adopt an ‘under-smoothing’ choice of bandwidth,
i.e., h = o(n−1/5), then the bias of Iweight(λ) is asymp-
totically negligible, and we can write

(40)
τn (Iweight(λ)− f(λ))

L
=⇒N(0, f2(λ))

as nh→∞

According to (36)—and in particular its Riemann sum
approximation over the grid of Fourier frequencies—,
Iweight(λ) is a weighted average of periodogram ordi-
nates I(x) that are asymptotically independent and ex-
ponentially distributed; see also Ch. 9 of McElroy and
Politis (2020). Hence, it is hardly surprising that the limit
law (40) falls under the framework of Case 2 in Section
2. Consequently, an asymptotic (1−α) 100% confidence
interval for θ = f(λ) based on the CR method is given by
eq. (12) with θ̂n = Iweight(λ). In addition, the ST interval
(4) and the VS interval (7) can be constructed as well; the
variance stabilizing transformation here is g(x) = logx,
as in the Gamma example.

Note that the MSE-optimal bandwidth in construct-
ing estimator Iweight(λ) has the order n−1/5; see Politis
(2003) for details. Hence, we could undersmooth, by us-
ing a bandwidth of order o(n−1/5). If we wish to use a
bandwidth that has order n−1/5, then, according to (37),
the bias would not be negligible; in this case, we would
need to estimate the bias and construct the associated
bias-corrected confidence intervals analogously to Sec-
tion 5.3. To estimate the bias, this section adopts the esti-
mator proposed in Politis (2003) based on a flat-top kernel
estimate of f ′′(λ).

REMARK 6.1. As in Section 5.1, to estimate f ′′(·) ac-
curately we would need to additionally assume that f(·) is
(at least) four times continuously differentiable, with 4th
derivative satisfying a Lipschitz condition.

In order to use the results in Politis (2003) and Shao and
Wu (2007), the lag-window A(·) should be even, Lips-
chitz continuous, and yield a nonnegative spectral win-
dow (i.e.,W (λ)≥ 0 for all λ). These conditions are easily
achievable, e.g., the Parzen kernel

A(x) =


1− 6|x|2 + 6|x|3, |x|< 1/2

2× (1− |x|)3, 1/2≤ |x|< 1

0, otherwise

can meet all requirements; see e.g. Ch. 10 of Brockwell
and Davis (1991).

Note that eq. (38) brings us to the set-up of Remark 2.2
with θ = f(λ) and θ̂n = Iweight(λ) if we use a bandwidth
h of optimal order, i.e., proportional to n−1/5. Then,

τn (EIweight(λ)− f(λ))→ τnh
2cAf

′′(λ)≡ b(θ)

where the above serves as the definition of b(θ) in the
spectral density case. Now let θ̃n = Ĩ(λ) where Ĩ(λ) is a
flat-top estimator of f with bandwidth chosen as detailed
in Politis (2003).

The procedure outlined in Remark 2.2 can now be fol-
lowed verbatim leading to bias-corrected confidence in-
tervals for θ using any of the three methods: ST, VS or
CR; the latter would follow the framework of Case 2 in
Section 2. Importantly, the data-based optimal bandwidth
h̃ can be used for Iweight (and for τn) throughout this con-
struction. In practice, the bandwidth h̃ can be obtained vi-
a section 2.2 of Politis (2003), using an optimally tuned
flat-top estimator of f ′′(·).

EXAMPLE 6.1 (Moving average process). Suppose
the data X1, ...,Xn come from a moving average process
Xi = εi+0.9εi−1−0.5εi−2−0.3εi−3 where εi are i.i.d. s-
tandard normal. In this case, the spectral density is given
by

f(λ) =
1

2π
|1 + 0.9e−iλ − 0.5e−2iλ − 0.3e−3iλ|2

We estimate the spectral density at point λ = π/3 with
a sample size of 400. The result is demonstrated in table
10. The bandwidth h̃ for the ‘bias correction method’ is
chosen using section 2.2 of Politis (2003); while the band-
width for the ‘undersmooth’ method is chosen simply as
h̃/2.0.

A visual representation of these processes is provid-
ed in figure 5 that plots the spectral density f(λ) for
λ ∈ [−π,π], the different confidence intervals of level
95%, as well as the estimator on which the confidence
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intervals are based, i.e., the center of the intervals. The
confidence intervals are point-wise, meaning a 95% con-
fidence interval was constructed at each of the Fourier
frequencies. Figure 5 is constructed from just one of the
1000 realizations of the process; its purpose is to illustrate
the issues at hand.

The large width of the undersmoothed intervals is ap-
parent but also their unusual/unsmooth shape as a func-
tion of λ. For the particular realization involved, there is
little pictorial difference between the bias corrected and
the uncorrected processes although we know —both from
theory as well as table 10– that the uncorrected confi-
dence intervals will tend to undercover. The situation is
analogous to the probability density case; it looks like op-
timal smoothing with bias correction is preferable to un-
dersmoothing as regards confidence interval construction.

TABLE 10
Empirical coverage (CVR) and average length (LEN) of 95%

confidence intervals for the spectral density estimator of the moving
average process. The data generation mechanism coincides with

example 6.1. We estimate the spectral density at λ= π/3. The sample
size is n= 400 and the number of repetitions is 1000.

Undersmooth Bias-corrected Without BC

Data type CVR LEN CVR LEN CVR LEN

ST METHOD 89.2% 0.465 95.3% 0.316 80.4% 0.316
VS METHOD 93.4% 0.476 94.2% 0.319 83.2% 0.319
CR METHOD 95.3% 0.541 93.0% 0.339 86.5% 0.339

EXAMPLE 6.2 (Autoregressive process). Suppose
X1, ...,Xn satisfy an autoregressive processXi = 0.7Xi−1+
εi where εi are i.i.d. standard normal. In this example, the
true spectral density is f(λ) = 1

2π ×
1

1.49−1.4cos(λ) . We
estimate the spectral density at point λ = π/3. The sam-
ple size is 400 and the bandwidth h̃ for ‘bias correction
method’ is chosen via section 2.2 of Politis (2003); the
bandwidth for ‘undersmooth method’ is chosen as h̃/2.0.
The result is demonstrated in figure 6 and table 11.

TABLE 11
Empirical coverage (CVR) and average length (LEN) of 95%
confidence intervals for the spectral density estimator of the

autoregressive process. The data generation mechanism coincides
with example 6.2. We estimate the spectral density at λ= π/3. The

sample size is n= 400 and the number of repetitions is 1000.

Undersmooth Bias-corrected Without BC

Data type CVR LEN CVR LEN CVR LEN

ST METHOD 93.0% 0.467 93.8% 0.343 90.3% 0.343
VS METHOD 94.3% 0.490 95.0% 0.351 88.4% 0.351
CR METHOD 93.1% 0.680 95.1% 0.403 86.4% 0.403

(a) Undersmooth

(b) Bias correction

(c) Without bias correction

FIG 5. 95% point-wise confidence intervals for the kernel spectral
density estimator. The setting coincides with example 6.1.
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(a) Undersmooth

(b) Bias correction

(c) Without bias correction

FIG 6. 95% point-wise confidence intervals for the kernel spectral
density estimator. The setting coincides with example 6.2.

EXAMPLE 6.3 (ARMA model). Suppose X1, ...,Xn

satisfy an ARMA process Xi = 0.7Xi−1 + εi + 0.7εi−1
where εi are i.i.d. standard normal. In this case, the spec-
tral density is given by f(λ) = 1

2π ×
1.49+1.4cos(λ)
1.49−1.4cos(λ) . We

estimate the spectral density at point λ= π/3 with a sam-
ple size of 400. The result is demonstrated in table 12 and
figure 7. The bandwidth h̃ for ‘bias correction method’
is chosen using section 2.2 of Politis (2003), while the
bandwidth for the ‘undersmooth’ method is again chosen
as h̃/2.0.

TABLE 12
Empirical coverage (CVR) and average length (LEN) of 95%
confidence intervals for the spectral density estimator of the

autoregressive process. The data generation mechanism coincides
with example 6.3. We estimate the spectral density at λ= π/3. The

sample size is n= 400 and the number of repetitions is 1000.

Undersmooth Bias-corrected Without BC

Data type CVR LEN CVR LEN CVR LEN

ST METHOD 93.0% 0.198 93.3% 0.146 88.7% 0.146
VS METHOD 93.4% 0.206 95.3% 0.149 88.2% 0.149
CR METHOD 94.4% 0.271 95.2% 0.168 86.4% 0.168

The numerical experiments portray a similar situation
as in section 5.3, i.e., the undersmoothed confidence in-
tervals have coverage probability close to nominal but
large width. The bias-corrected confidence intervals have
smaller width and acceptable coverage—with a tendency
towards undercoverage. Optimal smoothing without bias
correction is not recommendable.
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