In the problems below, \(X = (X_n)_{n=0}^\infty \) is a Markov chain with countable state space \(S \) and transition probability matrix \(P = \{p(x, y)\}_{x, y \in S} \). We suppose that \(X \) has been constructed on the sequence space \(\Omega = E^{\{0,1,2,\ldots\}} \), and that \(\mathbb{P}_x \) is the probability measure on \(\Omega \) corresponding to the initial condition \(X_0 = x \). \(\mathbb{N}_0 \) denotes the non-negative integers \(\{0, 1, 2, \ldots\} \). Other notation is that used in class.

Problems (or parts of problems) marked with a * should be attempted, but need not be handed in.

1. Consider a function \(h : S \to [0, \infty) \) and a real number \(\alpha > 0 \) such that \(\sum_{y \in S} p(x, y)h(y) = \alpha \cdot h(x) \) for all \(x \in S \) (briefly, \(Ph = \alpha h \)). Equivalently, \(\mathbb{E}_x[h(X_1)] = \alpha \cdot h(x) \) for all \(x \in S \). (Such a function might be called \(\alpha \)-invariant.)

 (a) Show that the sequence \(\alpha^{-n}h(X_n), n \geq 0 \), is a martingale (under \(\mathbb{P}_\mu \) for any initial distribution \(\mu \) with \(\mu \cdot h = \sum_{x \in S} \mu(x)h(x) < \infty \)).

 (b) Suppose now that each state of \(S \) is recurrent. Show that if \(0 < \alpha < 1 \), then \(h(x) = 0 \) for all \(x \in S \). [Hint: Use the Martingale Convergence Theorem, and consider the sequence of numbers

 \[h(X_0(\omega)), h(X_1(\omega))/\alpha, h(X_2(\omega))/\alpha^2, \ldots \]

 for a “good” \(\omega \).]

2. Space-time invariant functions. The tail \(\sigma \)-field of \(X \) is

 \[\mathcal{T} = \cap_n \theta_n^{-1}(\mathcal{F}). \]

Let \(Z \) be a bounded \(\mathcal{T} \)-measurable random variable. Then for each positive integer \(n \) there exists a unique bounded random variable \(Z_n \) such that \(Z = Z_n \circ \theta_n \). [This uniqueness guarantees that \(Z_{n+1} \circ \theta_1 = Z_n \) for all \(n \in \mathbb{N} \), because either of these random variables when composed with \(\theta_n \) yields \(Z \).] Define \(h(x, n) := \mathbb{E}_x[Z_n] \).

 (a) Show that \(h \) is a space-time invariant function, in the sense that

 \[\sum_y p(x, y)h(y, n + 1) = h(x, n) \]

for all \(x \in S \) and all \(n \in \mathbb{N}_0 \). Deduce that \(h(X_n, n + m) \) is a \(\mathbb{P}_\mu \)-martingale, for every initial distribution \(\mu \) and every \(m \in \mathbb{N}_0 \).

 (b) Conversely, suppose that \(g(x, n) \) is a bounded function on \(S \times \mathbb{N}_0 \) such that

 \[\sum_y p(x, y)g(y, n + 1) = g(x, n) \]

for all \(x \in S \) and all \(n \in \mathbb{N}_0 \). By part (a), \(g(X_n, n + m) \) is a \(\mathbb{P}_\mu \)-martingale for every initial distribution \(\mu \) and every \(m \in \mathbb{N}_0 \). Define \(Y_m := \liminf_{n \to \infty} g(X_n, n + m) \), a \(\mathcal{T} \)-measurable random
variable for each \(m \in \mathbb{N}_0 \). Show that if we set \(Y := Y_0 \), then \(Y = Y_m \circ \theta_m \) and \(g(x, m) = \mathbb{E}_x[Y_m] \), for each \(x \in S \) and each \(n \in \mathbb{N}_0 \).

*(c) Parts (a) and (b) establish a one-to-one correspondence between the class of bounded \(T \)-measurable functions and the class of bounded space-time invariant functions. Use this correspondence to prove that \(T \) is trivial (i.e., that \(P_\mu(A) = 0 \) or \(1 \), for all \(A \in T \) and all initial distributions \(\mu \)) if and only if all bounded space-time invariant functions are constant.

3. A knight moves on a \(8 \times 8 \) “chessboard,” at each step choosing randomly from his legal moves. What is the expected number of moves required for the knight to return to his original position, assuming he starts in a corner? [A knight’s move is L-shaped: one step in one direction followed by two steps in a perpendicular direction.]

4. Assume that \(X \) is irreducible. Suppose there is a finite set \(F \subset S \), a function \(w : S \to [0, \infty) \) with \(P_w(x) < \infty \) for all \(x \in F \), and a constant \(b > 0 \) such that \(P_w(x) \leq w(x) - b \) for all \(x \not\in F \). Define \(D := \inf\{n \geq 0 : X_n \in F \} \).

(a) Show that \(w(X_{n \wedge D}) + b \cdot (n \wedge D) \) is a non-negative supermartingale, under \(P_x \) for each \(x \in S \).

(b) Deduce from (a) that \(\mathbb{E}_x[D] \leq w(x)/b \) for all \(x \in S \).

(c) Deduce from (b) that \(X \) is positive recurrent.