Thm 1. Let $T \in GL(n, \mathbb{R})$.

(i) $E \in L^n \Rightarrow T(E) \in L^n$ and
$m(T(E)) = |\det T| m(E)$.

(ii) $f \in L^n$ meas. $\Rightarrow f \circ T \in L^n$ meas.
If $f \in L^1$ or L^∞, then

$\int f \circ T \, dm = |\det T| \int f \, dm$

Pf. We first recall that any $T \in GL(n, \mathbb{R})$
can be written as $T = S_1 \circ S_2 \circ \ldots \circ S_m$, where
the S_j are elementary matrices, i.e. of the form:

(I) $S = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} = 2 \ \text{def} \ S = c$

(II) $S = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & -1 \end{pmatrix} \Rightarrow \text{def} \ S = -1$

(III) $S = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} \Rightarrow \text{def} \ S = 1
For proof, first establish \((\mathcal{C})\) for \(f\) \(B\)-meas., and elementary matrices \(T\). Since \(T\) is cont., \(f \circ T\) is \(B\)-meas.

We check integral when \(f \in L^1\) or \(L^1\) for each elementary type of \(T\):

(I) Using FT we get

\[
\int (f \circ T) \, dm = \int \ldots \int (S f (c x_j)) \, dx_j \wedge dx_j \ldots dx_j \ldots dx_n
\]

\[
= \left| c_1 \right|^2 \int f \, dm = |\text{det } T|^{-1} \int f \, dm
\]

Corollary of Thm 1.21: \(\{m'(t E) = |t| m'(C E)\}

in \(1-D\) as in \(m'(a + E) = m'(CE)\) .

Proof of Thm 1.

(II) \(\int (f \circ T) \, dm = \int f \, dm\) by FT

swap order \(i \leftrightarrow j\).

and \(|\text{det } T| = |-1| = 1\)
\[(iii) \quad S(f \circ T) \, dm = \underbrace{S \left(\int x_j \, dx_j \right)}_{= S f \, dx_j \text{ by Thm 1.21}} \, \, dx_j \\
= S f \, dm \, , \text{ and } |\det T| = 1. \]

Now, for any \(T = S_1 \circ \ldots \circ S_m \, , \, S_j \text{ elem.} \)

\[S f \, dm = |\det S_1| \, S f \circ S_1 \, dm = \ldots \]

\[\underbrace{|\det S_1 \ldots \det S_m|}_1 \, S f \circ S_1 \circ \ldots \circ S_m \, dm \]

\[= |\det T| \, S f \circ T \, dm \, . \]

Thus, we have established (ii) for \(f \in B_{\mathbb{R}^n} \)-meas. \(\Rightarrow \) (i) for \(E \subset B_{\mathbb{R}^n} \)

\(\chi_E(Tx) = \chi_{T^{-1}E}(x) \)
In particular, \(m(N) = 0 \iff m(IN) = 0 \) for all \(N \subseteq B_R \). The extension of (i) to all \(E \subseteq L^1 \) follows as in pf of Thm 1. \(\Rightarrow \) (i) holds for \(f = \chi_E \) all \(E \subseteq L^1 \) \(\Rightarrow \) for all \(f = \phi \) simple \(L^1 \)-meas. MCT + DCT \(\Rightarrow \forall f \) as in Thm 1.
Change of variables.

Let \(\Omega \subseteq \mathbb{R}^n \) open, \(F: \Omega \to \mathbb{R}^n \) a \(C^1 \) map (\(\frac{\partial F}{\partial x_j} = F_{x_j} \) exist + cont.). Let \(DF_x \) denote linear map \(\mathbb{R}^n \to \mathbb{R}^n \) given by matrix of partial derivatives at \(x \). If \(\det DF_x \neq 0, \forall x \in \Omega \), then by Inverse Function Theorem, \(F(\Omega) \subseteq \mathbb{R}^n \) is open.

Def! \(F \) is a diffeomorphism \(\Omega \to \Omega' \) if \(\Omega' = F(\Omega) \) and \(F \) is invertible with \(F^{-1} \) being \(C^1 \).

Rev. By IFT, suffices that \(\det DF_x \neq 0 \) and \(F \) injective.
Thm 2. Let \(\Omega \subseteq \mathbb{R}^n \) be open, \(F: \Omega \to \mathbb{R}^n \) a diffeomorphism.

(ii) \(E \subseteq \mathbb{R}^n \Rightarrow F(E) \subseteq \mathbb{R}^n \) and
\[
\mu(F(E)) = \frac{1}{|\det Df|} \int_E \mu(E)
\]

(iii) \(f \in L^1(\mathbb{R}^n) \Rightarrow f \circ F \) is \(L^1 \)-meas. on \(\Omega \). If \(f \in L^1 \) or \(L^\infty \) then
\[
\int_{\Omega'} f \, dm = \int_{\Omega} (f \circ F) |\det Df| \, dm
\]

PF. By similar arguments to the pf of Thm 1, suffices to prove the result for \(B_{\mathbb{R}^n} \) and \(B_{\mathbb{R}^n} \)-meas. \(f \). Also, (i) \(\Rightarrow \) (iii) so suffices to prove (iii).

We shall need the following:

Lemma 1. Let \(\Omega \subseteq \mathbb{R}^n \) open. Then \(\Omega \)

\(\{ B_{\mathbb{R}^n} \} \), closed equilateral cubes \(R_k \) w/ disjoint interiors, s.t. \(\Omega = \bigcup_{k=1}^{\infty} R_k \).

PF. Construction using \(A(\Omega) \) from Lecture 23