Lecture 21.

Product measures. We shall define the product measure of 2 measure spaces \((X, \mathcal{M}, \mu)\) and \((Y, \mathcal{N}, \nu)\). An inductive procedure works for \(n\) spaces but we shall restrict to \(n=2\).

Recall. On \(X \times Y\), we have introduced the product \(\sigma\)-algebra \(\mathcal{M} \otimes \mathcal{N}\). In the \(\sigma\)-finite case, it is generated by \(A \times Y, A \in \mathcal{M}, B \in \mathcal{N}\). We shall define \(\mu \otimes \nu\) on \(\mathcal{M} \otimes \mathcal{N}\) by first defining a premeasure \(\pi\) on an algebra \(\mathcal{A}\) that generates \(\mathcal{M} \otimes \mathcal{N}\).

1. The collection of rectangles \(A \times B\) as above is an elementary family.

Prop. 7 \(\Rightarrow\) \(\mathcal{A} = \{\text{finite disjoint unions of such}\}\) is an algebra.
Given disjoint union $\bigcup_{n=1}^{\infty} A_n \times B_n$ in \mathcal{A}, let

$$\Pi\left(\bigcup_{n=1}^{\infty} A_n \times B_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \nu(B_n).$$

Then, Π is well-defined on \mathcal{A} (check drift representation gives same result; cf. before) and Π is a premeasure; Note that if $\bigcup_{n=1}^{\infty} A_n \times B_n$ a disjoint union in \mathcal{A}

then $\varphi_n(x,y) = \sum_{n=1}^{\infty} \chi_{A_n}(x) \chi_{B_n}(y)$ is

a simple function separately in x,y, in $L^+(X), L^+(Y)$, and $\varphi_n \rightarrow \varphi = \sum_{n=1}^{\infty} \chi_{A_n} \chi_{B_n}.$

Since $\bigcup_{n=1}^{\infty} A_n \times B_n$ in \mathcal{A} it is a finite disjoint union of rectangles. Assume, for simplicity that it is just $A \times B$ ($m=1$; the general case can be reduced to this). Then, $\chi_{A \times B}(x,y) = \sum_{n=1}^{\infty} \chi_{A_n}(x) \chi_{B_n}(y)$.
Also, \(X_{A \times B}(x, y) = X_A(x) X_B(y) \).

Integrating in \(x \), by MCT \(\Rightarrow \)

\[
\mu(A) X_B(y) = \sum_{n=1}^{\infty} \mu(A_n) X_{B_n}(y)
\]

Integrating in \(y \) \(\Rightarrow \)

\[
\mu(A) \mu(B) = \sum_{n=1}^{\infty} \mu(A_n) \mu(B_n)
\]

Thus,

\[
\Pi(A \times B) = \mu(A) \mu(B) = \sum_{n=1}^{\infty} \Pi(A_n \times B_n).
\]

\(\Rightarrow \) \(\Pi \) is premeasure on \(\mathcal{A} \).

By "standard procedure", \(\Pi \rightarrow \) outer measure \(\rightarrow \) measure on \(M \otimes N \) which coincides w/ \(\Pi \) on \(\mathcal{A} \).

Def. This \(\Pi \) is the product measure \(\mu \times \nu \) on \(M \otimes N \).
Rem. When μ, ν are σ-finite, so is $\mu \times \nu$. In this case, $\mu \times \nu$ is the unique measure on $\mathcal{M} \mathcal{N}$ that coincides with ν on \mathcal{N}.

General set. Let $E \in \mathcal{M} \mathcal{N}$. Define x- and y-sections by

- $E_x = \{ y \in Y : (x,y) \in E \}$
- $E_y = \{ x \in X : (x,y) \in E \}$

For $f : X \times Y \to C$ (or \mathbb{R} or ...), let

$$f_{x}(y) = f(x,y) = f_{y}(x).$$

Prop. $E \in \mathcal{M} \mathcal{N} \Rightarrow \exists E_x \in \mathcal{N}, E_y \in \mathcal{M} \text{ for all } x, y$.

Pf. Let $\mathcal{C} = \{ \text{all } E \in X \times Y \text{ s.t. concl. holds} \}$.

Then, \mathcal{C} is a σ-algebra and contains $\mu \times \nu$.

-4-
all rectangles $\Rightarrow E \in M \otimes N$. Details are DIY.

Cor 1. $f \in M \otimes N$-meas. $\Rightarrow f_x, f_y$
are N- resp. M-meas. for all x, y.

Thm. Suppose $(X, M, \mu), (Y, N, \nu)$ are
finite. If $E \in M \otimes N$, then
$x \mapsto \nu(E_x), y \mapsto \mu(E_y)$ are M- resp.
N-measurable and

$$(\mu \times \nu)(E) = \int \mu(E_y) \, d\nu(y)$$

$$= \int \nu(E_x) \, d\mu(x).$$