Lecture 16

Recall: We are given a measure space (X, \mathcal{M}, μ). $L^1 = L^1(X, \mu)$ denotes the normed (metric) space of equivalence classes $[f]$ (ν means equal μ-a.e.) of integrable $f : X \to \mathbb{C}$. We still think of elements of L^1 as being functions (representatives), but only determined up to null sets. We can turn any statement "μ-a.e." to everywhere by multiplying those fns by $1_{\mathcal{N}}$, where \mathcal{N} is the null set. A fundamental result:

Dominated Convergence Theorem. Let

$\{f_n\}_{n=1}^{\infty} \subseteq L^1(X, \mu)$ and assume

1. $f_n \to f$ μ-a.e. and
2. $\exists g \in L^\infty(X, \mu)$ s.t. $|f_n| \leq g$ μ-a.e.

Then, $f \in L^1$ and $\int f = \lim_{n \to \infty} \int f_n$.

-1-
\textbf{Pf.} Per above, \(f \) is meas. (after possibly modifying it on a null set), and \(\|f\| \leq g \Rightarrow \|f\| \leq \|g\| \Rightarrow f \in L^1 \). If we write \(f_n = u_n + iv_n \Rightarrow f = u + iv \), then \(u_n \to u, v_n \to v \) a.e. and it suffices to show \(su_n \to su, sv_n \to sv \). We have, by assumption, that \(g = u_n \in L^1 \). By Fatou's,

\[Sg = Su + Sv \leq \liminf_{n \to \infty} S_{u_n} \]

\[\Rightarrow Su \leq \liminf_{n \to \infty} S_{u_n} \]

\[\Rightarrow Su \geq \limsup_{n \to \infty} S_{u_n} \]

\[\Rightarrow \limsup_{n \to \infty} S_{u_n} \leq Su \leq \liminf_{n \to \infty} S_{u_n} \]

which of course yields \(Su = \lim_{n \to \infty} S_{u_n} \). Similarly for \(v_n, v \).
As a result, we have powerful convergence results not available in Rieman’s theory of integrals.

Thus 1. Let \(f : [a, b] \rightarrow \mathbb{C} \) be s.t.

\(f_t = f(\cdot, t) \) integrable for each \(t \in [a, b] \)

and let \(F : [a, b] \rightarrow \mathbb{C} \) be given by

\[
F(t) = \int_{a}^{b} f_t(x) \, dx \tag{1}
\]

Then:

(i) If \(\lim_{t \to t_0} f_t = f_{t_0} \quad \forall x \)

\(\exists \, g \text{ s.t. } |f_t| \leq g, \quad \forall x, t, \) then

\[
\lim_{t \to t_0} F_t = F_{t_0}
\]

(i.e. \(\lim_{t \to t_0} \int_{a}^{b} f_t(x) \, dx \) = \(\int_{a}^{b} f_{t_0}(x) \, dx \)
(ii) If $t \to f_t(x)$ is diff. $\forall x$ and $\exists g(\text{ s.t. } \left| \frac{\partial f_t}{\partial t} \right| \leq g(\text{ } \forall x, t)$, then F is diff. and

$$\frac{dF}{dt} = \int f_t \frac{df_t}{dt} \, dx$$

(i.e. $\frac{d}{dt} \int f_t(x,t) \, dx(x) = \int \frac{df_t}{dt}(x,t) \, dx(x)$)

Rem. In this time, we are assuming that conditions hold $\forall x$ and not a.e. x. Why? For seq. $|f_n| \leq g$ a.e. = $\exists \text{ null set } N_n \text{ s.t. } |f_n| \leq g$ on N_n. Then $N = \bigcup_{n=1}^{\infty} N_n$ is also null and $|f_n| \leq g$ on $N \setminus N_n \forall n$. But if $|f_n| \leq g$ a.e. for all $t \in [a,b]$, then $\exists N_n \text{ s.t. } |f_n| \leq g$ on N_n but $N = \bigcup_{n=1}^{\infty} N_n$ need not be null. One should formulate a.e. versions but would need to be more careful.
Pf. (i) follows immediately from DCT once you recall that \(\lim_{t \to 0} h(t) = Y \)
\[\Rightarrow \forall \{t_n\}_{n=1}^{\infty}, \text{ s.t. } t_n \to 0 \text{ we have } \lim_{n \to \infty} h(t_n) = Y. \]

(ii) Need to check, for \(t_n \to 0 \), that
\[F(t_0 + t_n) - F(t_0) - \int_{t_n}^{t_0} \frac{\partial F}{\partial x}(x, t_0) \, dx (x) \to 0 \]
\[\left(\int_{t_n}^{t_0} \left(\frac{f(x, t_0 + t_n) - f(x, t_0)}{t_n} - \frac{\partial F}{\partial x}(x, t_0) \right) \, dx (x) \right) \]
\[h_n(x) \]
Since \(t \to f(x) \) is diff., by Mean Value Theorem
\[\left| f(x, t_0 + h) - f(x, t_0) \right| \leq \sup_{h \in [t_0, t_0 + h]} \left| \frac{\partial f}{\partial x}(x, t_0) \right| \]
\[\Rightarrow |h_n(x)| \leq 2g. \text{ Since } h_n \to 0, \forall x, \text{ the conclusion (i) follows}, \text{ again by DCT.} \]