Integration of C-valued fees. (X, M, μ) given.

First, if $f : X \to \mathbb{R}$ is decomposed $f = f^+ - f^-$, then $f^+, f^- \in L^+$, so Sf^+, Sf^- are defined.

If $Sf^+ < \infty$ or $Sf^- < \infty$, we may define

$$Sf = Sf^+ - Sf^-.$$

Def 1. (i) If $Sf^+ < \infty$ and $Sf^- < \infty$ (or equivalently $S|f| < \infty$), then we say f is integrable.

(ii) If $f : X \to \mathbb{C}$, we may decompose $f = u + iv$, where $u, v : X \to \mathbb{R}$. We say f is integrable if u, v are integrable and define

$$Sf = Su + i Sv.$$
We shall use notation \(L^{1}(X,\mu) = L^{1}(\mu) = L^{1} \) for space of \(\mathbb{C} \)-valued integrable fns.

Obs. \(L^{1}(X,\mu) \) is a vector space / \(\mathbb{C} \) and \(S: L^{1} \to \mathbb{C} \) is linear.

Prop. Let \(f, g \in L^{1}(X,\mu) \).

(i) \(|Sf| \leq |Sg| \)

(ii) \(\{ x : f(x) \neq 0 \} \) is \(\sigma \)-finite.

(iii) \(Sf = Sg, \forall E \in \mathcal{M} \iff f = g \mu \text{-a.e.} \)

Pr. (i) \(\text{D.I.Y.} \)

(ii) Part of HW.

(iii) Let \(h = f - g \). Since \(h = 0 \iff |h| = 0 \), we see \(h = 0 \iff S|h| = 0 \) by Folland Prop. 2.16 and hence \(S|h| = 0, \forall E \in \mathcal{M} \) by monotonicity. Since \(S|h| = 0 \), \(\forall E \) then follows by (i). Thus, "\(\iff \)" is proved.
To establish converse, suppose \(h \neq 0 \) on \(E \) w/ \(\mu(E) > 0 \). Writing \(h = u^+i^+v = u^-i^-i(v+v) \) we note at least one of \(u^+, u^-, v^+, v^- \) must be > 0 on \(E \). Suppose \(u^+ > 0 \) on \(E \). Then, \(u^- = 0 \) on \(E \) and \(Su > 0 \) by Prop 2.16
\[\Rightarrow \text{Re} \left(\frac{\text{Sh}}{E} \right) > 0 \Rightarrow \frac{\text{Sh}}{E} \neq 0 \text{; proving } \Rightarrow \text{.} \]

At this point, let us modify our def. of \(L^1(x, \mu) \). For \(f, g : X \to C \) integrable, we say \(f \sim g \) if \(f = g \; \mu\text{-a.e.} \) and let
\[L^1(x, \mu) = \left\{ \left[f \right] : f : X \to C \text{ integrable} \right\}. \]

Then \(L^1 \) is still a vector space / \(C \) and \(S : L^1 \to C \) is a well-defined linear functional. We make \(L^1 \) into a normed (metric) space by.
\[\|f\|_{L^1} = \sup_{x \in X} |f(x)|. \]

(Prop?) by
Thus, the metric is \(d(f, g) = \| f - g \|_{L^1} \).

Note: Even though elements of \(L^1 \) are eq. classes, we speak of "functions" in \(L^1 \) referring to some repr. of the eq. class.

(2) This avoids the issue that may arise if \(\mu \) is not complete: If \(\{f_n\} \) is a seq. of meas. funct. s.t. \(f_n \rightarrow f \) \(\mu \)-a.e., \(f \) need not be meas. but if \(f_n \rightarrow f \) on \(E \) w/ \(\mu(E^c) = 0 \), then \(\mathcal{X} f_n \rightarrow \mathcal{X} f \) everywhere, so \(\mathcal{X} f \) is meas. and \(\mathcal{X} f = f \) \(\mu \)-a.e.

A fundamental convergence result:

Dominated Convergence Theorem. Let \(\{f_n\} \subseteq L^1(\mathcal{X}, \mu) \) s.t. \(f_n \rightarrow f \) \(\mu \)-a.e. and \(\exists g \in L^1 \) s.t. \(|f_n| \leq g \) \(\mu \)-a.e. Then, \(f \in L^1 \) and \(\mathcal{S} f = \lim_{n \rightarrow \infty} \mathcal{S} f_n \).