
Some Practice Problems involving Green’s, Stokes’, Gauss’ theorems.

1. Let x(t) = (a cos t2, b sin t2) with a, b > 0 for 0 ≤ t ≤ √2π CalculateR
x
xdy. Hint: cos2 t = 1+cos 2t

2 .

Solution1. We can reparametrize without changing the integral using u =
t2. Thus we can replace the parametrized curve with y(t) = (a cosu, b sinu),
0 ≤ u ≤ 2π. Thus we are being asked to calculateZ 2π

0

a cos(u)b cosudu = ab

Z 2π

0

cos2(u)du =
ab

2

Z 2π

0

(1 + cos 2u)du = abπ.

Solution2. The the curve is the boundary of the ellipse x2

a2 +
y2

b2 = 1 oriented
counter clockwise. So since xdy =Mdx+Ndy with M = 0 and N = x and so
∂N
∂x − ∂M

∂y = 1 Green’s theorem implies that the integral is the area of the inside
of the ellipse which is abπ.

2. Let F =−yi+xjx2+y2

a) Use Green’s theorem to explain whyZ
x

F · ds = 0

if x is the boundary of a domain that doesn’t contain 0.
In this case we haveM = −y

x2+y2 ,N = x
x2+y2 so

∂N
∂x =

1
x2+y2− 2x2

(x2+y2)2 ,
∂M
∂y =

−1
x2+y2 +

2y2

(x2+y2)2 so

∂N

∂x
− ∂M

∂y
=

2

x2 + y2
− 2x2

(x2 + y2)2
− 2y2

(x2 + y2)2
= 0.

We can thus apply Green’s theorem and find that the corresponding double
integral is 0.
b) Let x(t) = (cos t, 3 sin t), 0 ≤ t ≤ 2π. and F =−yi+xjx2+y2 . Calculate

R
x
F · ds.

Hint: Consider the domain between x and the circle y(t) = (cos t, sin t). Use
part a) to see that

R
x
F · ds = R

y
F · ds.

We consider the path gotten by following x(t) from 0 to π and then y(t)
from π back to 0. This bounds a crescent shaped region that doesn’t contain
(0, 0). Thus the integral around the boundary is 0 by part a). We next follow
y(t) from 2π to π and then x(t) from π to 2π this path encloses a region that
doesn’t contain 0. So this path integral is also equal. But the sum of this two
path integrals is

R
x
F · ds− R

y
F · ds. So R

x
F · ds = R

y
F · ds. On the path y(t),

x2 + y2 = 1 and −ydx+ xdy = cos2 tdt+ sin2 tdt = dt. Thus the integral isZ 2π

0

dt = 2π.
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3. Which if the following vector fields is of the form ∇f? If it is compute
an f.
a) F = x2i+ xyj.
If F = ∇f then F = M i + Nj with ∂N

∂x = ∂M
∂y . In this case M = x2 and

N = xy so ∂N
∂x − y and ∂M

∂y = 0 so F is not of the form ∇f .
b) F = x2i− y2j
M = x2 and N = −y2 so ∂N

∂x = 0 and
∂M
∂y = 0 since F is everywhere defined

we know that such an f exists. We have derived a formula:

f(x, y) =

Z x

0

M(x, 0)dx+

Z y

0

N(x, y)dy =
x3

3
− y3

3
.

One can check directly that ∇(x33 − y3

3 ) = F.
c) F = yi− xj
M = y and N = −x so ∂N

∂x = −1 and ∂M
∂y = 1 this implies there is no f .

d) F =
¡
3x2y + 2xy2

¢
i+

¡
x3 + 2x2y + 3y2

¢
j.

M = 3x2y+2xy2, N = x3+2x2y+3y2 so ∂N
∂x = 3x

2+4xy and ∂M
∂y = 3x

2+4xy
so we can use the method:

f(x, y) =
R x
0
M(x, 0)dx+

R y
0
N(x, y)dy = 0+x3y+x2y2+y3. A direct check

shows that the answer is correct.
You might ask why icheckthe answers if we know that the method works?

The reason is that everyone makes mistakes and this check is partial insurance
that a computational error hasn’t been made or that the formula being used is
not quite correct.
4. Let S be the surface z = 4− x2 − y2, z ≥ −3 and let F = (2xyz + 3z)i+

x2yj+ cos(xyz)exk. CalculateZ Z
S

(∇×F) · dS.

Hint: Observe that ∂S is the boundary of another surface.

The boundary of S consists of the points on the surface with z = −3 and
x2 + y2 = 7. This is also the boundary of the circle of radius

√
7 in the plane

z = −3. Thus Stokes theorem implies that this integral is
R
∂S
F · ds. We can

parametrize the boundary as (
√
7 cos t,

√
7 sin t,−3) for 0 ≤ t ≤ 2π. Thus

F · ds = ((2xyz + 3z)i+ x2yj+ cos(xyz)exk) · (−
√
7 sin ti+

√
7 cos tj)

= (
√
7(−6 · 7 cos t sin t− 9)(− sin t) + 49 cos3 t sin t)dt

= 42
√
7 sin2(t) cos tdt+ 9

√
7 sin tdt+ 49 cos3 sin tdt.

We must integrate this from 0 to 2π. We use
R
sin2(t) cos tdt = sin3 t

3 andR
cos3 sin tdt = cos4 t

4 so the integral is

14
√
7
sin3 t

3
|2π0 − 9

√
7 cos t|2π0 + 49

cos4 t

4
|2π0 = 0.
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Alternatively we can use the hint and not calculate any integrals by noting
that the curve is also the boundary of the disk of radius

√
7 centered at the oigin

in the plane z = −3. Since the line integral doesn’t involve the k component of
the vector field we can plug in z = −3 in F and consider the same problem with
vector field (−6xy − 9)i+ x2yj on the disk, D,of radius

√
7 in the plane. The

integral will theorfor be
R R

D
(2xy + 6x)dA = 2

R R
D
xydA + 6

R R
D
xdA. We

note that the first integral is zero by observing that xy takes paositive values in
the first and third quadrant and that it takes the negatives of the same values in
the second and fourth quadrant. As for the second integral we argue the same
way with the first and fourth and the second and third. Thus both integrals
are 0.

5. Let S be the union of the surfaces z = x2 + y2 − 1 with z ≤ 0 and
x2 + y2 + z2 = 1, z ≥ 0. Let x(t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π. CalculateR R

S
(∇×F) · dS. for F an arbitrary C1 vector field using Stokes’ theorem. Do

the same using Gauss’s theorem (that is the divergence theorem).

We note that this is the sum of the integrals over the two surfaces S1 given
by z = x2 + y2 − 1 with z ≤ 0 and S2 with x2 + y2 + z2 = 1, z ≥ 0. We also
note that the unit circle in the xy plane is the set theoretic boundary of both
surfaces. However as the boundary of the first surface it is oriented clockwise
and as the boundary of the second it is oriented counterclockwise. We haveZ Z

S

(∇× F) · dS =

Z Z
S1

(∇×F) · dS+
Z Z

S1

(∇×F) · dS

=

Z
∂S1

F · ds+
Z
∂S2

F · ds = 0

since the two path integrals are over the same path with opposite orientations.
To use Gauss’s theorem we note that ∇ · (∇ × F) = 0 for every C2 vector

field. Guass’t theorem implies:Z Z
S

(∇×F) · dS =
Z Z Z

V

∇ · (∇×F)dV = 0

with V = {(x, y, z)|x2 + y2 ≤ 1, x2 + y2 − 1 ≤ z ≤
p
1− x2 − y2}.

6. Let V be the solid cylinder x2 + y2 ≤ 1.|z| ≤ 1. Describe the boundary
of V . Orient the boundary using the outward normal and use Gauss’s theorem
to calculate

R R
∂V
F · dS with F = xk+ yj+ zi.

You should draw the picture which looks like a soup can.

∇ · F = 1.
Thus since Gauss’s theorem says

R R
∂V
F · dS = R R R

V
dV . That is the volume

of this cylinder which is the height times the area of the base that is 2×π = 2π.
Suppose you decide not to use Gauss’s theorem then you must do this.

The boundary consists of three parts the disks, S1 given by x2 + y2 ≤ 1, z =
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−1 and S2 given by x2 + y2 ≤ 1 and z = 1 and the cylinder S3 given by
x2 + y2 = 1 and −1 ≤ z ≤ 1. The unit normals that point outward are −k
for S1, k for S2 and xi + yj at the point (x, y, z) on S3. We parametrize S1
as (r cos t, r sin t,−1), 0 ≤ r ≤ 1, 0 ≤ t ≤ 2π,S2 as (r cos t, r sin t, 1), 0 ≤ r ≤
1, 0 ≤ t ≤ 2π and S3 as (cos s, sin s, t),−1 ≤ t ≤ 1, 0 ≤ s ≤ 2π. For the
parametrization of S1 we have Tr = (cos t, sin t, 0), Tt = (−r sin t, r cos t, 0), so
Tr ×Tt = rk thus kTr ×Ttk = r For S2 we also have kTr ×Ttk = r and for
S3 we have Ts = (− sin s, cos s, 0), Tt = (0, 0, 1) so Ts ×Tt = cos si + sin sj so
kTr ×Ttk = 1. We can now compute the integral as the sum of the integrals
over the three piecesZ 2π

0

Z 1

0

r2 cos tdrdt−
Z 2π

0

Z 1

0

r2 cos tdrdt+

Z 2π

0

Z 1

−1
(t cos s+ sin2 s)dtds

= 2

Z 2π

0

sin2 sds =

Z 2π

0

(1− cos(2s))ds = 2π.
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