1 The concept of numbers.

In this chapter we will explore the early approaches to counting, arithmetic and
the understanding of numbers. This study will lead us from the concrete to the
abstract almost from the very beginning. We will also see how simple problems
about numbers bring us very rapidly to analyzing really big numbers. In section
7 we will look at a modern application of large numbers to cryptography (public
key codes). In this chapter we will only be dealing with whole numbers and
fractions. In the next chapter we will study geometry and this will lead us to a
search for more general types of numbers.

1.1 Representing numbers and basic arithmetic.

Primitive methods of counting involve using a symbol such as | and counting
by hooking together as many copies of the symbol as there are objects to be
counted. Thus two objects would correspond to ||, three to |||, four to ||||, etc. In
prehistory, this was achieved by scratches on a bone (a wolf bone approximately
30,000 years old with 55 deep scratches was excavated in Czechoslovakia in 1937)
or possibly piles of stones. Thus if we wish to record how many dogs we have
we would, say, mark a bone with lines, one for each dog. That is 5 dogs would
correspond to |||||. Notice, that we are counting by assigning to each dog an
abstract symbol for one dog. Obviously, the same method could have been used
for cats or cows, etc. Thus the mark | has no unit attached. One can say “||||||
dogs” (dogs being the unit). Notice that you need exactly the same number of
symbols as there are objects that you are counting.

Although this system seems very simple, it contains the abstraction of unit-
less symbols for concrete objects. It uses the basic method of set theory to tell
if two sets have the same number of elements. That is, if A and B are sets
(collections of objects called elements) then we say that they have the same
number of elements (or the same cardinality) if there is a way of assigning to
each element of the set A a unique element of the set B and every element of the
set B is covered by this assignment. Primitive counting is done by using sets
whose elements are copies of | to be numbers. Although each of the symbols | is
indistinguishable from any other they must be considered different. This prim-
itive method of counting and attaching symbols to numbers basically involves
identifying sets with the same cardinality with one special set with that cardi-
nality. In modern mathematics, one adds one level of abstraction and says that
the set of all sets with the same cardinality constitutes one cardinal number.
There is no limit to the size of a set in this formalism. We will come back to
this point later.

Early methods of representing numbers more concisely than what we have
called the primitive system are similar to Roman numerals which are still used
today for decorative purposes. In this system, one, two, three are represented
by I, II, III. For five there is a new symbol V (no doubt representing one hand)
and four is IV (to be considered one before V and probably representing a hand
with the thumb covering the palm). Six, seven and eight are given as VI, VII,
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VIII. Then there is a separate symbol for ten, X (two hands) and nine is IX.
This pattern continues, so XII is twelve, XV is fifteen, XIV is fourteen, XIX is
nineteen. Twenty and thirty are XX, XXX. Fifty is L. Forty is XL. One hundred
is C, five hundred is D and a thousand is M. Thus 1998 is MCMXCVIII. This
system is adequate for counting (although cumbersome). It is, however, terrible
for arithmetic. Here we note that one has a dramatic improvement in the
number of symbols necessary to describe the number of elements in a set. Thus
one symbol M corresponds to the cardinal with 1000 of the symbols | in it in
the most primitive system.

The ancient Egyptians (beginning about 3500 BC) used a similar system
except that they had no intermediate symbols for five, fifty or five hundred.
But they had symbols for large numbers such as ten thousand, one hundred
thousand, one million and ten million. The below is taken from the Rhind
Papyrus (about 1600 BC).

Our number system derives from the Arabic positional system which had
its precursor in the Babylonian system (beginning about 3000 BC). Before we
describe the Babylonian system it is useful to recall our method of writing
numbers. We use symbols 1,2,3,4,5,6,7,8,9 for one element, two elements,...,nine
elements. we then write 10 for ten elements, 11 for eleven, ..., 19 for nineteen.
This means that we count by ones, then by tens, then by hundreds, then by
thousands, etc. This way we can write an arbitrarily large number using ten
symbols (we also need 0 which will be discussed later). Our system has base
ten. That, is we count to nine then the next is ten which is one ten, 10, then
we count by ones from 11 to 19 and the next number is two tens, 20. When we
get to 9 tens and 9 ones (99) the next number is 10 tens which we write as 100
(hundred). 10 hundreds is then 1000 etc. Thus by hooking together 10 symbols



we can describe all numbers.

One could do the same thing using a base of any positive integer. For
example, if we worked with base 2 then we would count 1, then 10 for two, then
11 for three (one two and one one), then 100 (2 twos), 101, 110, 111, 1000 (two
(two twos)). Thus we would only need 2 symbols in juxtaposition to describe
all numbers. For example, 1024 would need 1024 of the units, | ,in the most
primitive system, it is 4 symbols long in ours, and base 2 it is 10000000000.
Still a savings of 1013 symbols. The Roman method would be MXXIV so in
this case slightly worse than ours. However, if we try 3333 in Roman notation
we have MMMCCCXXXIII. How long is the expression for 3333 in base 27

The Babylonians used base 60 which is called sexagesimal. We should note
that for some measurements we still use this system: 60 seconds is a minute, 60
minutes is an hour. Their system is preserved in clay tablets in various exca-
vations. Their method of writing (cuneiform) involved making indentations in
soft clay tablets by a wedge shaped stylus.

3= Y7V
75 = {TTT
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They used two basic symbols, one equivalent with | for one. and one for 10
which we will represent as <. Thus six is ||||||. Normally written in the form:

and thirty seven is

But 61 is | |. 3661 is | | |. Thus, except that they used only symbols for 1 and
10 and had to juxtapose them to get to 59, they used a system very similar to
ours. They did not have a symbol for 0. We will see that this is a concept that
would have to wait more than 3000 years. So when they saw |, they would have
to deduce from the context whether it represented 1, 60, 3600, etc. For example
if I said that a car cost ||| then you would be pretty sure (in 2003) that I meant
10,800, not 180 or 3. They later (200 BC) had a symbol that they could use
for a place marker in all but the last digit (but still no 0). // Thus they could
write | //| and mean 3601. There is still an ambiguity in the symbol | which
can still mean 1, 61, 3601, etc.



Exercises. 1. Write out the number 1335 in Egyptian notation, binary, sex-
agesimal and in Roman numerals.

2. For computers one kilobit (1K) is actually 1024. Why is that?

3. The early computer programmers used base 16 they therefore needed 16
symbols which they wrote as 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. For example, AF' =
10 x 16 + 15 = 175. What number is FFFF? Write it in binary. Why was
it important to 16 bit computers? FFFFF + 1 is called a megabit. Why is
that?

4. In writing numbers in the Egyptian system what is the maximum repeti-
tion necessary for each symbol?

1.2 Arithmetic.
1.2.1 Addition.

We return to the most primitive method of counting. If you have ||| sheep and
you have purchased |||| sheep, then you have ||||||| sheep. That is, to add |||
and ||| we need only “hook” |||| onto |||. For cardinal numbers we have thus
described a method of addition: If A corresponds (i.e. is an element of) to the
cardinal a and if B corresponds to the cardinal b, and if no element of A is
an element of B then a + b is the cardinal number that contains A U B (with
AU B the set that consists of the elements of A combined with those of B).This
can be made rigorous (independent of the choice of A and B) we will look into
this point later in the book. Thus the abstraction of primitive addition is set
theoretic union of disjoint (no element in common) sets.

In the Roman system there is one more degree of abstraction since for ex-
ample |||| is represented as IV and ||||| is represented as V so IV + V = ||||||||| =
IX. Obviously, one must remember much more if one uses the more abstract
method of the Romans than the direct “primitive” method.

In our system for the same addition we are looking at 4 + 5 and we must
remember that this is 9. Thus the situation is analogous to that of the Romans.
However, if we wish to add XXXV to XVI, then in Roman numerals we have
LI. In our system we have 35+ 16. We add 5+6 and get 11 (memorization). We
now know that the number has a 1 in the “ones position” we carry the other 1
to see that for the “tens position”. We have 143+ 1 = 5. The sum is therefore
51. Thus we need only remember how to add pairs of numbers up to 9 in our
system and all other additions are done following a prescribed method. The
Roman system clearly involves much more memorization.

We next look at the Babylonian system. For this we will use a method
of expressing numbers to base 60 that is due to O. Neugebauer(a leader in
the history of mathematics). We write 23,14,20 for 20 plus 14 sixties plus 23
%x3600. Thus in the Babylonian base 60 system we must memorize all additions
of numbers up to 59. If we wish to add 21,13 and 39,48 then we add 48+ 13 and
get 1,1 (this is memorized or in an addition table) 21439 and get 1 (remembering
the context). Thus the full sum is 1,1,1. Here we must remember a very large
addition table. However, we have grown up thinking in terms of base 10 and we



do the additions of pairs of numbers below 59 in our method and then transcribe
them to our version of the Babylonian notation.
Exercises.

1. Do the addition 1,2 + 32,21,3 + 43, 38,1 in Neugebauer’s notation.

2. How do you think that an Egyptian would add together 3076 and 98547

1.2.2 Multiplication.

Multiplication is a more sophisticated operation than addition. There isn’t any
way to know when and how the notion arose. However, the Egyptians and
the Babylonians knew how to multiply (however as we shall see the Egyptian
method is not exactly what one would guess). We understand multiplication as
repeated addition. That is, if we wish to multiply a times b, a - b, then we add
b to itself a times. That is 3-5is 5+ 545 = 15.

If we attempt to multiply a times b in the primitive system we must actually
go through the full juxtaposition of b with itself a times (or vice-versa). In a
system such as the Roman system we must memorize a great deal. For example
XV-LI = DCCLXYV. For us the multiplication is done using a system:

51
15
255 .
510
765

We usually leave out the 0 in the 510 and just shift 51 into the position it would
have if there were a 0. We see that we must memorize multiplication of pairs of
numbers up to 9.

The Babylonian system is essentially the same. However, one must memo-
rize multiplication of pairs of numbers up to 59. This is clearly a great deal to
remember and there are tablets that have been excavated giving this multipli-
cation table.

The Egyptian system is different. They used the method of duplication. For
example if we wish to multiply 51 by 15 then one would proceed as follows:

o1 1
91451 =102 2
102 +102 =204 4
204 4+ 204 =408 8

Now 1+ 2+ 4 4+ 8 = 15 so the product is 51 4 102 + 204 + 408 = 765. Notice
that they are actually expanding 15 in base 2 as 1111. If the problem had been
multiply 51 by 11 then the answer would be 51 + 102 4+ 408 = 561 (in base 2,
11 is 1011). So their multiplication system is a combination of doubling and
addition.

We note that this method is used in most computers. Since, in base 2,
multiplication by 2 is just putting a 0 at the end of the number. In base 2,



51 = 110011. Thus the same operations are

110011 1
1100110 10
11001100 100
110011000 1000

The basic difference is that we must remember many carries in binary. Thus it
is better to proceed as follows.

110011
1100110
10011001

11001100
110011000
1001100100

10011001
1001100100
1011111101

Addition is actually an operation that involves adding pairs of numbers. In our
system we rarely have to carry numbers to more than one column to the left
(that is when a column adds up to more than 99). In binary it is easy if we
add 4 numbers with 1 in the same digit we will have a double carry.

Exercise.
1. Multiply 235 by 45 using the Egyptian method. Also do it in binary.

1.2.3 Subtraction.

If we wish to subtract ||| from ||||| then the obvious thing to do is to remove the
lines one by one from each of these primitive numbers. ||| [|||| = || [II| = | ||| =
||. With this notion we have ||||| — ||| = ||- If we do this procedure to subtract

a from b and run out of tokens in b then we will say that the subtraction is not
possible. This is because we have no notion of negative numbers. We will see
that the concept of 0 and negative numbers came relatively late in the history
of mathematics. In any event, we will write a < b if subtraction of a from b is
possible. If a < b then we say that a is strictly less than b.

In our notation subtraction is an inverse process to addition. This is because
our number notation has a higher degree of abstraction than the primitive one.
Thus we memorize such subtractions as 3 —2 = 1. If we are calculating 23 — 12
then we subtract 2 from 3 and 1 from 2 to get 11. For 23 — 15 we do in initial
borrow and calculate 13—5 and 1—1. So the answer is 8. Obviously, we can only
subtract a smaller number from a larger one if we expect to get a number in the
sense we have been studying. Both the Egyptians and the Babylonians used
a similar system. For the Egyptians it would be somewhat more complicated,
since every new power of 10 entailed a new symbol.



1.2.4 Division and fractions.

For us division is the inverse operation to multiplication in much the same way
as subtraction is the inverse operation to addition. Thus ¢ is the number such
that if we multiply it by b we have a. Notice that if b is 0 this is meaningless
and that even if a and b are positive integers then 7 is not always an integer.
Integer division can be implemented as repeated subtraction thus in the prim-
itive notation [[|[[[[| - [I| = (Il [[Ill - [ = [I[ thus [[[[[[[I/[I| = [ll. However,
the Egyptians and Babylonians understood how to handle divisions that do not
yield integers.

The ancient Egyptians created symbols for the fractions % (i.e. reciprocals).
They also had a symbol for % However, if they wished to express, say, %
then they would write it as a sum of reciprocals say 1 + % + 1—15 Also they
limited their expressions to distinct reciprocals (or %) Thus 1+ % + % was not
a valid expression. Note that such an expression is not unique. For example,
% =1+ % + 1—10 + % Notice that one allows any number of reciprocals in
the expression. With a method such as this for handling fractions, there was a
necessity for tables of fractions. One also had to be quite ingenious to handle
fractions. An ancient Egyptian problem asks:

If we have seven loaves of bread to distribute among 10 soldiers, how would

we do it?

We would instantly say that each soldier should get 1—70 of a loaf. However,
this makes no sense to the ancient Egyptians. Their answer was (answers were
supplied with the problems) % + %.

The mathematician Leonardo of Pisa (Fibonacci 1175-1250 A.D.) devised
an ingenious method of expressing fractions in the Egyptian form. In order to
see that the method works in general several basis properties of numbers will be
used here. They will be considered in more detail later He starts by observing
that we need only consider ¢ with 1 < a < b. We first observe that g > 1 so

b
there exists a positive whole number n such that

b
n—1<—<n.
a

So
1 a 1

n b n-1

Thus $ = 1 4922t We observe that an—b > 0 and a— (an—b) = b—a(n—1) =
a(gfnfl) > 0. Thus a > (an —b) > 0. Set aj = an — b, by = bn. Then
0<a; <aand1l<a; <by. If a; =1 then we are done. Otherwise, we repeat

the process with %. Call n, ny. If a; = 1 then we see that by = n1b > n; so

¢ = n% + n%b is a desired expression. Assume that a; > 1. Do the same for
“—1 This is Fibonacci’s method. A full proof that this always works didn’t get
published until the nineteenth century and is attributed to J.J.Sylvester. What



has not been shown is that if

1 ay 1
n b n—1

then n > ny. We do this by showing that % < n% To see this we observe
that any — b < a <b. Thus

al_amfb a b 1

b_1 - nlb nlb Tblb n1

In this argument we used an assertion about not necessarily whole numbers
that says that if we have a number then it lies between two consecutive integers.

L then ny = 2 and 1—7071 = % Thus we get as an

Consider, for example, 15 5
answer to the Egyptian problem % + % which seems preferable to the answer
given in the original Papyrus.

Fibonacci was one of the leading European mathematicians of the Middle
Ages. He was instrumental in introducing the Arabic number system (the one
we use) to the West. However, he preferred the Egyptian method of fractions
to our decimal notation (below). Clearly one must be much cleverer to deal
with Egyptian fractions than with decimals. Also, as we will see, strange and
impractical problems have propelled mathematics to major new theories (some
of which are even practical).

The ancient Babylonians used a method that was analogous to our decimal
1

notation.  In our decimal method we would express a fraction such as 3 as
follows: We first try to divide 8 into 1 this fails so we multiply by 10. We can
divide 8 into 10 once with remainder 2. We must multiply by 10 and divide
8 ani 20 getting 2 with remainder 4. We now multiply 4 by 10 and get 40.
Divide by 8 and get 5. The numbers for the three divisions are 1,2,5. We
write

1
- =.125.
8

We can express this as follows:

A25
8 1.0
8 .
20
16_
40

We will use Neugebauer notation in our description of their method. The
fraction % =1+ 2—3. Our version of their notation would be 1;24. In our decimal
notation this is 1.4. We could use exactly the same process (though it is harder



for us to do the intermediate steps in our heads). We must divide 5 into 2. So
we multiply by 60 and do the division. That is divide 120 by 5. We get 24 and

no remainder. If we were to write % we could work as follows:1 x 60 divided

by 8 is 7 with remainder 4. 4 x 60 = 240 which divided by 8 is 30 with no
remainder. Thus we have ; 7, 30.
There were also bad fractions. In our decimal notation

1
= = 0.33333...
3

That is we must write the symbol 3 forever. In the Babylonian form % is the
first bad fraction and it is given by

:8,34,17,8,34,17, ...

repeating 8,34,17 forever. Suddenly the Egyptian way doesn’t seem to be so
silly!

We also think of fractions as expressions g with p and q positive integers.

B = £ means ps = rq. Addition is given by £ + { = %J:". Multiplication is
given by &£ = Lo We note that 3 =2 =2 = . That is we identify all of
the symbols 5~ with % This is similar to our definition of cardinal number.

Usually, to rid ourselves of this ambiguity, we insist that p and ¢ are in lowest
terms. That is they have no common factor other than 1

1.2.5 Exercises.

1. Why do you think that the Egyptians preferred % + 3—10 to % + % for 1—70?

2. Use the Fibonacci method to write 1;47 as an Egyptian fraction.
3.Make a table in Egyptian fractions of {4 for n equal to 1,2,3,4,5,6,7,8,9

4. Among {%, %, i, - 1—19} which are the bad fractions in base 10?7 What do
they have in common. Can you guess a property of n that guarantees that % is

a good fraction to base 10?7 How about base 607

5. The modern fame of Fibonacci is the outgrowth of a problem that he
proposed: Suppose that it takes a rabbit exactly one month from birth before it
is sexually mature and that a sexually mature pair (male and female) of rabbits
will give birth to two rabbits (male and a female) every month. If we start with
newly born male and female rabbits how many rabbits will there be at the end
of one year? What is the answer to his question?

6. If b is a positive integer then we can represent any integer to base b in
the form ag + a1b + asb® + ... + apb* with 0 < a; < b.. This if b = 10 then 231
means 1 +3 x 10+ 2 x 102. If b = 60 then 231 means 1+ 3 x 60+ 2 x 602. Show
that if n < b then the square of 111...1 (n ones) is 123...n...321 that is the digits
increase to n then decrease to 1. What happens if n > b7



Three examples of early Algebra. At this point we have looked at count-
ing methods and developed the basic operations of arithmetic. We have studied
one simple Egyptian exercise in arithmetic and given a method of Fibonacci to
express a fraction as an Egyptian fraction. The start with a “practical problem”
or applied mathematics. Whereas, by the time Fibonacci devised his method,
there was no reason to use Egyptian fractions. It is what we now call pure
mathematics. The method is clever and has an underlying simplicity that is
much more pleasant than using trial and error. Obviously, ancient peoples had
many uses for their arithmetic involving counting, commerce, taxation, measure-
ment, construction, etc. But even in the early cultures there were mathematical
puzzles and techniques developed that seem to have no practical use.

An Egyptian style problem:
A quantity added to two thirds of it is 10. What is the quantity?

We would say set the quantity equal to = (we will see that this small but
critical step would not be discovered for thousands of years). Then we have

+2 10
r+ -z =10.
3

Hence

)
-z = 10.
3.’17

So z = 6. Since the Egyptians had no notion of how to deal with unknown
quantities, they would do something like. If the quantity were 3 then the sum
of the quantity plus two thirds of the quantity is 5. Since the sum we desire is
10, the answer is 2 times 3 or 6. In other words, they would use a convenient
value for the quantity and see what the rule gave for that value. Then re-scale
to get the answer.

We will now discuss a Babylonian style problem (this involves basic geometry
which we will assume now and discuss in context later). Before we write it out
we should point out that multiplication as repeated addition was probably not
an important motivation for doing multiplication. More likely they multiplied
two numbers because the outcome is the area of the rectangle whose sides were
the indicated number of whatever units they were using.

I add the area of a square to two thirds of its side and I have ;35. What is
the side of the square?

Solution:

Take 1 multiply by % take half of this and we have ;20. You multiply this
by ;20 and the result is ;6,40. You add to this ;35 to have ;41,40. This is the
area of the square of side ;50. You subtract ;20 from ;50 and you have ;30
the side of the square.

10



In our notation what we have done is taken % Next divided by 2 to get

The square of 1 is £ now add % = 1—72 to get %. The square root of this is

olowl—

1
039 ! : 5 - .
Subtract 15 and we have 5. Thus if a = £, b = 75 then the answer is

DR

In modern notation if we set the side equal to = then we are solving

The quadratic formula tells us that if we are solving
> 4+ar—b=0

then
—a++va?+4b
—

If a > 0,b > 0 then the positive solution is exactly the Babylonian answer. Their
method of solving such problems put a premium on the ability to calculate ex-
pressions of the form v/a? + b. They had an approximate method of doing such
calculations which corresponds to what we will see is the second iteration of a
method of Newton method applied to this simple case. They use the approxi-
mation a + 2—121 Notice that if % is small then this is a good approximation.

Thus the Babylonians were aware of general methods to solve quadratic
equations. They, however, could only express their method in words. What
they wrote out is except for the order (and the absorption of the %) exactly
what we would write.

It is hard to imagine how either of these methods could be used in practical
applications. However, one of the most interesting exercises in pure mathematics
can be found in a tablet in the Yale collection (Plimpton 322). This tablet is a
tabulation of 15 triples of numbers a, b, ¢ with the property that

a® +b? =2
The simplest example that we know of this is
3 +4% =5
This triple appears on the tablet as number 11 and in the form
602 + 45 = 75°.

The tablet is thus using some strange rule for generating these numbers (usually
called Pythagorean triples). We will discuss the Pythagorean theorem later.
Here we will study the tablet as a collection of relationships between numbers.
The table is arranged as follows: there are 15 existent rows and 4 readable
columns. The first column contains a fraction and the fractions are decreasing.

11



The second and third contain integers and the last is just the numbers 1,...,15
in order. If we label an element of the second column a and the element of the
third column in the same row ¢ then ¢? — a? = b? with b a positive integer and
the element of the first column in the same row is g—s. Also the first column
contains only regular sexagesimal rational numbers. It seems clear that the

Babylonians were aware of a method of generating Pythagorean triples.

In our modern notation we know how to generate all Pythagorean triples
a,b,c (a®> + b* = ¢?) with a,b,c having no common factor. Indeed, consider
y =%, = ¢ then y? — 22 = 1. We are thus looking for rational points on a
hyperbola (see the figure above). Notice that 1—12 gives an element of the first
column of the table. Thus they seem to have picked points rational points on
the hyperbola in increasing order. How do you locate such a point?

We note that y?> — 22 = (y — z)(y + =) (we will discuss what this might

have meant to the Babylonians soon). We write y +2 = 2, y — 2 = = then

y=3(Z+2)and o =3 (2 - L) Thusy = m;fl’:f and z = m;r;:?. This
suggests that we take a = m? —n?, b =2mn and ¢ = m?2 +n%. If m and n
are positive integers then you can check easily that this assignment generates a
Pythagorean triple. There is an algebraic proof of Fibonacci that this method
generates all Pythagorean triples that have no common factor. André Weil
(1906-1999) has pointed out that there is a geometric argument in Euclid Book
X, Lemma 1,2 in preparation for Proposition 29 that proves that this method
gives all such triples that are relatively prime (in fact a bit more than this). We
will come back to this later.

Consider the Pythagorian triple 3,4,5. We will find numbers m, n as above.
The method above says take y = % and ¢ = %. Theny+z=2andy —x = %
This suggests take m = 2 and n = 1. We can check that this works m? —1 = 3,

2mn =4 and m? +n? = 5.

We will now discuss a probable meaning for the formula y? — 22 = (y —
x)(y+m). The formula y? — 22 is geometrically the area of the figure gotten by
removing a square of side x from one of side y. If you take the smaller square

12



out of the lower right corner then in the lower left corner one has a rectangle
of side  and base y — x. If we cut this rectangle off and rotate it 90° then we
can attach it to what is left of the big square and get a rectangle of side y — x
and base y + x.

The two problems above are similar to the “word problems” of high school
algebra and were probably used in the same way as we use them now. That
is, to hone the skills of a student learning basic algebra. Plimpton 322 is an-
other matter. It contains number theoretic relationships at a sophisticated level.
Imagine a line of reasoning similar to the one in the previous paragraph without
any algebraic notation and without even the notion of a fraction.

1.2.6 Exercises.

1. Problem 26 on the Rhind papyrus is:
A quantity whose fourth part is added to it becomes 15.
Use the Egyptian method to solve the problem.

2. Use the Babylonian approximation to calculate v/2. (Suggestion: Start
with @ = § so that b= 2. Can you improve on this?)

3. A problem on a Babylonian tablet says:
I have added 7 times the side of my square to 11 times the area and have
6;15. Find the side.

Use the Babylonian method to solve this problem.

4. Find m,n so that a = m? — n2, b = 2mn and ¢ = m? + n? for the

Pythagorean triples 119,120, 169 and 5,12, 13.

1.3 Some number theory taken from Euclid.

We now jump about 1500 years to about 300BC and the time of the school
of Euclid in Alexandria. We will examine parts of Books VII,VIILIX of his
Elements that deal with numbers. We will have more to say about the other
books at appropriate places in this work. We will use the translation of Sir
Thomas Heath for our discussion.

13



1.3.1 Definitions

Euclid begins Book VII with 22 definitions that set up basic rules for what
we have been calling the primitive number system. We will see in the next
chapter that Euclid did not think of numbers in this sense. He rather thought
of numbers as intervals. If we have two intervals AB and C'D and if we lay out
AB a certain number of times an this covers C'D exactly then AB is said to
measure CD.

1. An unit is that by virtue of which each of the things that exist is called
one.

This doesn’t make too much sense but it is basically establishing that there
is a unit for measurement.. We have been denoting this by |.

2. A number is a multitude composed of units.

Thus ||| is a number as before. However, Euclid thinks of it as an interval
that is exactly covered by three unit intervals.Be warned that the unit is not

considered to be a number.
3. A number is a part of a number, the less of the greater, when it measures
the greater;

Thus the greater, ||||||, is measured by the less |||.
4. but parts when it does not measure it.
||| is not measured by [||.

5. The greater number is a multiple of the less when it is measured by the
less.

Notice that the definitions are beginning to be more accessible. Here we
measure |||||| by two of the |||. This thus |||||| is ||| multiplied by ||.

6. An even number is that which is divisible into two equal parts.

7. An odd number is that which is not divisible into two equal parts, or that
which differs by a unit from an even number.

8.,9.,10. talk about multiplication of odd and even numbers. (e.g. an odd
by an even is an even).

11. A prime number is that which is measured by a unit alone.
Thus |||||| is measured by |, ||, ||| so is not prime. [|||| is only measured by |.

12. Numbers prime to one another are those which are measured by an unit
as a common measure.

||| is measured by |, || ||||||||| is measured by [, ||| thus the only common
measure is |. Thus |||| and ||||||||| are prime to one another.

13., 14. are about numbers that are not prime (to each other). A number
that is not prime is composite.
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In 15. he describes multiplication as we did (repeated addition).

16. And when two numbers having multiplied one another make some num-
ber, the number so produced is called plane, and its sides are the numbers which
have been multiplied.

Here Euclid seems to want to think of the operation of multiplication in
geometric terms: an area.

In 17 the product of three numbers is looked upon as a solid.

18,.19. define a square and a cube as we do. We will study these concepts
in the next chapter.

20. Numbers are proportional when the first is the same multiple, or the
same part, or the same parts, of the second that the third is to the fourth.

Il 11111l and |[|] 1I/|l|]|]| are proportional. This is a relationship between two
pairs of numbers. It is essentially our way of looking at rational numbers.
In 21. there is a discussion of similar plane and solid numbers.

22. A perfect number is one which is equal to its parts.

The parts of |||||| are |, ||, ||| and |+ ||+]]] = ||||||- So it is perfect. |||| is not.
To us this is not a very basic concept. Perfect numbers are intriguing (28 is
one,what is the next one?) but it is hard to see any practical reason for their
study. We shall see that Euclid gave a method for generating perfect numbers.

1.3.2 Some Propositions

Having disposed of the definitions, Books VII,VIIL,IX consist of a series of
Propositions. Number one is:

Two unequal numbers being set out, and the less being continually subtracted
in turn from the greater, if the number which is left never measures the one
before it until an unit is left, the original numbers will be prime to one another.

Let us try this out. Take 27 for the larger and 8 for the smaller. Subtract
8 from 27 and get 19, subtract 8 and get 11, subtract 8 and get 3, subtract 3
from 8 and get 5 subtract 3 from 5 and get 2 subtract 2 from 3 and get 1. Thus
the numbers are relatively prime.

We will now describe the Euclidian proof. The numbers are denoted AB and
CD and Euclid draws them as vertical intervals. He assume on the contrary
that AB and C'D are not prime to each other. Then there would be a number
E that measures both of them. We now come to the crux of the matter: “Let
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CD measuring BF leaving F'A less than itself.” (Here it is understood that
BF + FA = BA and that BF is evenly divisible by CD)

This assertion is now called the Fuclidean algorithm. It says that if m,n are
whole numbers with m < n then we can write n = dm or n = dm + ¢ with q a
whole number strictly less than m. For some reason he feels that this assertion
needs no proof. To Euclid this is evident. If n is measured by m it is obvious.
If it is not then subtract m from n and get ¢; if ¢ < m we are done. ¢; cannot
be measured by m hence ¢; # m and so ¢; > m. We now subtract m from ¢;
and get go. If go < m then we are done otherwise as before go > m. Subtract
m again. This process must eventually lead to a subtractend less than m since
if not then after n steps we would be able to subtract nm from n so mn < n.
But this is impossible since m > 1 so mn =n+n + ... +n (m times). Hence
we are asserting n > mn > n + n. Since it is obvious that n +n > n we see
that the process must give the desired conclusion after less than n steps.

We now continue the proof. Let AF measuring DG leaving GC' less than
itself. E measures C'D hence BF and E measures AB so E measures FA.
Similarly, £ measures GC. Since the procedure described in the proposition
now applies to AF' and GC, we eventually see that F will eventually measure a
unit. Since E has been assumed to be a number (that is made up of more that
one unit) we see that this is impossible. In Euclid this unbounded procedure
(finite for each example) is only done three times. Throughout his arguments
he does the case of three steps to represent the outcome of many steps.

The second proposition is an algorithm for calculating the greatest common
divisor (greatest common measure in to Euclid).

Given two numbers not prime to one another, to find the greatest common
measure.

Given AB and C'D not prime to one another then and C'D the smaller then
if CD measures AB then it is clear that C'D is the greatest common measure.
If not consider AB — CD, CD. There are now two possibilities. The first is
that AB — CD is smaller than C'D. In this case if AB — CD measures C'D then
it must measure AB and so is the greatest common measure. In the second
case C'D is the smaller and if C'D measures AB — C'D then it must measure
AB and so it is the greatest common measure. If not the previous proposition
implies that if we continually subtract the smaller from the larger then we will
eventually come to the situation when the smaller measures the larger. We
thus have the following procedure: we continually subtract the smaller from the
larger stopping when the smaller measures the larger. Proposition 1 implies
that the procedure has the desired end.

Here is an example of proposition 2. Consider 51 and 21. Then 51 —21 = 30
(30,21) , 30 — 21 = 9(21,9), 21 — 9 =12 (12,9), 12 — 9 = 3 (9,3) so the greatest
common divisor is 3.

Why is it so important to understand the greatest common divisor? One
important reason is that it is the basis of understanding fractions or rational

numbers. Suppose that we are looking at the fraction % Then we have seen
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that the greatest common divisor of 21 and 51 is 3. Dividing both 21 and 51 by

3 we see that the fraction is the same as 1—77 This expression is in lowest terms
S un 721 _ 42
and is unique. = = 5 = 555 =

We will emphasize his discussion of divisibility and skip to Proposition 31.
Any composite number is divisible by some prime number.

We will directly quote Euclid.

Let A be a composite number; I say that A is measured by some prime
number. For since A is composite, some number will measure it. Let a number
measure it, and let it be B. Now, if B is prime then we are done. If it is
composite then some number will measure it. Let a number measure it and call
it C. Since C measures B and B measures A, C measures A. If C is prime then
we are done. But if it is composite then some number will measure it. Thus,
if the investigation is continued in this way, some prime number will be found
which will measure the number before it, which will also measure A. For if it
were not found an infinite series of numbers will measure the number, A, which
is impossible in numbers.

Notice that numbers are treated more abstractly as single symbols A, B,C
and not as intervals. (Although they are still pictured as intervals.) More
important is the “infinite series” of divisors of A. No real indication is given
about why this is impossible for numbers. However, we can understand that
Euclid considered this point obvious. If D is a divisor of A and not equal
to A then D is less than A. There are only a finite number of numbers less
than a given number n,1,2,...,n — 1. This argument uses a version of what
is now called mathematical induction which we will call the method of descent.
Suppose we have statements P, labeled by 1,2, 3, .... If whenever P, is assumed
false we can show that there is an m with 1 < m < n with P, false then P,
is always true. The proof that this method works is that if the assertion for
some n were false then there would be 1 < m; < n for which P,,, is false. But
then there would be 1 < mg < my for which P,,, is false and this procedure
would go on forever. Getting numbers m; > mo > ... > m, > ... with all the
numbers bigger than 1.

Let us try in out. The assertion P, is that if n is not a unit then n is
divisible by some prime. If P, is false that n is not a prime and not a unit.
Hence it is composite so it is a product of two numbers a,b neither of which
is a unit and both less than n. If P, were true then a would be divisible by
some prime. But that would imply that n is divisible by some prime. This is
contrary to our assumption. Thus if P, is false then P, is false with 1 < a < n.
The method of descent now implies that P, is true for all n.

We will now jump to Book IX and Proposition 20.

Prime numbers are more than any assigned multitude of prime numbers.
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Here we will paraphrase the argument. Start with distinct primes A,B,C.
Let D be the least common multiple of A, B,C (this has been discussed in
Propositions 18 and 19 of Book IX). In modern language we would multiply
them together. Now consider D + 1. If D + 1 were composite then there would
be a prime E dividing it. If E were one of A,B,C then E would divide 1.

Notice that we are back with three taking the place of arbitrarily large. The
modern interpretation of this Proposition is that there are an infinite number
of primes. What is really meant is that if the only primes are p1,...,p; then we
have a contradiction since p; - - - pg + 1 is not divisible by any of the primes and
this contradicts the previous proposition.

After Book IX, Proposition 20 there are Propositions 21-27 that deal with
combining even and odd numbers and seem to be preparatory to Euclid’s method
of generating perfect numbers. For example, Proposition 27 (in modern lan-
guage) says that if you subtract an even number from an odd number then
the result is an odd number. Here one must be careful and also prove that
if you subtract an odd number from an even number you get an odd number
(Proposition 25). We would say that the two statements are essentially the
same since one follows from the other by multiplication by —1. However, since
negative numbers were not in use in the time of Euclid Proposition 25 and 27
are independent.

We now record one implication of Proposition 31 (and Proposition 30 which
is discussed below) that is not explicit in Euclid (we will see why in the course
of our argument). This Theorem is usually called the fundamental theorem of
arithmetic.

If A is a number (hence is not a unit) then A can be written uniquely (up
to order) in the form p{'ps?---pSr with pi,...,pr distinct primes and ey, ..., e,
numbers (here B™ is B multiplied by itself m times).

We first show that any number is a product of primes using a technique
analogous to the method of Euclid in his proof of Proposition 31. If A is
prime then we are done. Otherwise A is composite hence by Proposition 31
A = g1 A1 with A7 not a unit and ¢; a prime. If A; is a prime then we are done.
Otherwise, A1 = g2 Ao with g2 a prime and A, not a unit. If A is prime we are
done since then A = g1¢2A>. Otherwise we continue this procedure and either
we are done in an a finite number of steps or we have A; > As > ... > A, > ...an
infinite sequence of positive numbers. This is impossible for numbers according
to Euclid. We have mentioned in our discussion of Proposition

Let us show how the principle of descent can be used to prove the assertion
that every number is a product of primes. Let P, be the assertion that if n
is not the unit then is a product of primes. If P, is false then n is not a unit
and not prime so n is composite. Hence n = ab with neither a nor b a unit. If
both P, and P, were true then a is a product of primes and b is a product of
primes so ab is a product of primes. Thus one of P, or P, would be false. If
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P, is false set m = a otherwise P, is false and set m = b. Then 1 <m < n and
P,, is false. The principle implies that P, is true for all n.

This principle can be made into a direct statement which we call the principle
of mathematical induction.. The idea is as follows if S7, So, ... are assertions and
if S7 is true and if the truth of S,, for all 1 < m < n implies that S, is true
then S, is true for all n. This is intuitively clear since starting with S; which
we have shown is true we have. S; is true so S; and Ss are true so S3 is true,
etc. For example suppose that the statement S,, is the assertion

n(n+1).

1+24+ ... +n= 5

Then S; says that 1 = 1 which is true. We now assume that S, is true for all
1 <m < n. Then
n(n —1)

1—|—2+...—|—(n—1)—|—n:(1—|—2+...—|—(n—1))+n=T—|—n:

n(n—1) +2_n n(n+1)
2 2 2

which is the assertion S,,.

Let us see how the method of descent implies the principle of mathematical
induction. Suppose we have a statement S,, for n = 1,2, ... and suppose that
we know that S; is true and whenever we assume S,,, is true for 1 < m < n the
S, is true. Assume that S,, is false. Then n cannot be the unit. If S,, were
true for all 1 < m < n then we would know that S,, were true. Since we are
assuming the contrary we must have S, is false for some m with 1 < m < n.
Thus the method of descent implies that S, is always true. One can show that
the two principles are equivalent but we have traversed to far away from Euclid
already.

Returning to the fundamental theorem of arithmetic we have shown that if A
is not the unit then A can be written as g1¢qs - - - ¢, with ¢; a prime for¢ =1, ..., n.
Since the g; are not necessarily distinct we can take p1, ..., p, to be the distinct
ones and group those together to get A = p{'ps? -+ p¢ (here e; is the number
of i such that p; = ¢;, €2 is the number of 4 such that py = ¢;,...). We are now
ready to prove the uniqueness. The crux of the matter and is Proposition 30 of
Book VII which says:

If two numbers by multiplying one another make some mnumber, and any
prime number measure the product, it will measure one of the original numbers.

Let us see how this proposition implies our assertion about uniqueness. We
will prove it using the principle of mathematical induction. The assertion P,
is that if n is not one then up to order there is only one expression of the
desired form. Notice that P; doesn’t say anything so it is true (by default).
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Suppose we have proved P, for 1 <m < n. Assume that n = p*ps? - p¢ and
n = q{cquf2 e qgcs, with p1, ..., p,- distinct primes and ¢y, ..., ¢s distinct primes.
Then we must show that » = s and we can reorder ¢, ...,q,- so that ¢; = p;
and f; = e; for all ¢ = 1,...,r. Since p; divides n we must have p; divides
ql(q{l_lqg2 ---qf*). Thus p; divides q; or qll_lqgf2 -+ qf* by Proposition 30.
If it divides ¢; it is equal to g¢;. Otherwise since it cannot divide qll*1 it divides
quQ ---qfs. Proceeding in this way we eventually see that there must be an index
i so that p1 = ¢;. Relabel so that ¢ = 1. Then we see that if m = n/p; then
m = p{ ps? - per, and m = qlfl_lqu coqfs. Ifm=1thenn =p =q.
Otherwise 1 < m < n so P, is true. Hence s = r and f; — 1 = e; — 1 and
the other ¢; can be rearranged to get the conclusion ¢; = p; and f; = e; for

=2, ...,

So to complete the discussion of our Proposition we need only give a proof
of Proposition 30 Book VII. This proposition rests on his theory of proportions
(now rational numbers). We will give an argument which uses negative numbers
(jumping at least 1500 years in our story). We will assume here that the reader is
conversant with integers (0, +1,+2,...). Our argument is based on Propositions
1 and 2 Book VII given in the following form:

If z,y are numbers that are relatively prime (prime to each other) then there
exist integers a,b such that ax + by = 1.

We follow the procedure in the argument that demonstrates Propositions 1
and 2 of Book VII . If x > y then the first step is x —y. We assert that at each
stage of this subtraction of the lesser from the greater we have a pair of numbers
ux~+vy and zx+wy with u, v, 2z, w integers. At step one this is clear. So suppose
this is so at some step we show that it is so at the next step. So if uz + vy
and zx + wy are what we have at some step then if (say) uzx + vy > za + wy
then at the next step we have (ux + vy) — (zz + wy) and zz + wy. That is
(u—2)x+ (v—w)y and zz + wy. According to Propositions 1 and 2 Book VII
this will eventually yield 1.

We will now demonstrate Proposition 30 Book VII. Suppose that p is a
prime, a,b are numbers and p divides ab, but p does not divide a. Then p and
a are relatively prime. Thus there exist integers u, v so that up + va = 1. Now
b = upb + vab since and ab = pc we see that b = ubp + vep = (ub + ve)p.

We will also describe how Euclid proves Proposition 30. Let C be the
product of A and B and assume that D is a prime dividing C' then C is the
product of D and E. Now assume that A and D are prime to each other (since
D is prime this means that D does not measure A). Then D, A and B, E are in
the same proportion. Since D is prime and A all pairs in the same proportion
to D, A are given as multiples F'D, F'A (this is a combination of Propositions
20 and 21 in Book VII) thus D measures B.
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1.3.3 Exercises.

1. Use the method of Propositions 1 and 2 of Book VII to calculate the “greatest
common measure” of 315 and 240 and of 273 and 56..

2. Read the original proof of Proposition 30 Book VII. Explain how it differs
from the argument given here. Also explain in what sense the two proofs are
the same.

3. Use the principal of mathematical induction to show

(2) 1+ 4+9+ ... +n? = 2t

M) 1+2+4+..+2n =21 1,

4. Use the material of this section to show that if { is a fraction then it can
be written uniquely in the form § with ¢, d in lowest terms (relatively prime).
In other words complete the discussion of the proof of Proposition 30 Book VII).

5. Assume that 14 2™ + ... + n™ = p,,(n) with p,, a polynomial of degree
m+ 1 in n. Set up a formula of the form of (a),(b) for the sum of cubes. Prove
it by induction. Why do you think that the assertion about p,, is true?

6. Use the method of descent to prove that there is no rational number 3

so that (%)2 = 2. Hint: Let P, be the statement that there is no m such that
n? = 2m?. Use Proposition 30 show that if n?> = 2m? then n is even. Use this
to show that if P, is false then P, is false for m such that n? = 2m?2.

1.4 Perfect numbers and primes.
1.4.1 The result in Euclid.

Perfect numbers are not a central topic in mathematics. However, their study
has led to some important consequences. As we saw Euclid devoted one of his
“precious” 22 definitions in Book VII to this concept. We recall that a perfect
number is a number that has the property that the sum of its divisors (including
1 but not itself) is equal to itself. Thus 1 has as divisor 1 which is itself so it
is not perfect. 2 has divisor 1 other than itself as does 3 and 5 so 2,3,5 are not
perfect. Four has divisors 1,2 other than itself so it is not perfect. 6 has divisors
1,2,3 other than itself so it is perfect. Thus the smallest perfect number is 6.
One can go on like this the next is 28 whose factors other than itself 1,2,4,7,14.
It is still not known if there are only a finite number of perfect numbers. Euclid
in Proposition 36 Book IX gave a “method” that generates perfect numbers.
Let us quote the proposition.

If as many numbers as we please beginning from an wunit be set out con-
tinuously in double proportion, until the sum becomes prime, and if the sum
multiplied by the last make some number, the product will be perfect.

This says that if a =1+2+4 + ... + 2" is prime then 2"a is perfect. Notice
that as Euclid gives the result it allows us to discover perfect numbers if we
know that certain numbers are prime. We will now try it out. Euclid does not
think of 1 as prime. 142 = 3 is prime. 2-3 = 6 is thus perfect. 1+2+4=71s
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prime so 4-7 = 28 is perfect. 1+2+4+8 = 15 not prime. 1+2+4+8+16 = 31
is prime so 16 - 31 = 496 is perfect. We now check this because it tells us why
the proposition is true. Write out the prime factorization of 496 (which we have
seen is unique in the last section as 2*31. Thus the divisors of 496 other than
itself are 1,2,22 = 4,23 = 8,24 = 16,31,2-31 = 62, 22-31 = 124, 23 - 31 = 248.
Add them up and we see that Euclid was correct.

The example of 496 almost tells us how to demonstrate this assertion of
Euclid. If a = 14-2+...42" is prime then the factors of 2"a are 1, 2, ..., 2", a, 2a, ..., 2" 'a.
So the sum of the factors is 1+ 2+ ... + 2" +a + 2a + ... + 2" 1a. This is equal
to a+ (1 +2+..+2"a. Now we observe that Exercise 2 (c) of section
1.4 implies that 1 +2 4 ... + 2771 = 27 — 1. Thus the sum of the factors is
a+ (2" —Da=a+2"a—a=2"a.

1.4.2 Some examples.

This proposition is beautiful in its simplicity and we will see that the Swiss math-
ematician Leonhard Euler (1707-1783) proved that every even perfect number is
deducible from this Proposition. The catch is that we have to know how to test
whether a number is prime. We have noted that 1 +2+4+ ... +27 =27+l _ 1,
Thus we are looking for numbers of the form 2" —1 that are prime. Let us make
an observation about this point. If m = 2k were even then 2 —1 =2%¢ — 1 =
(2% +1)(2¥ —1). If k = 1 then we have written 3 =3 -1 so0 if m = 2, 2™ — 1 is
prime. If £ > 1 then 2 —1 > 1 and 2 +1 > 1 so the number is not prime. We
therefore see that if 2™ — 1 is prime and m > 2 then m must be odd.

To get 496 we used 2° — 1 = 31. The next number to check is 27 — 1 = 127.
We now check whether it is prime. We note that if a = bc and b < ¢ then
b? < a. This is so because if b < ¢ then b? < bc = a. Thus we need only
check whether 127 is divisible by 2,3,5,7,11 (since 122 = 144 > 127). Since it
is not we have another perfect number 127 - 64 = 8128. Our next candidate is
29 - 1=511=7-73.

We see that 22 — 1, 23 —1, 25 — 1, 27 — 1 are prime but 2° — 1 is not. One
might guess from this that if 2™ — 1 is prime then m must be prime. Obviously
we are guessing on the basis of very little information. However, this is the way
mathematics is actually done. So suppose that m = ab, a > 1, b > 1 we wish
to see if we can show that 2%® — 1 is composite. Set = 2% then our number is
2% — 1. We assert that 2 — 1 = (z — 1)(1 + 2 + ... + 2°~1). One way to do this
is to remember long division of polynomials the other is to multiply out

(z-1)A4z+. . +2" H=c+2?+. +2*—1—-z—.. —a2bL
Then notice that z,z?2, ..., 2! subtract out and we have 2 — 1 left. Armed
with this observation we can show the following proposition.

If p=2" —1 is prime then m is prime.

If m =aband a > 1, b > 1 then setting z = 2% we see that p = 2% — 1 =
(z—D)(1+z+..+2" ) =cdc=2z—-1>1landd=1+z+22+..+2>"1 > 1.
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Our next candidate is 11. But 2'' — 1 = 2047 = 23 - 89. Using Mathe-
matica (or any program that allows one to do high precision arithmetic) one
can see that among the primes less than or equal to 61, 2P — 1 is prime for
exactly p = 2,3,5,7,13,17,19,31,61. Notice the last yields a prime 26! — 1 =
2305843009213693951. We note that at this writing (2002) the largest known
prime of the form 27 — 1 is 213466917 _ 1(Michael Cameron, 2001 with the help
of GIMPS -Great Internet Mersenne Prime Search).

1.4.3 A theorem of Euler.

We give the theorem of Euler that shows that if a is a perfect even number then
a is given by the method in Euclid. Write a = 2" with r > 1 odd. Suppose
that r is not prime. Let 1 < a7 < ... < as < r be the factors of ». Then the
sum of the factors of a other than « is

(I+24 . +2™) + (1 + .o +2™ag + oo + (L4 . £2™)as + (1 + .27 )y

=2mt 14 (2™~ Day 4 4+ (27— Dag + (27— D),

Since we are assuming that a is perfect this expression is equal to a. Thus
Q™ — D1 +ay + ... +ag) + (2™ —1)r =27
We therefore have the equation
@™ 1)1 4a; + ... +as) =7

From this we conclude that 1+ a1 + ... + a, is a factor of r other than r. But
then 1+ ay + ... + a5 < as. This is ridiculous.. So the only option is that r is
prime. Now we have

(2™t 1) 4 (2™ — 1)r = 2™r.

So as before, r = 2™*! — 1. This is the assertion of the proposition.

1.4.4 The Sieve of Eratosthenes.

In light of these results of Euler and Euclid, the search for even perfect numbers
involves searching for primes p with 22 — 1 a prime. So how can we tabulate
primes? The most obvious way is to make a table of numbers 2, ...,n and check
each of these numbers to see if it is divisible by an earlier number on the list.
This soon becomes very unwieldy. However, we can simplify our problem by
observing that we can cross off all even numbers, we can then cross off all
numbers of the form 3 - n then 5-n then 7 -n, etc. This leads to the Sieve of
Eratosthenes (230 BC)

1234567891011 1213 ...
24681012 14 16 18 20 22 24 26 28 30...

23



369121518 21 24 27 30 33 36 39 42 45 48 51 54 57 60...

‘We cross out all numbers in the first row that are in the second or third row
and have 1 57 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 ... The
next sequence of numbers to check is the multiples of 5

510 15 20 25 30 35 40 45 50 55 60 65 ...

This reduces the first row to 1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59
61 ...

Now the number to check is 7

7 14 21 28 35 42 49 56 63 ...
Deleting these gives 1 11 13 17 19 23 29 31 37 41 43 53 59 61 ...
The next to check is thus 11

11 22 33 44 55 66 ...

We note that 112 = 121 > 61. Thus we see that the primes less than or
equal to 61 are 2,3,5,7,11,13,17,19,23,29,31,37,41,43,53,59,61.

The main modern use of the Sieve of Eratosthenes is as a benchmark to
compare the speed of different digital computer systems. Most computational
mathematics programs keep immense tables of primes and this allows them to
factor relatively large numbers. For example to test that 23! — 1 is prime one
notes that this number is of the order of magnitude of 2.4 x 10° thus we need
only check whether it is divisible by primes less then or equal to about 5 x 10* so
if our table went to 50,000, the test would be almost instantaneous. However,
for 261 — 1 which is of the order of magnitude of 2.4 x 10'® the table would
have to contain the primes less than or equal to about 50 billion. This is not
reasonable for the foreseeable future. Thus other methods of testing primality
are necessary. Certainly, computer algebra systems use other methods since,
say Mathematica, can tell that 26! — 1 is a prime in a few seconds. Using
Mathematica one can tell that 289 — 1 = 618970019642690137449562111 is a
prime. This gives the next perfect number 25%(28% — 1) which is (base 10)

191561942608236107294793378084303638130997321548169216.

We will come back to the question of how to produce large primes and
factoring large numbers later. In the next section we will give a method of
testing if a number is a prime. We will see that the understanding of big primes
has led to “practical” applications such as public key codes which today play an
important role in protecting information that is transmitted over open computer
networks.

1.4.5 Exercises.

1. Use the Sieve of Eratosthenes to list the primes less than or equal to 1000.
2. Write a program in your favorite language to store an array of the primes
less than or equal to 500,000. Use this to check that 23! — 1 is prime.
3. The great mathematician Pierre Fermat (1601-1665) considered primes
of the form 2™ 4 1. Show that if 2" 41 is prime then m = 2*. (Hint: If m = ab
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with @ > 1 and odd then set x = 2. 2" +1 = 29+ 1. Now —((—2)?—1) = 2%+1
since a is odd. Use the above material to show that 2™ + 1 factors.) This gives
21 +1=3,224+1=5,2+1=17, 2%+ 1 = 257,... (so far so good). Fermat
guessed that a number of the form 22" 41 is prime. Use a mathematics program
(e.g. Mathematica) to show that Fermat was wrong.

4. The modern mathematician George Polya gave an argument for the proof
that there are an infinite number of primes using the Fermat numbers F,, =
22" 4+ 1. We sketch the argument and leave the details as this exercise. He
asserted that if n # m then F, and Fj, are relatively prime. To see this he
observes that

7 —1=(z" = 1)(z" +1)

and so

2k72 2k71

22 1= (x2k71 - 1)(%2]“71 +1)= (:52]%2 —1)(x + 1) (z +1)

2k—1

=..=@ D@+ 1)@E*+1) (2 +1) =

(- + D)2+ )@@+ D)@+ 1)--- (2 +1).
If n > m then n =m + k so 2" = 2™2%. Hence

Fo=2"") 4+ 1

So (setting = 22") F,, —2 = (z + 1)K with

2k—1

K="+ D)@+ D)@+ 1)@+ 1) (@ +1).
Thus F, —2 = F,, K. So if p is a prime dividing F;, and F;,, then p must divide
2. But F), is odd. So there are no common factors. Now each F,, must have at
least one prime factor, p,,. We have p1,pa, ..., Pn, ... all distinct.

5. We say that a number, n, is k perfect if the sum of all of its factors
(1,...,n) is kn. Thus a perfect number is 2-perfect. There are 6 known 3-
perfect numbers. Can you find one?

1.5 The Fermat Little Theorem.

In the last section we saw how the problem of determining perfect numbers leads
almost immediately to the question of testing if a large number is a prime. The
most obvious way of testing if a number « is prime is to look at the numbers b
with 1 < b? < a and check if b divides a. If one is found then a is not a prime.
It doesn’t take much thought to see that this is a very time consuming method
of a is really big. One modern method for testing if a is not a prime goes back
to a theorem of Fermat. The following Theorem is known as the Fermat Little
Theorem.

25



1.5.1 The theorem.

If p is a prime and if a is a number that is not divisible by p then a?~' —1 is
divisible by p.

Let us look at some examples of this theorem. If p = 2 and a is not divisible
by 2 then a is odd. Hence a?~! —1 = a—1 is even so divisible by 2. If p = 3 and
a is not divisible by p then a = kp+1 or a = kp+ 2 by the Euclidean algorithm.
Thus a?~* —1 is either of the form (3k+1)?—1 or (3k+2)?—1. In the first case
if we square out we get 9k +6k+1—1 = 3(3k?+2). In the second case we have
9k? 4+ 12k +4 — 1 = 3(3k? + 4k + 1). We have thus checked the theorem for the
first 2 primes (2,3). Obviously, one cannot check the truth of this theorem by
looking at the primes one at a time (we have seen that Euclid has demonstrated
that there are an infinite number of primes). Thus to prove the theorem we
must do something clever. That is demonstrate divisibility among a pair of
numbers about which we are almost completely ignorant.

1.5.2 A proof.

We now give such an argument. If a is not divisible by p then ia is not divisible
by p for i =1,...,p — 1 (Euclid, Proposition 30 Book VII). Thus the Euclidean
algorithm implies that if 1 <7 <p—1thenia=d;p+r; with1 <r; <p—1. If
i > jand r; = r; then ia — ja = d;p+1; —djp —rj = (d; — dj)p. So (i — j)a is
divisible by p. Since we know that this is not true (1 < i—j < p—1) we conclude
that if ¢ # j then r; # ;. This implies that ry,...,7,_1 is just a rearrangement
of1,...p—1.

Before we continue the proof let us give some examples of the rearrange-
ments. We look at a =2, p=3. Thena=0-3+2,2-a=4=1-3+ 1. Thus
ry =2,r9 =1. Next welookata=3andp=05. Then3=0-54+3,6=1-5+1,
9=1-544,12=2-5+4+2. Thusry =3, ro=1,r3 =4, 14y = 2.

We can now complete the argument. Let us denote by s; for 1 <j <p—1
numbers given by the rule that r5, = j. Thus in the case a = 2, p =3, 51 = 2,
so = 1. In the case a = 3, p =5 we have s1 = 2, so =4, s3 =1, s4 = 3. Then
we consider

a-(2-a)-(3-a)---((p—1)-a)

We can write this in two ways. One is
1.2....(;0_1).@17—1,
The second is
(doyp+1) - (dsyp+2) -+ (ds,_,p+ (p— 1))

If we multiply this out we will get many terms but by inspection we can see
that the product will be of the form

1-2---(p—1)+c-p.
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We are getting close! This implies that
1-2----(p=1)-a?1=1-2---(p—=1) +c-p.

If we bring the term 1-2---(p — 1) to the left hand side and combine terms we
have
1-2---(p=1)- (a1 =1)=c-p.

Thus p divides the left hand side. Since p can’t divide any one of 1,2,....p — 1,
we conclude that p divides a?~1 — 1.

1.5.3 The tests.

This leads to our test. If b is an odd number and 2°~! — 1 is not divisible b then
b is not prime. If b is odd and 2°~! — 1 is divisible by b then we will call b a
pseudo prime to base 2. It is certain that if b is odd and not a pseudo prime
to base 2 then b is not a prime. The aspect that is amazing about this test is
that if we show that b does not divide 2°~! — 1 then there must be a number ¢
with 1 < ¢ < b that divides b about which we are completely ignorant!

On the other hand this test might seem ridiculous.. We are interested in
testing whether a number b is prime. So what we do is look at the (generally)
very much bigger number 2~ — 1 and see if b divides it or not. This seems
weird until you think a bit. In principal to check that a number is prime we
must look at all numbers a > 1 with a? < b and check whether they divide b.
Our pseudo prime test involves long division of two numbers that we already
know. That is the good news. The bad news is that the smallest pseudo prime
to base 2 that is not a prime is 341 = 11 - 31 and it can be shown that if b is a
pseudo prime to base 2 then so is 2° — 1. Thus there are an infinite number of
pseudo primes to base 2. For example if p is prime then 2P — 1 is also a pseudo
prime to base 2 (see Exercise 4 below).

Note that we could add to the test as follows. If b is odd and 2= — 1 is
divisible by b we only know that b is a pseudo prime. We could then check
whether 3 divides b and if it does we would know it is not a prime. If it doesn’t
we could check whether b divides 3*~! — 1. The smallest number that is not
a prime but passes both tests is 1105 = 5 - 13 - 17. One can then do the same
thing with 5. We note that if we do this test for 2, 3,5 the non-primes less than
10,000 that pass the test are {1729, 2821, 6601,8911}.

This leads to a refined test that was first suggested by Miller-Rabin. Choose
at random a number a between 1 and b — 1. If the greatest common divisor
of @ and b is not one then b is not prime. If @ and b are relatively prime but
a®~1 — 1 is not divisible by b then b is not prime. If one repeats this k times
and the test for being composite fails then the probability of b being composite
is less than or equal to 2% Thus if k£ is 20 the probability is less than one in
a million. Obviously if we check all elements a less than b then we can forget
about the Fermat part of the test. The point is that the number b is very big
and if we do 40 of these tests we have a probability of better than 1 in 102 that
we have a prime.
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A number, p, that is not a prime but satisfies the conclusion of Fermat’s
theorem for all choices of a that are relatively prime to p is called a Charmichael
number the smallest such is 561. Notice that 561 = 3 - 11.17.

One further sharper test(the probabilities go to 0 faster and have strictly less
failures than the Miller-Rabin test) is the Solovay-Strassen probabilistic test.
We can base it on the proof we gave of Fermat’s Little Theorem. Suppose that
a and b are relatively prime and b is odd and bigger than 1. For each 1 < j < b
we write

ja = mjb + T

with 0 < r7; <b. We note that r; can’t be zero since then b divides ja. Since
b has no prime factures in common with a this implies that b divides j. This
is not possible since 0 < 7 < b. Thus, as before the numbers 71, ...,7,_1 form
a reordering of 1,2,....b — 1. We denote by 7 the number that is gotten by
multiplying together the numbers 7; — r; with 5 > 7 and j < b. Then since
71,...,Tp—1 18 just a rearrangement of 1,....b — 1 we see that 7 is just +1 times
the number we would get without a rearrangement. We write J(a,b) for 1 if
the products are the same and —1 if not. We now consider the product ja —ia)
for j >iand 1 < j < b then as we argued above we see that this number is

T+ cb

with ¢ a number. This says that if A is the product of j — i over the same
range then

Ag——2— = J(a,b)A + cb.
This implies that if b is prime that P J(a,b) is divisible by b. Now

n — 2 is odd so J(a,b) = J(a,b)" 2. Hence we see that if b is prime then
a T — J(a,b) = db

for some number d. This leads to the test. We say that a number a between 2
and b — 1 is a witness that b is not prime if a and d are not relatively prime or
a T —J (a, b) is not divisible by b. One can show that if there are no witnesses
then b is prime. One can also prove that if b is not prime then more than half of
the numbers a between 2 and b — 1 are witnesses. The test is choose a number
a between 2 and b — 1 at random. If @ is a not a witness that b is not prime
then the probability is strictly less than % that b is composite. Repeating the
test say 100 times and not finding a witness will allow us to believe with high
probability that b is prime.

The point of these statistical tests is that if we define log,(n) to be the num-
ber of digits of n in base 2 then the prime number theorem (J. Hadamard and
de Vallée Poussin 1896-we will talk about this later) implies that if N is a large
number then there is with high probability a prime between N and log,(N).
For example, N = 56475747478568 then log,(N) = 45 and 56475747478601 is
a prime. Thus to search for a prime with high probability with say 256 digits
base 2 choose one such number (at “random”), N, then use the statistical tests
on the numbers between N and N + 256.
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The reader who has managed to go through all of this might complain that
the amount of calculation indicated in these tests is immense. When we talk
about modular arithmetic we will see that this is not so. In fact these tests can
be implements very rapidly. As a preview we consider the amount of calculation
to test that a number b is a is a 2-pseudo prime. We calculate 2°~! as follows:
We write out b — 1 in base 2 say b — 1 = ¢12 + cod + ... + ¢, 2™ with ¢; either 0
or 1. We then

2b71 _ (22>c1 (24)02 L. (222>Cn.

As we compute the products indicated we note that if m is one of the interme-
diate products and if we apply division with remainder we have

m=ub+r

with 0 < r < b. In the test we can ignore multiples of b. Also we use the
fact that 227" = (22")%2. And the 22" can be replaced by its remainder after
division by b. Let r,,, be the remainder for 22", Thus if we have multiplied the
first k terms and reduced to a number less than b using division with remainder
to have the number say s if cy+1 = 1 we multiply s by 7, and then take the
remainder after division by b. We therefore see that there are at most n
operations of division with remainder by b and never multiply numbers as big
as b. We will see that a computer can do such a calculation very fast even if
b has say 200 binary digits. We give an example of this kind of calculation
consider the number n = 65878161. Then 2" ! is an immense number but if
we follow the method described we have the binary digits of n — 1 (written with
the powers of 2 in increasing order) are

{0,0,0,0,1,0,0,1,0,0,0,1,1,1,0,0,1,0,1,1,0,1,1,1,1,1}.

The method says that each time we multiply we take only the remainder after
division by n. We thereby get for the powers

{2,4,16, 256, 65536, 12886831, 1746169, 1372837, 38998681, 33519007, 56142118,
28510813,45544273,49636387, 27234547, 48428395, 5425393, 65722522,
46213234, 3252220, 64423528, 16511530, 46189534, 45356743, 15046267, 47993272} .

Now the intermediate products are (we include the terms where the digit is 0)

{1,1,1,65536, 65536, 65536, 46555867, 46555867, 46555867, 46555867,
18206659, 42503458, 24542662, 24542662, 24542662, 54699517, 54699517,
29732113, 728509, 728509, 38913619, 36121177, 1794964, 30837667, 23401021}.

The last number is not one so the number n is not a prime. This seems like a lot
of computation but most modern personal computers can do these calculations
instantly. It turns out the n = 7919 x8319. So finding a factor by trial and
error would have involved more computations. We also observe that the same
method can be used for any choice of a using a2”" = (a2")2.
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1.5.4 Exercises.

1. Make a large list of pseudo primes base 2 less than or equal to 1000. Compare
this with a list of primes less than or equal to 1000. (You will want to use a
computer for this.)

2. If n is any positive integer show that there exists a consecutive list of
composite integers of length n. (Hint: If we set (n+ 1) =(n+1)n(n—1)---2
then (n+ 1! +2,(n+ 1! +3,...,(n+ 1) +n+ 1 are all composite.) For each
n = 2,3,4,5,6,7,8,9 find the consecutive list of primes that starts with the
smallest number (for example if n = 3 the answer is 8,9,10). Why do we need
to only check n odd?

3. Calculate the rearrangement of 1,2,...,6 that corresponds to a = 2 and
p =T as in the proof of the Little theorem. Use this to calculate J(2,7).

4. Given a and p as in Fermat’s Little theorem and ry, ..., r,—1 and s1, ..., Sp—1
show that if 1 < a < p thenr; = a and s1-r1 = u-p+1 with v a whole number.

5. Show that if p is a pseudo prime to base 2 then so is 2P — 1. (Hint: If
q = 2P — 1 then

991 _1=92"-2 1 =92""-1 _q

Now p divides 2?1 — 1. So 2~! — 1 = ¢p. Thus
207t 1 =22 1 =221

with o = 2°.)
6. We note that 1+22+1 =6 (so divisible by 3), 1 +2*+3% +4% +1 =355
(so divisible by 5). Show more generally that if p is prime then

Pt o (p-1)P 41

is divisible by p. It has been shown that if p satisfies this condition (that it
divides the above sum) then it has been shown by Giuga(Giuga, G. “Su una
presumibile propertietd caratteristica dei numeri primi.” Ist. Lombardo Sci.
Lett. Rend. A 83, 511-528, 1950) that p is a Charmichael number. He also
conjectured that such a number must, in fact be prime. This has been checked
for p < 101389 (Borwein, D.; Borwein, J. M.; Borwein, P. B.; and Girgensohn,
R. “Giuga’s Conjecture on Primality.” Amer. Math. Monthly 103, 40-50, 1996).

7. Use a package like Mathematica or Maple to show that 341 is a pseudo
prime to base 2 and that 21194 — 1 and 3194 — 1 are both divisible by 1105.

8. To do this problem you should use a computer mathematics system.
Calculate the remainder of dividing 2"~! by n for n =
57983379007789301526343247109869421887549849487685892237103881017000
7677183040183965105133072849587678042834295677745661721093871. Use the
outgrowth of the calculation to deduce that n is not a prime.

1.6 Large primes and cryptography.

In the last section we saw that large primes appear naturally in the “unnatural”
problem of finding perfect numbers. Large primes have also become an impor-
tant part of secure transmission of data. Most modern cryptographic systems
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involve two “keys” one to be used to encode and the other to decode messages.
Public key systems have a novel aspect in that the information necessary to
encode a message is in principle known to everyone. But the information to
decode the message is only known to the person the intended recipient of the
message. In other words, even if you know how to encode a message you still
do not know how to decode a different message encoded by that method. Al-
ternatively, even if you find a method of deciphering one message deciphering
another is not easier. This is a seeming contradiction and although most be-
lieve that the methods now in use have this contradictory property there is no
mathematical proof that this is so. This type of cryptography was first de-
scribed by W.Diffie and M.E.Helman “New directions in cryptography,” IEEE
Transactions in Information Theory IT-22 (1976),644-654.

One of the first “practical” implementations was due to Rivest, Shamir
and Adelman (1978) and is called RSA. Tt is based on the hypothesis that the
factoring of large numbers is much harder than multiplying large numbers. We
will discuss this point and describe the implementation of RSA later in this
section.

1.6.1 A problem equivalent to factorization.

In the RSA system a person (usually called Alice) chooses (or is assigned) two
very large primes p and ¢. Alice calculates n = pg and makes n public. She also
chooses a number e (for encode) that has greatest common divisor 1 with the
number m = (p— 1)(¢ — 1) and such that 1 < e < m. This number is also made
public. The rest of the system involves enciphering messages using these two
numbers (n,e). The point of the methods of enciphering is that to decode the
message one must know a number 1 < d < m (for decode) such that ed = rm+1
for some integer r (note that the form of Proposition 1 Book VII in Euclid tells
us that d exists. It is hypothesized that one cannot find d without knowing m.
There are also probabilistic arguments that indicate that with high probability
if we know d then we know m. The main point is thus the following Proposition:

If we know the number m then it is easy to factor n.

Before we demonstrate this we will interpret the line of thought. This as-
sertion then says that with a high probability, deciphering the RSA cipher is at
the same level of difficulty as factoring n. Since we have hypothesized that this
is impractically hard we have implemented a public key system.

As for the Proposition, if we know m then we know (p—1)(¢—1) = pg—p—q+
1. Since we know n = pq we therefore know p+q. Now, (p+¢q)? —2pq = (p—q)?
we see that we know (p — ¢)? at the same level of difficulty as squaring (which
the ancient Egyptians thought was relatively easy) that we have hypothesized
is much easier than factoring. The last step is to see that there is an “easy”
method of recovering a if we know a?. We will see that this is so below. Thus
with little difficulty we have calculated p + ¢ and p — q. We can recover p and
q by adding and subtracting and dividing by 2.
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1.6.2 What do we mean by “hard” and “easy”?

Before we describe an implementation of RSA we will give a working explanation
of the terms hard and easy. In what follows we will use the notation log,(n)
to mean the smallest k such that 2% is greater than or equal to n. In other
words loga(n) is the number of operations necessary to write the number n in
base 2. We will say that a procedure depending on integers N, ..., Ng is easy
if the there is a method for implementation (an algorithm) that takes a time
to complete that is proportional to a fixed power (depending on the procedure)
of (logy(N71) + ... + logy(Ng)). If an operation is not easy then we say that
it is hard. The study of hard and easy belongs to complexity theory. It is a
formalism that is useful for testing whether good computational methods exist
(or don’t exist). We will just touch the surface.

As our first example we consider the problem of comparing two numbers M
and N. We assert that this takes at most 4(logy(N) + logy(M)) operations.
We will go through most of the (gruesome details for this case since it is the
simplest. The reader should have patience). Indeed, it takes logy(N)+1logy (M)
operations to write the two numbers. Once we have done this we know log, (V)
and log,(M). We prove by induction on r = logy(N) + log,(M) that it now
takes at most 4(log,(M) + log,(IV)) operations to test whether N is bigger
than M is smaller than N or is equal to N. If » < 1 then all we must do is
look at the two indicated numbers which are 0 or 1. Assume for r < s (the
induction hypothesis). We now show that it is true for s. We first check that
if logy (V) > logy (M) (or logy(IN) < logy(M)) then N > M or (N < M). This
by the induction hypothesis we need at most 4(log,(log,(N)) + log, (logs (M)
steps to check this. If we have strict comparison of the logs we are done in
2(logy(logy(N)) +logs (logy (M)) steps. Otherwise we now know that logy(N) =
log, (M) we now check the digits one by one from the top and look for the first
place with one of M or N having a 1 and the other a 0 the one with the 1 is
the larger. If we do the full number of steps we have equality. Thus we have
done the comparison in at most (logy(N) +log,(M)) additional steps. Now we
observe that logy(n) < 5. If n > 2. If n = 2 this says that 1 < 1. If it is
true for n and if n # 2 — 1 then logy(n+ 1) =logy(n) < % < 2. Otherwise,
n=2F—1. Sology(n+1) = k+1. We are left with observing that 28 > k +1,
for k= 1,2,... For k = 1 we have equality. If 2¥ >k + 1 then

Ml =202 > 2(k+1) =2k +2 > k+2.
This implies that
2(logy (logy (V) + logy(logy (M) < logy(N)) + logy (M)
So the total number of steps is at most
(logy (N) +logy(M)) + 2(logy(N)) + logy (M) + (logy (N) + logy(N))

the first term for writing the two numbers, the second for comparing the number
of digits and the third for the main comparison. Thus comparison in easy (as
we should guess).
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We now look at addition. We have numbers a and b write out the numbers
in base 2 assume that a is the larger and fill out the digits of b by 0 (easy).
This involves 2logz(a) operations. We write n = logy(a). Now add the lowest
digits, if one is 0, then put the other digit in the lowest position of the answer
otherwise both are 1 so put a 0 in the lowest position and then look at the next
digit of a if it is O change it to 1 if it is 1 change it to 0 then do the same
operation on the next digit continue until you get to a 0 digit of a or to the top
one which must be 1 and we would change it to 0 and add one more digit to
a. This happens only if all the digits of a are 1 in this case a = 2™ — 1. So to
add a and b you need only change the lowest digit of b to 0 and then add 2™
which involves at most 3 steps. This implies that we are either done in 3 steps
or we need at most n operations to add the lowest digits. We then go to the
next digit. We see that if we are adding at the rth digit we will need to at most
the larger of 3 and n — r easy operations. Thus the number of operations is at
most n+(n—1)+..+1= @ easy operations. So addition is easy.

The next case is that division with remainder is easy. To see this we look
at M and N and we wish to divide M into N. Comparison is easy. So if
M > N the division yields 0 with remainder N. If M = N we get division 1
and remainder 0. Thus we nay assume M < N. Let m be the number of digits
of M and n that of N. If n = m then the division is 1 with remainder N — M
(subtraction is easy, you will do this in an exercise). Thus we can assume that
n > m. Now multiply M by 2"~ ™ and (this just means putting n — m zeros
at the end of the base two expansion of m) subtract this from N. Getting N;
with less than n digits. If N7 < M we are done otherwise do the operation
again. After at most n of these steps we are done. Thus we must do at most n
easy operations. So division with remainder is easy. We also note that similar
considerations imply that addition, subtraction and multiplication are easy.

Consider Euclidian method of calculating the greatest common divisor (g.c.d.)of
two numbers n > m > 1. first subtract m from n repeatedly until one has m
or one has a number that is less than m. If the number is m then the g.c.d. is
m. If not put ny = m and m; equal to the number we have gotten and repeat.
If m; = 1 then we know that the g.c.d. is 1. Thus The initial step involves
about n/m subtractions. It also involves one division with remainder. If n is not
divisible by m then m; is the remainder after division. Thus, if we use division
rather than subtraction each step involves one division with remainder. Since
each step reduces the bigger number to a number less than or equal to one half
its size we see that the number of such operations is at most loga(n). Thus it
takes no more than loga(n) times the amount of time necessary to calculate the
division with remainder of n by m. By a hard operation on n or on n > m we
will mean an operation that involves more than a multiple of logz(n)* steps for
each k =1,2,3, ... (the multiple could depend on k). Thus calculating the g.c.d.
is easy.

To complete the line of reasoning in the previous subsection we show that
if a is a positive integer then the calculation of the positive integer b such that
b?> < a < (b+1)? is easy b is called the integer square root of a.. The idea is
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to write out a to base 2. If the number of digits is 4 or less look it up in a
table. If the number of digits is n which is odd n = 2k 4+ 1 then take as the
first approximation to b the number 2 if this satisfies the upper inequality we
are done otherwise try 2% + 281 if it satisfies both inequalities we are done
otherwise if it doesn’t satisfy the lower one replace by 2¥ + 2¥=2 and continue
the same testing to see if we leave the bit “on” or not. The involves calculating
2n squares so since n — 1 = loga(a) and we have decided that squaring is easy
we have shown that in this case calculating b is easy. If n = 2k is even then look
at the first 2 bits of a (the coefficients of the highest and next highest power
of 2) then start with 2¥~! and use the same procedure.

Is anything hard? The implementation of RSA assumes that factoring a large
number is hard. There is no proof of this assertion, but the best known methods
of factorization take the order of magnitude of

9C(l0g, (N)) ¥

steps.

1.6.3 An implementation of RSA.

Suppose that you are shopping on the internet and you must transmit your
credit card number, C', to the merchant. You know that it is possible that “Joe
Hacker” is watching for exactly this sort of transaction. Obviously, you would
like to transmit the number in such a way that only the merchant can read it.
Here is an RSA type method that might accomplish this task. The merchant
chooses two big primes p and ¢ (so big that they are both bigger than any
credit card number) then forms the numbers n = pg and m = (p — 1)(¢ — 1).
He also chooses e randomly between 1 and m that has greatest common divisor.
1 with m. He transmits the numbers n and e to your computer (and probably
Joe’s computer). Your computer then calculates the remainder that is gotten
when C° is divided by n. Call this number S. Your computer sends S to the
merchant. This is what Joe sees. The merchant calculates the number d that
has the property that de = 1+mk for some k. He then calculates the remainder
after division by n of S and has C we will explain this in the next paragraph.
If Joe can calculate d then he also knows C. However, if the primes are very
large we have seen that this is very improbable.

We now explain why S¢ = C + nh for some h. Neither p nor ¢ divides C
since it is too small. By definition of S,

C®=S+ng
for some g. Thus S = C¢ — ng. We therefore have
59— ¢de = (C° — ng)? — .
One can check the formula

zd -yl = (x — y)(md*1 + 292y + L ay? 4 ydil).
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by direct multiplication.

(x—y) (T 292y + o ayd 2yt
_ $($d71 + $d72y 4. +£Eyd72 + ydfl) o y(xdfl +£Ed72y 4o+ xyd72 +yd71)
2l 2y b a2yt gyt
Cpdly g2y gyl
= 2yl
If we make the replacement z = C¢ — ng and y = C°¢ in this formula we find
that S¢ — O is divisible a multiple of  —y = —ng and is thus divisible by
n. Thus the remainder after dividing by n of S and C% is the same. We note
that
(Ce)d — Cde _ Cl+mk — C(Cm)k

Now m = (p—1)(g—1) and (C*a=1)P=1 = 14+ ap by the Fermat Little Theorem.
Similarly, C™* = 14 bq. Thus C™* — 1 is divisible by both p and ¢ hence by n.
(See Exercise 2 below.) Thus S? = C(1+ cn) = C +un for some whole number
u.

We will now do an example of this but with smaller numbers than those that
would be in a practical implementation.. We take p = 71 and ¢ = 97. Then
n = 6887 and m = 6720. Choose e = 533. Then the “decoder” is d = 2132. If
C = 45 then the remainder after division by n of C¢ is 116. We note that 116¢
has remainder 45 after division by n.

1.6.4 Fermat factorization.

RSA is based on the assumption that factoring big numbers is hard. How would
we go about doing a factorization of a big number. If we knew that the number
came from RSA we would then know that it has only two prime factors. Does
this make the problem easier? Fortunately for the internet this doesn’t seem to
be the case. We will, however, look at a pretty good method of factoring now.

Suppose that n is an odd number and that n = ab with 1 < a < b. Set
t= ‘IT“’ and s = b’T“ Note that a and b are odd so ¢ and s are whole numbers.
We have

t? — 52 = ab.

The reverse is also true, that is, if 1 < s <tandifn=1t>—s> thenifa=t—s
and b =t + s then n = ab. This leads to a method. Start with the number n
let g be its integer square root. if g2 = n we have factored the number into two
smaller factors. Otherwise try ¢t = g+ 1 and calculate t* — n if this number is a
perfect square s? then apply the above observation Otherwise replace ¢ by t + 1
and try again. Keep this up until ¢2 —n = s2. This is practical only if n has two
factors that are very close together. This tells us that for the sake of security of
RSA one must choose p and ¢ far apart.

We will try this factorization out for the example we used above n = 6887
then the integral square root is 82. 822 = 6724. 83%2—n = 2,842 —n = 169 = 132.
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So taking a = 84 — 13 = 71 and b = 84 4+ 13 = 97 we’ve found our original
p=a,q=>.

There are many variants of this method that involve significant improve-
ments in the number of operations necessary to do the factorization. However,
the best known methods are hard in the sense of this section. In the next sec-
tion we will show how a “change in the rules” allows for an “easy” factorization
algorithm.

1.6.5 More approaches to factorization.

In 1994, Peter Shor published a proof that if a computer that obeys the rules
of quantum mechanics could be built then it would be possible to factor large
numbers easily. The subject of quantum computing would take us too far afield.
However, one of the ingredients of Shor’s approach can be explained here. We
start with a large number, N. Choose a number y randomly. We calculate the
remainder of division by N of y* for x = 0,1,2, ... and call that number f(z).
Then there is a minimal number 1 < T < N such that f(x +7T) = f(z) for all
x. We call T the smallest period. If T is even we assert that y% +1and N
have a common factor larger than 1. We can thus use the Euclidean algorithm
(which is easy in our sense above) to find a factor of N. Before we demonstrate
that this works consider N = 30 and y = 11. Then f(0) = 1, f(1) = 11,
112 =121 =1+4-30,s0 f(2) =1 = f(0). Thus T = 2. Now 111 +1 = 12. The
greatest common divisor of 12 and 30 is 6.

We will next check that this assertion about y, T, IV is correct. We first note
that

(y7 +1)2 =97 +2y7 + 1.

But 47 =1+ m - N by the definition of 7. Thus after division by N one gets
the same remainder for (y¥ + 1)? and for 2(y% + 1). This implies that
(v +1)° —2(y* + 1)

is evenly divisible by N. Thus so is

(W +1)-2) (3 +1) = (* - 1) (s* +1).

Thus if ¥ + 1 and N have no common factor then y* — 1 is evenly divisible
by N. This would imply that Z which is smaller than T satisfies

flat5) = 1(@)
This contradicts the choice of T" as the minimal period.

There are several problems with this method. The most obvious is what
happens if the minimal period is odd? It can be shown that the probability
is small that one would make many consecutive choices of y with odd period.
Thus the “method” is probabilistic. However, if you could decode RSA with
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probability, say, .6 , then you would be able to decode about 60% of the
secure internet commerce. There, however, is a much more serious problem.
There is no easy algorithm for computation of such periods. The standard
ways of finding the T" above are as difficult as the factoring algorithms. This
is where quantum computing comes in.  Shor’s contribution was to assume
that his computer allowed for “superpositions” (be patient we will know what
this means later. For now if you don’t know what this means read quantum
mechanical operations.) of digits and that these superpositions obeyed the rules
of quantum mechanics. Under these assumptions he proved that he could find
the period easily.

1.6.6 Exercises.

1. Why are subtraction, multiplication and division with remainder easy (in the
sense above)?

2. Show that if p,q are distinct primes that if p and ¢ divide a then pq
divides a.

3. Use Fermat factorization to factor each of the following numbers into a
product of two factors 3819, 8051, 11921.

4. Suppose that you have intercepted a message that has been encoded in the
following variant of RSA. Each letter in the message is translated into a number
between 1 and 26. We will ignore case and all punctuation but spaces and a space
is assigned 27. So a and A become 1, z and Z become 26. Thus we would write
NUMBER as 14,21,13,2,5,18. We think of this as a number base in base 28.
(Here this number is 1442128 +13%282 +2%283 +5x28% 4 18%28% = 312914 602.
We expand the number and write it to base 60. getting 22,43,40,8,24. We
then encode each digit using RSA with n = 8051 and e = 1979. This gives
269, 294, 7640, 652, 198. Suppose that you know that 402, 2832 was coded in this
way. What did the original message say? (Even for relatively small numbers
such as these you will almost certainly need a computer algebra package to do
the arithmetic.)

5. A form of RSA is the standard method of sending secure information on
the internet. Do you agree that it is secure?

6. Consider all y between 10 and 20 and N = 30. Calculate the periods, T’
in the sense of the Shor algorithm (see the previous section).
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2 The concept of geometry.

2.1 Early geometry.
2.1.1 Babylonian areas.

In section 1.3 we alluded to the fact that Euclid did not look upon arithmetic
as an outgrowth of simple counting. He rather looked upon it as arising from
measurement of intervals with respect to a unit. The word geometry when an-
alyzed has two parts geo for earth and metry for measurement. The earliest
known record of geometry can be found in Babylonian tablets dated from about
3000 B.C. These tablets are concerned with calculating areas. One starts (as
did Euclid) by measuring intervals with respect to a unit interval. The subject
of these tablets was the calculation of areas bounded by four straight lines. If
we think a bit about this question and decide that a square with side given by
the chosen unit has unit area and if we take two of them on put then side by
side (ore one on top of the other) then we have a rectangle with sides 2 and 1.
It is reasonable to think that this rectangle has area 2.

A B

Similarly we can put six such unit squares together and make a rectangle of
sides 2 and 3 which has area 6. Thus if we have a rectangle of sides a and b
then the area should be a - b (square units).

Obviously, not every area is as regular as a rectangle and the Babylonians
concerned themselves with four sided figures that could be determined by 2,3
or 4 measurements.. Thus a rectangle of sides a and b is determined by two
measurements. What about 3 measurements? Here imagine a rectangle of sides
a,b and on one of the sides b an distance ¢ from the side of length a is marked.
One then joins the marked point with the endpoint of the other side of length
b. One now has a figure that is sometimes called a rectangular trapezoid. Let us
deduce the corresponding area.
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c b

The figure has sides labeled by a,b, ¢ and the diagonal if we fold it over as in
the picture above the two trapezoids fit together to make a rectangle of sides a
and b+ c¢. Thus the trapezoid is half of that rectangle and so we have shown
that its area is (b+ c)a. This is the Babylonian formula.

It is still a subject of debate as to what the Babylonians meant by a figure
determined by four measurements.. However, what seems to be agreed is that
the formula that was used for the area does not jibe with any general notion of
“four measures” since if the measurements are a, b, ¢c,d then the formula they
give is W. This seems to be what they thought was the area of a general
four sided figure with sides of lengths a, b, ¢, and d.

2.1.2 Right triangles.

As we saw the Babylonians understood Pythagorean triples. They in fact seemed
to be aware of what we call the Pythagorean Theorem. In 1916 the German
historian of mathematics Ernst Weidner translated a tablet from 2000 BC that
contained the assertion that if a right triangle has legs a and b then the other
side has length
b2
c=a-+ 20
This is not correct, in general, however we should recall that the Babylonians

used the approximation
v
Vvuit+v=u+—.
2u

If we apply this formula we find that they are using
c=+a?+ b2

2.1.3 Some Egyptian Geometry.
In the Moscow Papyrus (approximately 1700 BC) there is the following problem

The area of a rectangle is 12 , and the width is three quarters of the length,
what are the dimensions?

The solution was given in the following way. If we attach a rectangle of side
one third of the smaller to the longer side to make the figure into a square then
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the area of the square would 16. Thus the longer side must be 4 and the shorter
3.

This method is what we now call “completing the square”. This example
indicates that the Egyptians understood rectilinear areas. However in the same
Papyrus there is the following:

If you are told: A truncated pyramid of 6 for the vertical height by 4 on the
base by 2 on the top. You are to square this 4, result 16. You are to double 4
result 8. You are to square 2 result 4. You are to add the 16, the 8, and the
4, result 28. You are to take one third of 6, result 2. You are to take 28 twice
result 56. You will find it right.

Here the scribe clearly has in mind a truncated pyramid of the type that we
know that the Egyptians built. That is the base is square and the top is parallel
to the base and centered over it.. If we write u for the height (6) and a for the
side of the base (4) and b for the side of the top (2). Then the scribe has written:
(b + ab+ a?) (%). Which is the correct formula. We will just indicate how it
follows from the formula for the volume of a pyramid of base a and height h,
%‘2. Consider the picture below

Then the total volume is % Now the theory of similar triangles (see Thales

fourth Theorem below or Proposition 4 Book VI in Euclid) we have

u—+v

v
a b’
The desired volume is thus

(u+wv)a®  vb®  wa®  wb?

3 3 3% 3
We now rewrite the identity just used as

_|_

SHES
SIS

v
b



that is

this gives
b
Ca—b
Substituting this into the formula we have for the desired area yields
a’® —b?
“3la—b)

We now note that this implies the Egyptian formula once it is understood that
(a—0b)(a®+ ab+b?) = a® — b3. The consensus is that the Egyptians were aware
of this identity..

The later Egyptian geometry seems to have been influenced by the Baby-
lonians since on the tomb of Ptolomy XI who died in 51 BC the inscription
contained the incorrect formula for the area of a quadrilateral of sides a, b, ¢ and

I (a+c)(b+d)
—
The Babylonians and the Egyptians also had an understanding of the geom-
etry of circles.

2.1.4 Exercises.

1. Can you find any quadrilaterals have area in accordance with the Babylonian
formula?

2. What is the area of a rectangular trapezoid with dimensions 2,4,37

3. A problem on the Moscow Papyrus says: One leg of a right triangle is
two and a half times the other and the area 20. What are its dimensions? Use
the Egyptian method of completing to a rectangle to solve the problem (this is
the way it was done on the papyrus).

4. Calculate the volume of a right pyramid (not truncated) of base 9 and
height 15.

2.2 Thales and Pythagorus.

The geometry of the ancient civilizations is important but pales next to the
developments in early Greece. Perhaps one reason why we are so aware of
Greek mathematics is because of their rich literature and historical writing dat-
ing from the earliest eras of their civilization. The first Olympic games were
held in 776 BC (a documented historic event). The works of Homer and Hesiod
(still read) predate this event. During the sixth century BC there is a record
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of two great mathematicians Thales and Pythagorus. Their individual achieve-
ments are only documented by secondary sources which, perhaps, exaggerate
the accomplishments of these two mathematicians.

The Greek world in 600 BC had spread from its original boundaries of the
Aegean and Ionian seas to scattered settlements along the Black and Mediter-
ranean Seas. Most of the mathematics that has been recorded comes from these
outskirts. One possible reason for this is that they interacted with the older
cultures of the Babylonians and the Egyptians. Thales of Milatus (624-548 BC)
and Pythagorus of Samos (580-500 BC) were known to have travelled to the
ancient centers of Babylonia and Egypt to study their mathematics.

2.2.1 Some theorems of Thales.

Eudemus of Rhodes (320 BC a student of Aristotle) wrote a history of mathe-
matics that is now lost but a summary of this history (also lost) was incorporated
by Proclus (410-485 AD) in his early pages of commentary on the first book of
the Elements by Euclid. Proclus reports as follows:

... (Thales) first went to Egypt and thence introduced this study to Greece.
He discovered many propositions himself and instructed his successors in the
principles underlying many others, his methods of attack being in some cases
more general in others more empirical.

Later quoting (the quote of) Eudemus he attributes that following five the-
orems (found in the Elements) to Thales.

1. A circle is bisected by its diameter.
2. The base angles of an equilateral triangle are equal.
3. If two lines intersect the two opposite angles are equal.

4. If two triangles have all their angles equal then the corresponding sides
are in proportion.

5. If two triangles have one side and the two adjacent angles equal then they
are equal.

We will consider these theorems in our discussion if Euclidean geometry.
Thales was a practical man whose motto according to Proclus was "know thy-
self”.

2.2.2 Pythagorus.

Pythagorus, on the other hand, was a mystic and a prophet. His motto (and
that of the Pythagoreans) was “all is number”. As with Thales, only sec-
ondary sources still exist (Aristotle was known to have written a biography
of Pythagorus). The Pythagoreans were a vegetarian sect since they believed
(possibly influenced by a trip of Pythagorus to India) in the migration of souls.
The term mathematics comes from Pythagorus and literally means “that which
is to be learned”. Proclus, in his introduction to the books of Euclid says:
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Pythagorus, who comes after him [Thales], transformed this science into a
liberal form of education, examining its principles from the beginning and prob-
ing the theorems in an immaterial and intellectual manner[meaning abstract].
He described the theory of proportions and the construction of cosmic figures.

Johann Stevin Kepler (1571-1630) wrote:

Geometry has two great treasures: one is the Theorem of Pythagorus; the
other, the division of a line into extreme and mean ratio. The first we may
compare to the measure of gold the second we may name a precious jewel.

The meaning of this quotation will be clearer after reading the next section.

2.2.3 The golden ratio.

First we look at a square of side a with its diagonals drawn.

a

b
b

b
b

a

This picture is quite similar to one on the Babylonian tablet Yale 7289. We
note that if we use the method the Babylonians each of the triangles with legs
b2

b,b and hypotenuse a has area <% since 4 of them make up the square of area

a® we see that a2 = 4(%) = 2b%. Note that the obvious symmetry implies that
all of the angles in the center are equal and so each must be a right angle. The
drawing is therefore an elegant proof of the Pythagorean theorem in this case.

It is reasonable to ask what happens for a pentagon? Consider the two
figures
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If we rotated the pentagon so that a vertex would go to a vertex then the
figure would look exactly the same. This says that all the segments labeled by
an g are equal to the same value which we will call a. Similarly for the ones
marked b and ¢. Now each of the triangles with base ¢ and two sides a full
diagonal (a + b + a) rotate one on the other. For example, AEC and ABD.
Each of the triangles with base b and sides a (for example, E’A’C') is similar to
the of the triangles with base ¢ and sides a + b+ a. So

2a+b  a

c b
We note that the line BD is parallel to AF and that AC is parallel to FD. This
implies that AE has the same length as ED. So ¢ = a +b. We therefore have

2a+b a

a+b b

Cross multiplying gives 2ab + b = a? + ab. Hence

b2 +ab=a®
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If we divide both sides of this equation by a? and set x = g then the equation
becomes
24z =1

Thus the ratio % satisfies the above equation. This ratio was called the golden
ratio by the Pythagoreans. It is this division that Kepler called a precious
jewel. The ancients believed that a rectangle whose sides are in this ratio was
the most pleasant to the eye. The Greeks designed the Parthenon so that its
sides conformed to this ratio. The number y = % is called the golden section
and satisfies

i =14y.

A rectangle whose smaller side is in the proportion of the golden ratio to the
larger is called a golden rectangle. It has the property that if we take a golden
rectangle ABDF' as in the picture below and if we We mark the point C' so
that the length of BC equals the length of the shorter side AB. Then one has
a subdivision into a square ABCH and a rectangle CDF H. The rectangle is
another golden rectangle:

C D
B‘
K
.I-/\ E
I(L
A b s F

To see this we observe that if b is the length of AB and if a is that of BD
then CD has length a — b and F'D has length b. We assert that

a—>b b

b a

To see this cross multiply we are trying to see if a(a — b) = b%. That is if
a? = ab + b*>. Which is just the assertion that % is the golden ratio. The point
here is we can now look at the new golden rectangle as a square and a golden
rectangle. In fact, we can continue this forever. If in each of the squares we
draw the part of the circle of radius equal to the length of a side starting at
the far corner (relative to our labeling) we have a spiral. The arcs seem to fit
smoothly. They do (but not as smoothly as the picture indicates) and we’ll
understand why after we discuss the infinitesimal calculus.
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2.2.4 Relation with the Fibonacci sequence.

If we recall the problem of Fibonacci: A rabbit takes one month from birth to
become sexually mature. Each month a mature pair gives birth to two (assume
a male and a female) rabbits. If you have a pair of newborn rabbits how many
pairs rabbits will you have in a year? We start with 1 pair after a month they
have just gotten mature so there is still only one pair. They give birth at the
end of the next month so there are then 2 pair. In one month the original pair
will give birth again but the second pair will have just gotten sexually mature.
So there are 3 pairs. 2 of the pairs sexually mature and 1 newborn. The next
month the two pairs of mature rabbits give birth and the newborn matures
there are now 5 pairs of rabbits 3 mature and 2 newborn. Next month there
will be 5 mature and 3 newborn. The pattern (first apparently pointed out by
Kepler) is if the number of rabbits at the beginning of month & is denoted Fy,
with N newborn and M} mature then M1 = F) (every rabbit that existed
at the beginning of month k is mature in one month) and N1 = M (only
the mature give birth in one month). Since Fy11 = Myy1 + Nii1, we see that
Fyi1 = F, + My = Fy + F,—1. Viz.. Fy = Ng = 1 (this is where we start),
Fl = Ml = 1, MQ = I,NQ =1so F2 = 2. Now F3 = F2 + Fl = 3. Slmllarly,
Fy = F3+ F;, =3+ 2=75. Continuing in this way we have the sequence

1,1,2,3,5,8,13,21,34, 55,89, 144....

13

L¥X}

If we start with two squares of side one. Put a square of side two on top of
them. Then a square of side 3 to the left. After that a square of side 5 below,
etc. (as in the picture) .If we draw circles as in the case of the golden spiral we
find that we have a spiral that is almost identical. This leads us to consider the

ratios F—FL we have
k+1

1,.5,.666...,.6,.625, .6153846, .61904 76, .6176471, .61818..., .6179775, .618055...

for the first 12 ratios to at least an accuracy of 7 digits. We note that the golden
ratio is .61803398875 to 11 decimal places. This seems to indicate that if we us

the notation « for the golden ratio and if we write Q = Ff i - then
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1. ng,1 <a< ng for k = 1,2,3,...
2. Qo — Q21—1 becomes arbitrarily small with k.

3. Qap—1 < Qak+1, Qar > Qap2-

If these observations are true then the Fibonacci sequence gives an effective
way of calculating the golden ratio to arbitrary precision. These observations
are true (as we shall soon see) but a much more surprising relationship is true.
We first observe that the quadratic formula implies that

V5 —1

o = .

2

We also note that if we use the notation 7 for the golden section then

Vb +1

T = .

2
A theorem of J.P.M.Binet proved in 1843 says

ThHL _ (_q)k+
NG

Let us check this for some small k. If £ = 0 then the numerator is 3% +

‘/52_1 = /5. So the formula is correct. If k¥ = 1 then the numerator is

(@)2 - (@)2 = +/5. To prove the formula for all k£ we will use mathemat-
ical induction. The assertion S,, is that the formula is true for all £ between 0
and n. We know that Sy and S; are true. Let us assume that .S, is true. We
must show that S, 41 is true. To do this we need only show that the formula is
correct for F, 1 and we may assume that n + 1 > 2. Thus

Fy = k=0,1,2, ...

Fn+1:Fn+Fn71~

Our assumption implies that

n+l _ (_ n+1
POl Gl L
NG

If we add these two terms together we find that

_ i+l (o)"(1-o)
F,+F, 1= 75 NG .

We now observe that o> =1 —a and 72 =7+ 1, So

,7_n7_2 —a na2 7_n+2 — (-« n+2
Fn + Fn_l - — ( ) = ( )
V5 V5 V5
This is the desired formula for F), ;. Notice that we have given no indication
as to why we thought that such a theorem might be true. The method of math-
ematical induction can only be used to prove assertions that we have guessed

T — (—a)”
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in advance or, perhaps, we can derive in using deeper insight. We will describe
an alternate more direct approach when we study matrix theory.

The formula of Binet easily implies the 3 assertions above. We have (using
o = 1) that if k is even than

o+ a2k+3
Qk = T ozm77 = @
if k£ is odd then
o — o2kt3
Or = gz <
Also
Qot — Qps = (o + 203 + a®)

(1 + a4k+2)(1 _ a4k+4)'

This implies 2. We leave 3. to the reader.
We note that Binet’s formula can be used to prove many results about the
Fibonacci sequence. One very nice formula is

Foi1Fyoy — F2 = (="t

To check this we do the substitution of Binet’s formula in the left hand side of
the equation:

FriaFooy = Fp = (172 = (=a)")(r" = (=a)") = (777! = (=a)""1)?) /5.

If we multiply out the terms in the braces the left hand side of this equation is
equal to
_Tn+2(_a)n _ (_a)n+27_n + 2Tn+1(_a)n+1
7 .

We now use the facts that o = 1 and 72 + a? = 3. So the above display is
indeed (—1)"*1.

2.2.5 Phyllotaxies.

In this subsection we will discuss an apparent relationship between the Fibonacci
numbers and the spiraling that occurs in plants. It has been observed that the
number of petals of a specific type of flower is usually a Fibonacci number.
Lilies have 3, buttercups 5, marigolds 13, asters 21 most daisies 34,55, or 89.
The head of a flower (like a sunflower or a daisy) can be seen to have two fami-
lies of interlaced spirals, one winding clockwise and the other counterclockwise.
The pair of numbers is (see the figure below) 34 and 55 or 55 and 89 for the
sunflower. Another such phenomenon is the spiralling of pine cones. Among
the pine cones found in a cursory look in Del Mar, California one can find 5,8
and 8,13 pine cones.
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There are many attempts at an explanation as to why the Fibonacci numbers
appear in so many ways in nature. The most convincing are related to the
assertion that the “golden ratio is the most irrational number”. We will give
one explanation of this statement in terms of continued fractions.

First we will explain the idea of a continued fraction. If we have a number
0 < a < 1 then an expression for a as a continued fraction is

1
a=—
a1 + L

a2+ﬁ
With a4, as, ... positive integers. This means that we should consider
1 1 1 1

’ 10 1 ’ 1
a1 a1+ - a a+ —]——
1 ay+ - 1+a2+a13 1+a2+a3+11
3ty

as better and better approximations to a. These rational numbers are called
the convergents (here we have the first,second,third and fourth convergent).
Here is the method for finding a1, as,.... Define r; = %, and a; to be the
largest integer less than or equal to 7;. In general, assuming r, and a, have
been defined and 7,, > a,, then define

Tn+1 =
Tn — Qn
and a, 41 to be the largest integer less than or equal to r,,41. If r,, = a,,. Then
the nth convergent is equal to a and we stop. If a is irrational this procedure
will never stop. If @ > 1 then we set ag equal to the largest integer less than
or equal to a and we write ag + o L for the continued fraction and the

+ 1
art o
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convergents are

1 1 1 1
a0+a—,a0+—L,ao+a+—1,ao+a+—l,...
1 o Ol M Targr
ay

Then one can show that if 22 is the nth convergent then Z—” is in lowest terms
and is closer to a then any fraction in lowest terms with denominator at most

qn- If a is the Golden Mean then r; = \/52_1 = @ Thus 1 < r; < 2 so
a; = 1.

1 2
’[“2: =

315;1 _1 5-1

thus ro = r1 so ae = a1 = 1. We note that this goes on forever, 7,11 = r,
for n = 1,2,... and thus an4+1 = a, = ... = a3 = 1. Thus the partial fraction
expansion of the Golden Mean is

The convergents are

1.-2.22°2
Which we recognize as FI’;’I forn=1,2,3,...

Recent explanations of phyllotaxies involve this irrationality and these con-
vergents. The suggested theory is that if “blobs of expanding matter” that
radiate from a central source are such that as they radiate out they repel then
they should be propelled initially at a slope that is badly approximated ratio-
nally thus allowing the most space for the radiated initial blobs which are all
assumed to be the same size. The fact that the golden ratio is so badly approxi-
mated makes it a likely candidate for this angle of radiation. The corresponding
ratio of the counts of spirals then give a rational approximation to this number.
One of the first observations of this phenomenon is in the work of 1837 Auguste
and Louis Bravais who observed this angle in the ratio of the left and right
spiraling of leaves on many trees. In 1872 P.G. Tait extended the work of the
Barvais brothers to the spiralling we have been discussing. A controlled experi-
ment was performed by Stépane Douady and Yves Couder in 1993(La Reserche,
24 (1993), 26-25) which confirms these ideas. In their experiment they had a
medium of liquid silicon on a disk and from the center of the disk they “shot”
blobs of magnetized liguid. On the edge of the disk they had a strong magnetic
source which would cause the blobs to radiate. They found that the count of
the spiraling depended on the rate of radiation. The most likely count was a
pair of consecutive Fibanocci numbers. However, by changing the rate they
found other sequences such as 1,3,4,7,11,.... This sequence satisfies the same
recursion as the Fibonacci sequence. An amusing discussion of this work can be
found in the Mathematical Recreations column of Tan Stewart in the January
1996 Scientific American.
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2.2.6 Exercises.

1. Join the vertices of a regular six sided figure. Can you see any interesting
ratios, etc.?

2. Explain why the golden spiral looks smooth.

3. Show that Q41 = ﬁ Use this to show assertion 3. above directly.
Suppose that we have a sequence ay of positive rational numbers satisfying
Qpy1 = ﬁ Show that if limj,__. . ay exist then the limit is «.

4. Use mathematical induction to show that 7"+ = F,74+F,_1,n=1,2,....
What is the analogous formula for «?

5. We define a sequence Ey = 1,F; =1 and Fpy1 = Ey+ E1 + ... + Ej.
What can you say about this sequence?

6. Consider the sequence defined by the following rules, Ag = 3,4; =
0,A2 = 2,A,41 = An—1 + An—o. This sequence is called the Perrin sequence.
In 1991 Steven Arno proved that if n is prime then n divides A,. (A3 = 3,
Ay =2, A5 =5, Ag =5, A7 =7, Ag = 10, Ag = 12, Ajp = 17, A1 = 22,...).
It has been shown that calculating the remainder of the division of A,, by n is
easy (in the sense of section 7 of Chapter 1). Devise a primality test based on
this result.

7. Use the formula F,,1F, 1 — F? = (=1)"*! to show that consecutive
Fibonacci numbers are relatively prime.

8. Find as many examples (or counter examples) to the phenomenon de-
scribed in the above section (phyllotaxies).

9. Show that the nth convergent of the Golden Mean is F;;;l

10. Let a = m. Show that the Oth convergent is 3 and the first is 2—72 (you
can use 3.1416 as an approximation for 7).

2.3 The Geometry of Euclid.

When we think of the work of Euclid we think about his Thirteen Books of the
Elements and plane geometry. We have already seen that this is a misconception.
Books VILIX and XI are concerned with number theory. Solid geometry also
appears in several places Books X,XI,XII and XIII. He also wrote books on
other topics. Some of his work still exists including his Optics and a book called
Phenomena which is a treatise on spherical geometry as it applies to astronomy.
He also wrote The Elements of Music which is unfortunately lost. However, his
book Sectio Canonis on the Pythagorean theory of music still exists. Without
a doubt, his reputation rests on his masterpiece: The Elements. Since the
geometry in the elements is much better known than the number theory, we will
make an even less complete study of it than we did of the number theory. As
in the case of the number theory Book I begins with definitions 23 in this case.
There are then 5 Postulates and 5 Common Notions.
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2.3.1 The definitions.

1. A point is that which has no part.

Like his first few definitions in Book VII this definition must be taken with
a grain of salt. He seems to mean that points are the smallest objects that we
will consider.

2. A line is breadthless length.

As we shall see a line is not necessarily a straight line. In fact, we will see
an attempt in Definition 3 to define a straight line. In modern terminology
Euclid’s line would be a curve. (Definition 15 defines a circle as a part of a
line.)

3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.

This is Euclid’s expression for a line as we know it. It seems clear that
he is asking us to picture a straight line and is just saying that our picture is
correct. In a nutshell, a straight line is a line that has some sort of uniformity
that should imply straightness.

5 defines a surface, 6 says that the extremities of a surface are lines and 7
defines a plane surface. These definitions are completely analogous to what he
does for lines and straight lines.

8. A plane angle is the inclination to one another of two lines that meet
each other and do not lie on a straight line.

Here he is giving us the notion of an angle between (what we would call two
curves). He doesn’t seem to think that a definition of inclination is necessary.
Furthermore he must be thinking of lines that have exactly one point in common
(where they meet) but both do not lie on the same straight line. This is a bit
confusing since the lines are not necessarily straight. We can conceive of curves
that are partially in a straight line and partially off of it. With the use of the
methods of Calculus one can give a notion of angle between two curves. But
these curves must be well approximated by straight lines near the point where
they meet.

9. And when the lines containing the angle are straight, the angle is called
rectilineal.

This is defining what we usually mean by an angle (that is between two
straight lines). Next he defines a right angle.

10. When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right and the straight line
standing on the other is called a perpendicular to that on which it stands.

Here we are asked to know what it means for two angles to be equal. Euclid
seems to have no need to define such a concept. It seems clear that he feels that
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he must introduce some terminology but that all he is doing is describing objects
with which we are already familiar. The next definitions define obtuse angle to
be one greater than a right angle and acute angle to be one less than a right
angle. Euclid does not seem to feel that he has any need to explain the meaning
of the terms less than or greater than in the context of angles. Definitions 13 and
14 are concern boundary and figure. A boundary is defined to be an extremity
but an extremity in this context is not defined. Although there is an indication
in Definition 3. What he seems to mean is that the boundary is swept out by
extreme points of lines. A figure is that which is contained in a boundary.

15. A circle is a plane figure contained by one line such that all straight lines
falling upon it from one point among those lying within the figure are equal to
one another.

16. And the point is the center of the circle.

So a circle is contained by one line. So a line is really what we think of as a
curve. There is a point so that if we take a straight line with one extremity at
this point and the other on the circle getting a straight line L then do the same
for another point on the circle getting a straight line M and if we lie the two lines
one on top of the other they are the same. Definitions 17 and 18 define diameter
and semicircle. We note that one of the parts of the definition of diameter is
the first Theorem that Eudemus attributed to Thales. We should also note that
Euclid felt no need to prove this part of the definition. 19,20,21,22 define various
types of figures using the terminology with which we are all familiar. Definition
23 involves a concept that is needed in the statement of the fifth Postulate.

23. Parallel straight lines are straight lines which, being in the same plane
and being produced indefinitely in both directions, do not meet one another in
either direction.

The point of the definitions seems to be to attach names to concepts that we
already know. FEuclid’s definitions are not definitions as they are understood
in modern mathematics.

2.3.2 The Postulates.

Here Euclid describes assumptions that he feels must be made as the basis of
geometry. These are of two types. The first 3 describe constructions that are
possible.

1. To draw a straight line from any point to any point.

In other words if we have two points there is always a straight line that joins
them.

2. To produce a finite straight line continuously in a straight line.

This can mean several things. He seems to want it to mean that we can
choose any point on a straight line and have that point be one of the endpoints
of a straight line of fixed length.
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3. To describe a circle with any center and distance.
We can draw a circle with any center and any radius (in any plane).

The next two are assertions about angles.
4. That all right angles are equal.

5. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on the side on which are the angles less than the two right
angles. (In the picture below the angles in question are a and b.

This is the famous parallel postulate. It seems obviously true and is con-
firmed by every picture we draw. We will see that it was the subject of intense
speculation into the nineteenth century. The brunt of the study was to see if it
could be deduced from the other 4 using the definitions and the common notions
that we will now describe. This work on the parallel postulate will be studied
in greater detail after we have developed a more sophisticated groundwork for
our analysis.

2.3.3 The Common Notions.
These are the basic axioms for equality and inequality.
1. Things that are equal to the same thing are equal to each other.
2. If equals be added to equals the wholes are equal.
This common notion is a geometric assertion. It applies to areas, geometric

figures and numbers (as in the definitions before Book VII). The next common
notion should be interpreted in this way also.

3. If equals be subtracted from equals the remainders are equal.
4. Things which coincide with one another are equal.

This is the basic method of showing that things are equal in the Elements.
The proofs devise a method of laying one object onto another object in such a
way that they coincide. That is they fit together perfectly. This can be seen
graphically in Proposition 4 of Book I which shows that if two triangles have to
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pairs of equal sides and the included angles are equal then if you lay the angle
made by the corresponding sides of one triangle onto that for the other the two
triangles coincide.

5. The whole is greater than the part.

2.3.4 Some Propositions.

Euclid is now in business. All terms he will need in Book I are defined (we
should assume to his satisfaction also other books such as book IT will define
more terms). The rest of Book I involves basic plane geometry. We give the
flavor of the proofs by looking at two examples, in detail. Proposition 1 and
Proposition 47 (The Pythagorean Theorem) in Book I. We will first look at
Proposition 1.

On a given finite straight line construct an equilateral triangle.

This means that we are asked to show that if we are given a finite straight
line (an interval) we can construct an equilateral triangle with one side equal to
the given one. We will now give the proof as given in Euclid

The argument is as follows. We have the line AB. We use Postulate 3 twice
to make the two circles shown the first with center A the second with center B
and both with distance AB. Let C be the intersection of the two circles. Then
AC = AB by the definition of circle (Definition 15) and BC = AB for the same
reason (that AC and BC exist is Postulate 1). Thus AC' = BC by 1. in the
Common Notions. The triangle thus has all of its sides equal.

This is fine except for one assertion that Euclid does not deem necessary to
be proved: That the circles intersect. This is more serious than the lack of the
need to prove what we called the Euclidean property in section 1.4. A proof of
the existence of this intersection involves more sophisticated mathematics. At
a minimum it involves real definitions of some of the terms. The crux of the
matter has to do with the fact that a circle has an inside and an outside and
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that a line (or a circle) that contains a point in the inside of the circle and a
point on the outside must have a point on the circle itself.

Proposition 5 is the assertion that the base angles of an isosceles (legs equal)
triangle are equal. This is a strengthening of Thale’s second Theorem as we
quoted from Eudomus.

Proposition 15 is the third Theorem of Thales that we quoted.
Proposition 26 is the fifth Theorem of Thales in our list.

The other Proposition that we will analyze in detail is number 47 in Book
I. We call it the Pythagorean theorem. The proof below seems to be original
to the Elements (in other words most of the other proofs are transcriptions of
other people’s arguments).

In right-angled triangles the square of the side subtending the right angle is
equal to the squares on the sides containing the right angle.

D L E

The basic idea is to show that the triangles ABD and F BC' are equal as are the
triangles AEC and BC K. To see how this proves the theorem we note that since
the triangle ABD has base BD and height DL as does the rectangle with sides
BD and DL (Euclid simply calls it the parallelogram BL). We conclude (as did
the Egyptians, Babylonians and Proposition 41, Book I) that the rectangle BL
is twice the triangle ABD. The same argument shows that the square ABFG is
twice the triangle BC'F. Hence since doubles of equals are equal to each other
(this is a statement in braces without any further reference) this implies that
the square ABF'G is equal to the rectangle BL. Similarly, the square ACK H
is equal to the rectangle CL. Since, BL and CL make up the square BCED
the Proposition follows. (Euclid says: Therefore etc. Q.E.D.).

We are left with the assertion about the triangles. We will consider the first
pair notice that AB = BF, BD = BC thus in light of Proposition 4 Book I
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(Thales fifth theorem in our list above) we need only show that the angles ABD
and F'BC are equal. To see this we observe that the angle DBA is the sum of
DBC and ABC'. The angle FBC is the sum of ABF and ABC. Since all right
angles are equal ABF = DBC. So the assertion about the angles follows from
Common Notions 2.

2.3.5 Exercises.

1. Prove the converse of the Pythagorean theorem. That is, if the square of one
side of a triangle is equal to the sum of the squares of the other two sides then
the angle opposite this side is a right angle. (This is Proposition 48 in Book I
Explain the proof in the Elements and give a proof using, say, trigonometry).

2. In Proposition 11 of Book II of the elements show that Euclid is showing
that one can construct the Golden ratio.

2.4 Archimedes.

Archimedes lived during the period 287-212 BC. He was a citizen of Syracuse.
In his youth he is thought to have traveled to Egypt and while there he invented
the water screw as a way of lifting large amounts of water. He developed a theory
of levers and made the famous boast : “Give me a place to stand on and I can
move the Earth.” He is said to have backed this up by raising a ship out of
the water using one arm. He was also a military engineer who invented many
weapons during the defense of Syracuse against the Romans. He is said to
have used giant lenses to focus the sunlight to burn down the Roman fleet.
The history of his practical inventions is largely second hand since he wrote
commentary on only one of these (On sphere making which is lost).

Most of Archimedes’ writings on mathematics have been preserved. He
wrote his work in the form of letters to his friends: Conon of Samos and FEr-
atosthenes. After Conon died he sent his letters to Conon’s student Dositheus
of Pelusium. When the Romans eventually invaded Syracuse in 212 BC their
general, Marcellus, ordered that Archimedes and his household be spared in the
ensuing massacre. However, when a soldier went to escort Archimedes to an
audience with Marcellus, Archimedes was concentrating on a geometric prob-
lem. He told the soldier that he would come once he solved the problem. The
soldier was furious and killed Archimedes: perhaps the greatest mathematician
who ever lived.

At this point we will discuss two of Archimedes works: The Sand-Reckoner
and Measurement of the Clircle. The first is in the nature of a study of very
large numbers. The second is the genesis of the elegant approximation 2—72 of
m. In later chapters we will be looking at Archimedes work on what we call
calculus (although the work alluded to above on the calculation of 7 involves

ideas that are usually associated with calculus.
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2.4.1 The Sand-Reckoner.

This paper begins with an introduction written in the form of a letter to King
Gelon of Syracuse and ends with a conclusion also addressed to Gelon. Let us
quote from the initial material in the paper (as translated by Heath).

“There are some, King Gelon, who think that the number of the sand is infi-
nite in multitude; and I mean by sand not only that which exists about Syracuse
and the rest of Sicily but also that which is found in every region whether inhab-
ited or uninhabited. Again there are some who, without regarding it as infinite,
yet think that no number has been named that is great enough to exceed its
multitude...But I will try to show you by geometrical proofs, which you will be
able to follow, that, of the numbers named by me and given in the work I sent
to Zeuxippus, some exceed ... that of the mass equal to the magnitude of the
universe.” [ Here the point that will be critical is the phrase "no number has
been named that is great enough...”]

He then discusses the various possibilities for the size of the universe with the
idea that whatever sizes are believed he will always take one bigger. Included in
the models that he considers is that of Aristarchus of Samos of which Archimides
says: “His hypothesis are that the fixed stars and the Sun remain unmoved, that
the Earth revolves about the Sun in the circumference of a circle, the Sun lying
in the middle of the orbit, and that the sphere of the fixed stars, situated above
the same center as the sun, is so great that the circle in which he supposes the
Earth to revolve bears such a proportion to the distance of the fixed stars as the
center of the sphere bears to its surface.” Archimedes goes on to discount this
theory for technical reasons. However, his point is not to establish a theory
of the universe but just to get an upper bound on its size. Now comes the
point of the whole exercise. There was no known notation or theory of big
numbers. Recall that the Egyptians really didn’t get past 10 million. The
Romans would be constantly inventing new symbols and would eventually run
out of letters in the alphabet. The biggest number that the Greeks used was a
myriad which is 10,000. Archimedes considers what happens if we multiply two
myriads. One then has a myriad myriads. Then he proposes to take a myriad
myriads and treat it as a basic unit (a number of the first order) then he can
multiply it by a myriad myriads. One can continue this way a myriad number
of times and get a number that Archimedes called P (probably 7 but we reserve
this symbol for something else) a number of the second order. In modern
notation P = (100000000)100000000 = He then observes that he can continue this
process by taking P to be a number of the first order and consecutively multiply
P by itself P times getting P = (100000000100000000)10000000077%%0% = g
new number can now be treated as a number of the first order and the process
repeated once again. He then gives a reasonable argument that one of his new
found immense numbers is big enough. He in fact argues that the number of
particles in the universe is less than 10 (much smaller that P). The modern
estimates are somewhat nearer to 10'%°.
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In modern mathematics we the ideas of this paper lead to the Archimedian
Property that is given any number (we mean here a rational or real number)
there is an integer that is strictly bigger.

2.4.2 Exercises.

1. Prove the following is a theorem in The Sand-Reckoner by induction (this is
the way Archimedes proved it):

If there be any number of terms in continued proportion say A1, As, ..., Ap, ...and
if the first is 1 the second is 10 [so the third is 100] and if the mth term is mul-
tiplied by the nth term the distance [i.e. the number of terms between them]
from this term to A, is the same as the distance from 1 to A,,.

2. In Archimedes paper he takes as the diameter of the Sun 30 times the
diameter of the moon. Do you agree with this? (He quotes Euxedus, his own
father Pheidias and Aristarchus for estimates of 9, 12 and 20 times. Thus he
was estimating higher than anyone else at the time.)

2.4.3 Archimedes’ calculation of .

We will next look at Archimedes’ study of the number 7. He is the first to prove
that % is a remarkably good approximation to the ratio of the circumference of
a circle to its diameter. In his paper Measurement of a Circle he in shows that

10 1

37 1 << 37.
His method (as we shall see) could yield 7 to arbitrary precision. The important
point to note is that he has lower and upper bounds of (in decimal notation)
3.1408 and 3.1429 thus 7 is 3.14.. to an accuracy of at least 0.002. After we
study this remarkable result we will look at various ramifications of Archimedes
work that span about 2200 years. Before we begin his we will discuss the
understanding of 7 before Archimedes did his work. The Babylonians routinely
used the value 3 for the ratio of the circumference to the diameter of a circle
however in some tablets the other values closer to and perhaps including 2—72 were
indicated . In the Rhind Papyrus the value was taken to be 3% and sometimes

(%)2 = 3.16... At least once in the Bible (Revised Standard Version 1952 the
King James Bible is a bit more poetic but has the same meaning) in 1 Kings
7-23 it says:

“Then he made the molten sea; it was round, ten cubits from brim to brim,
and five cubits high, and a line of thirty cubits measured its circumference.”

The ten cubits from brim to brim is the diameter and the circumference is
thirty so the ratio is 3. One can argue that the Bible wouldn’t bother with
fractions. But even so 31 or 32 would be much closer to the correct value. It is

interesting that the first convergent of the partial fraction expansion of 7 is %
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(see section 2.2.5). This means that there is no better rational approximation
with denominator less than of equal to 7.

We will now give a discussion of Archimedes method. The first proposition
involves the following diagram.

T___ G H
N
F
£ o
,\\
) S

The area of any circle is equal to a right-angled triangle in which one of the sides
about the right angle is equal to the radius, and the other to the circumference
of the circle.

This proposition says the if a circle has radius r and circumference ¢ then
the area is . We know this in a different way. We know that ¢ = 27r so the
proposition says that the area is 7r2. However, this result allows us to calculate
the area without knowing w. The argument is truly ingenious. Let K denote
the area of the triangle and let a be the area inside of the circle. Archimedes
observes that there are three possibilities K < a, K > a, K = a. The point is
to show that the first two possibilities cannot occur. He first assumes a > K
and shows that this leads to a contradiction. He draws the inscribed square
ABCD. He then bisects the arcs AB, BC,CD and DA and draw the lines
from the center of the circle through the bisectors. If necessary bisect again
and continue until the area of the inscribed figure is greater than K. To see that
(under the hypothesis a > K) this is possible since all we need do is take the
subdivision so fine that the sum of the maximal distances from the sides of the
figure to the circle is less than a — K. That this can be done is obvious from the
picture and although the Archimedesmethod of determination of the subdivision
involves an assertion equivalent with the desired one that is unproved. He now
observes that it is easily seen that the area of each of the polygonal figures is
less than K.. In fact the area is the sum of the triangles whose vertices are
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consecutive vertices of the figure and the center. The height of each of these
triangles is less than r and the sum of all the sides is less than ¢. Thus the area
is less than K. So the case a > K is impossible. To show that the case a < K
is impossible he argues as above using circumscribed polygons (see the picture).

As we have pointed out there are still a few points in this argument that
have not been proved (these are easily checked using trigonometry). However,
if m is the area of any of the inscribed polygons as in the argument and if M is
the area of any of the circumscribed polygons then we have

M>K>m

and

M >a>m.
To prove the result we must observe that for each (small) E there is a subdi-
vision such that M —m < E. This is basically what Archimedes is asserting.
Notice how close to modern calculus this is.

a

IProm m
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Archimedes next proves the upper bound for 7 using the above figure (the
part OAC is to be thought of as part of the hexagon above it). In this figure the
line BA is part of a diagonal of the circle. The line AC is tangent to the circle
at A. He starts by taking the angle AOC' equal to % of a right angle. He then
XA < 265

observes that 75 iz3. Fortunately, another Greek mathematician named

Eutocius inserted an explanation of this inequality. the actual ratio is v/3. So

we must just check that (f—gg)Q < 3. One checks that the square is 2.9999 to 4

decimal places. To see where the v/3 comes from consider the following picture
(the curve AN should be an arc of the circle of radius OA)

C\N

A M 0

The angles OAC and OMN are right angles. The angle AOC is % of a right
angle so the angles ONM and OCA are each % of a right angle. This implies
that &M = 1 (ON = OA since both are radii of the same circle). Now

ON ) .
ON? = NM? + OM? so OM? = 30N? = 20A?. Using the fact that OAC
/3
and OM N are similar triangles we see that % = g—é. Since % = ?3 =/3.
The assertion follows. Similarly, % =2= %. Next we bisect the angle AOC

which yields the line OD in the picture above. Now Proposition 3 in Book

VI of the Elements implies that % = % (see Exercise 1 in 2.4.4). Now we

have €904 — €0 11 = G0 41 = 2OED4 — C4 Now multiplying the

two ends of this string of equations by % we have % = 904
i ities 94 265 oc _ 9 _ 306 oA _ CO+0A
use the inequalities 35 > {3 and &5 = 2 = x5, Thus g5 = >

e CA
203 4 306 — 571 He now applies the Pythagorean theorem OD? = AD*+ AO?.

2 2 2 2 2 .
So §B8; = ADLA0" o BTG58 310450 (1532 = 23409). Now Archimedes

apparently guesses another very good lower bound for a square root ((591+1/8)?2

= 3494 28.766...) yielding (O)—i > %. The point here is that he now has a

good lower bound for the ratio % instead of %. He can now bisect the angle

AOD getting the point E in the main diagram above and argue as before getting

1
a lower bound on % > 1112’2 . He then bisects again and yet again. At his

time he has an angle the size of 4—18 of a right angle and at this fourth bisection

46731
- Now the

he only does half the argument and gets an inequality 8—3 >
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diameter of the circle is 20A and HG = 2AG. Thus the ratio of the diameter
of the circle to of the circumference of this 96 sided circumscribed regular figure

. 46731 . . .

is at least 7z35%. The reciprocally of this then gives an upper bound for 7 of
14688 _ 6673 6675 _ 1

46733 T 3+ 46731 <3+ 46721 3+

The next task is to derive a lower bound for 7. Archimedes does this by
starting with a regular inscribed hexagon and bisecting 4 times just as he did
for the upper bound.

B o A

He starts with the above picture with the angle BAC equal to one third of a
right angle. As before, % = /3. This time Archimedes needs an upper
bound for v/3. He chose 351 since (%)2 = 3.0000016... As before he bisects
the angle BAC' getting the straight line AD. He observes that AD intersects
BD at the point d. We note that the angles at C and D are right angles. Thus
since dAC and BAD are the two halves of the angle just bisected we see that

: .\ SO . AD _ BD _ AC
the triangles ADB, ACd and dBD are similar. Thus D_ABC_ ? = Gg- Now

d

we observe (see Exercise 1 below) that % = %. Thus 45 = £ (this implies
that (AC)(dB) = (AB)(Cd) which we will use in a moment). So 42 = %g.
We also note that (AB)(Bd) + (AB)(Cd) = (AB)(Bd) + (AC)(Bd) (see the

parenthetic remark). Thus 4B = % (cross multiply). The denominator

of the right hand side of this equation is Bd + Cd = BC. We therefor have

48 = ‘gziég = ABAC  The outgrowth of all of this is 42 = ABLAC
AC 1351 BA _ o _ 1560 AD 2011

We now note that 55 < =g and 5 = 2 = 5. So 55 < =55 We

now use the Pythagorean theorem for the right triangle BDA. Finding that

2 2 2 AB? BD?+AD? 2911\ 2 2911247802

before Archimedes must approximate a square root and he takes an upper bound

3
g—g %‘L. He now bisects the angle BAD getting the line AE and proceeds
AB

in exactly the same way to get an upper bound for £%. He bisects two more
times getting the line AG. Using the same technique he gets the estimate
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AB 20174 GB 66 . . . . .
56 < e+ So Gp > 50171 Since GB is a side of a regular inscribed polygon

with 96 sides we see that the ratio of the perimeter of the polygon to the radius
of the circle is greater than %{i > 3%

There are many theories as to4 how Archimedes found his accurate upper and
lower bound for v/3 one that is very convincing can be found in A.Weil, Number
Theory, Birkh#user, Boston, 1984. He suggests that Archimedes was applying
the formula

(5z +9y)* — 3(3z + 5y)? = —2(x® — 3y%).

Then according to Weil he started with x = 1 and y = 0 and since

52 -3x3%2=—-2.

2
Sy g 2
3 9

The iteration involves two parts

We have

5 4+ 9y 3z + 5y
(:E7y)4) 2 7 2

then
(z,y) — (bz + 9y, 3z + 5y) .

The first iteration (z = 5,y = 3) yields 262 —3(15)% = 1, that is (2)” = 3+ L.
In the second (z = 26,y = 15) one has 5 x26+9x 15 = 265, 3x 26+5x 15 = 153

and (265)% — 3(153)2 = —2 thus (283)* = 3 — ez This gives Archimedes
lower bound. The upper bound is obtained by putting z = 265 and y = 153

into the first formula. Getting the pair

5~265J£9~153:135173265;5-153 _ 780

the upper bound used by Archimedes.

2.4.4 Exercises.

1. Consider the diagram (the curve AN should be an arc of the circle of radius
OA)
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A M 0

with OD the bisector of the angle AOC show that % = %. (Hint: Use

trigonometry. Let 6 be the angle AOC. Then we are asked to show that

tan f — tan g 1
tang ~ cosf’
Do this by using the usual trigonometry identities sinf = ZSingcosg and

cos = (cos £)? — (sin £)2.)

2. In the calculation of the upper bound for m Archimedes replaced the

7L
better estimate 3 + g2 by 3. Why do you think he did it?
2

3. The Babylonians preferred the upper bound 3% over 3% for w. Can you
give a reason for this?

4. Do the indicated iterations at the end of this section for sharper and
sharper approximations to v/3. What would you do to get good approximations

of v/5?

2.4.5 The iteration in Archimedes calculation.

It is clear that Archimedes could have in principle continued his bisection pro-
cedure indefinitely. However, the calculations become more and more compli-
cated and even powerful arithmetician (as Archimedes obviously was) would be
stymied by the calculation after two more bisections. Furthermore, little would
have been gained since his initial choices of square roots of 3 limited him to
about 4 digits of accuracy. We now live in an age of cheap high speed calcu-
lation power and can therefore implement many more iterations of Archimedes
method. Let is first abstract the iteration that Archimedes does 4 times for the
upper bound and 4 times for the lower.
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We will use the diagram of Exercise 1. above we take the angle AOC' to be
such that 2m times it makes exactly one rotation. Let 6 denote that angle.
Then 2AC is a side of the regular m-gon circumscribed on the circle of radius
OA and 2N M is the side of the regular m-gon inscribed in the same circle. Thus
the circumference of the circumscribes m-gon is 2mAC and the circumference of
the inscribed is 2mNM. We observe that % = tan# and %—JX =sinf. Thus
the circumscribed circumference divided by the diameter (20A) is a = mtan 6
and the circumference of the inscribed divided by the diameter is b = msin§.
We now bisect the angle AOC' getting AOD. Then using the same argument
we find that the circumference of the circumscribed 2m-gon divided by the
diameter is a’ = 2m tang and the corresponding ratio for the inscribed 2m-gon

0

is ' = 2msin 5. The key point is

, 2ab
a+b’
b = +Va'b.
Let us check this with standard trigonometry. We will use sinf = 2sin g cos%

and cosf = (cos )? — (sin §)2. If we use the first identity we find that

i 08 s @
o — 2m sin 5(2msgn 5C0s8 35) _ 4m(sin 9)2 _ )2
oS 5 2

This shows that the second identity is true. As for the first

2 (sin 0)® : n? cos ?
2ab 2m* = B 2m sin @ B 4m sin 3 COS 3

atb m(iio—réz + sin 0) ~ 1+4cosf 1+(COS%)2 — (sing)Q'

We now use the fact that 1 = (cos £)? + (sin £)? so the denominator of the
last expression is 2(cos £)2.  Substituting we find that the last expression is

4msin £ cos ¢ 9
2 2 g
2(cos I)? 2mtan 3.

‘We will now use these observations to set up the implied iteration in Archimedes.
We start with m = 6 then Archimedes has shown that tanf = @ and sin§ = %

Thus the corresponding ratios (which we denote by ag and by) are ag = 23
and by = 3. If we do the first bisection then we have a; and b; with

2aob0
ao + bo

a; =
and

b1 =\ albo.

In general we have after n + 1 bisections

2a,b,

an4+1 — ———
et an + by
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and
bn+1 =V a/n+1bn~

Archimedes is using the upper and lower bounds by < 7 < a4 and extremely
clever choices of approximate square roots. If you do the calculation us-
ing a computer you find that ay = 3.14271... and by = 3.14103... whereas
Archimedes estimates are 2—72 = 3.142857... and 3% = 3.140845... The esti-
mates of Archimedes are therefore truly remarkable. We note that a;g =
3.141592930... and b1g = 3.141592519... Thus 4 iterations gives 2 decimal place
accuracy and 10 gives 6 decimal place accuracy. One finds that after 16 iter-
ations a1 and big agree to 8 decimal places. This predicts that 2k iterations
should give an accuracy of k decimal places (indeed a calculation shows that
one has 50 digit accuracy after 100 iterations). This can be (essentially) proved
as follows. We note that

2a,bn, 2a,b2
Gn+1 = bny1 = an+bn  \an+bn
v/ 2a,by,
(an + bn)(V2an + Van + by)

V2a,by, <1 ;
One can check that CE S 1OV T e S 2+\/- 3. To see this we first

note that for all n > 0

(an — bp).

b, < ap

indeed if n = 0 this is the assertion that 2v/3 > 3. Assuming this for n we note
that the iteration implies that

An 41 (an + bn)
26, '

a2, (an +by) an + b
bn+1 = bt R 2; = = An+1 n2a = < Ony1
n n

since a, > b,. Thus the principle of mathematical induction proves the asser-

tion. In
v/ 2a,b,
(an + bn)(V2an + Vay + by)

we divide the numerator and denominator by +/2a,b, and get

b, =

Thus

1
(1_’_15_:) 1+ /an+:n)

2a
We now observe that 7= > 1 and 4/ “"‘H’” > \}5 Thus the expression is less

1 _ 1
than 23 TR
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There is something very odd about this recursion that is that the expression
for by41involves a,41. Consider the following change in the recursion:

2a,b,,
an = —
+ an + by
bn+1 = (Lnbn.

One checks that with this recurrence starting with the same initial values we
have agreement between as and bs to 50 decimal places. There is only one
problem with replacing Archimedes iteration with this one. It converges to
3.219546022.... Which could be an interesting number but it is not 7. What
is it? The next number will unravel this mystery and lead to a method of
determining 7 to very high orders of accuracy. Before we go on to these
developments we will make one general observation about the above iteration
we first note that. The iteration implies that we have

vVanby,
bpt1 — pg1 = m(an + by, — 2V anby) =

o (f Ny

This implies that if n > 1 then b, > a,,. We note that (\/E — 5 /an) (\/E + 4 /an) =
b, — a,. We therefore have

vVanby,
bn-l—l — On41 = (b - an)2~

(an + by, )(\/_+\/_)

We estimate the expression Vanbn . For simplicity we assume
P (@n+0m) (Von-+van)” DALY

that ag > 1 and by > 1 we assert that a,, > 1 and b,, > 1 for alln. If n = 0 thisis
our assumption. If we assume this assertion for n then a,,b,, > a,, and a,,b, > b,
so 2a,b, > a, + b, hence a,y; > 1 also a,b, > 1 implies that Vanb, > 1 so
b,i1 > 1. We have already seen that a, + b, — 2v/a,b, = (\/E - M)Q
an + by, > 2v/anb,. Thus we have

anbn,
a, + by,

<

N | =

and since a,, > 1 and b,, > 1 we see that (\/E—I— 1/an)2 > (1+1)?=4. Thus

Vanb,
(an + bp (\/_—l-\/ﬁ)

This implies that in the modified iteration we have

<

ool»—A

1
bn+1 — Ap+1 S g(bn - an)2
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for n > 0 if ag and by are both at least 1. Actually one has a similar estimate
if we only assume that ap and by are bigger than 0 (we will see why in the
next section when we relate this iteration to the arithmetic-geometric mean
iteration.. This accounts for the rapid convergence. Starting with ag = 2v/3,
bo =3. Then by — a1 < %(ap — by)* = 0.0269238... Now

1

= (bo — ap)* = 0.00009063....,

1
by —az < g(bl —a;)? <

(bo . aO)Qn,

1 1
b3 —az < g(bz —a3)* = —(bo — a0)®, ..., b — an < g

8

2.4.6 The arithmetic-geometric mean iteration of Gauss.

Recall the new iteration of the previous subsection:

2a,by,
a = —
n+1 ay - bn
bn_;,_l = anbn.

With ag, by positive real numbers. If we write a,, = ui and b, = vi then we
n n
have the recursion

Up + Up
2
Un+l = /UpUp.

The first is the arithmetic mean of u, and v, and the second is their geo-
metric mean. If u and v are positive then their mean or arithmetic mean is
u+v

their average a(u,v) = “3% their geometric mean or multiplicative average is

m(u,v) = (ww)z. We note that a(u,v)? — m(u,v)? = % > 0. Thus if we
start the iteration with ug,vg > 0 then u, > v, for all n > 1. This itera-
tion was discovered independently by J.L.Lagrange (1736-1813) and C.F.Gauss
(1777-1855). Lagrange alluded to it in 1785 and Gauss studied it in 1790 (when
he was about 14). We attach the name of Gauss since he did the most profound
work on it in particular answering the question we asked at the end of the last
section. The iteration is called the AGM On May 30, 1799 Gauss wrote (in his
diary) that if we start the iteration with ug = 1 and vy = v/2 then ﬁand ﬁ
are equal to

Unp+1 =

2 /1 dt

T Jo V1—1t
to at least 11 decimal places for n large. Notice that he is predicting the value
of the original variant of the Archimedean iteration. He was absolutely certain
that the limit of the sequences was in fact this number. In his diary he said
that should this be true then it “will surely open a whole new field of analysis”.
The area of analysis that was opened is the theory of elliptic functions which is
still one of the most important areas of mathematics that has permeated every
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aspect of the science and about which we shall hear much more later. Before
giving Gauss’s solution to the general problem we will explain a possible reason
why he might believe that the limit in the above case might be given by an
integral of the above sort. We first return to the Archimedean iteration of the
previous section

2a,by,
an + by,

b7z+1 = vV an+1bn

with ag = tan 6, by = sinf and 0 < § < 5. Then as above we see that there is a
number L such that b,, < L < a,, and that a,, — b,, can be made as small as we
wish by increasing n. The amazing fact is that the number L is §. Thus for
example if we start with a9 = 1, bg = % then 0 = Z. This could have lead him
to look at his iteration multiplied by 7. He was no doubt certain that integrals
of the type of his projected formula for his limit could not be calculated using
elementary methods (e.g. modern Freshman or Sophomore Calculus). The

integral

Ap+1

/1 dt

o V1—1t4

is one of the simplest of the type that he would have studied. He therefore
would have known that it was abo;ru 1.311028777. From this and his no doubt
very accurate approximation to ‘- he could have easily come up with the ap-
proximation in his diary entry of 1799.

Gauss later derived a formula for the limit of the AGM which can be found
in volume 3 of his collected works. The solution is given in terms of a completed
elliptic integral. We will just quote the formula (a very nice discussion can be
found in Borwein and Borwein, Pi and the AGM. Consider the AGM then
since L442b = g (2£2) and \/(wa)(xb) = zv/ab for z,a,b > 0 we see that if we
denote be M(a,b) the limit of the AGM with uy = a,vo = b. Then if a,b > 0,
M(a,b) = aM(1,2). Tt is therefore enough to calculate M(1,z) for = > 0.
Here is the formula

1 g/% df
M(1,z) ™ Jo \/1—(1—x2)sin29

2.4.7 Exercises.

1. Consider the following iteration

u _ aptby
n+1 - 2
2a,by,
by, = —.
" a, + by,
With ag > 0,bg > 0. Show by induction that a,b, = agby. Also that
(an - bn)2
—-b =
Ap+41 n+1 Q(G,n n bn)
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Use these observations to derive a very fast method of calculating square roots.

(Note that if we start with ag = %, bo = 2 then a9 = g—g,bz = % and
az = $381T by = 32592 further (b3)* = 2.999999992...

2. Use the method in section 2.4.5 of the derivation of the Archimedean
iteration to show that if § = - then the Archimedean iteration (the main
iteration in 2.4.5) starting with ag = tan, and by = sin 6 eyelids 6 in the limit.

3. Make the appropriate change of variables to show that the value of
M(1, \/5) using Gauss’s general formula agrees with the one he predicted in
1799.

2.4.8 A short history of calculations of .

As we have seen, Archimedes is the author of the famous approximation 2—72 for
m. We have also seen that most ancient peoples who were aware of m used 3.
The Babylonians used the somewhat better approximation 3%. We will end
this short history with a method of approximation based on the AGM.

After Archimedes the iteration described above was used to find approxi-
mations to 7 until the 17th century.perhaps the best usage (and perhaps the
last) was by Ludolph van Ceulen (1540-1610) who used the method to calculate
34 digits of m. This method converges relatively slowly so the computational
overhead overwhelms hand computation. It wasn’t until the advent of calcu-
lus that more precise approximations were found using more rapidly converging
sequences. Until the middle of the twentieth century the approaches involved
clever uses of a formula attributed to James Gregory (1638-1675) which says

that

22zt S

t S T
arctan(z) = z 3 + 3 7—1—

If, in this series, we set = 1 then we have

T, 1,11
4 3 5 717 7

Edmond Halley (1656-1743) used « = 1/1/3 in Gregory’s series to produce the
series

™ 1(1 1+1 1+)
6 V3 3-3 3% 37 7

He used this to find 7 to 71 decimal places to do this he needed to sum at least
143 terms of the series. The approximation is ﬁ with
p = 2975751933403306660762781037851580732457179725218341337
8517664256040092164338566715216074032725294059375304662800
8784897242437840350479660097317139924948757850741584109975
3560486485710547648

and
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q = 5468726754975023858173190008331026443083349550027969750

06063504744927456329014146000945985504325020793071970588029

48449190349218434866194124401527196795946520854577134466195

5929457343724625

This is an amazing achievement using hand calculation.

Later variants of these methods are related to the formula of John Machin
(1680-1752). He observed that

% = 4arctan(%) - arctan(z—;)g)
the point here is that the first term is easily calculated and the second is an
alternation of terms that become very small rapidly. Machin used his formula
to find 100 digits of 7.

In 1961 using an IBM mainframe D. Shanks and J.W.Wrench produced
100,000 digits of 7 using two 3 term variants of Machin’s formula. (one to check
the other). Using the same method one million digits were computed in 1973
by Guillard and Bouyer. Further precision has for the most part been based
on the AGM. As of 1999 the record is held by Kanada, Takahashi 1999 with
206158430000 digits.

We include here an iterative scheme for calculating 7w that was discovered by
Borwein and Borwein in the 1980’s that is derived from the AGM. The iteration
is as follows:

1 1
Tn+1 = 5 <$:l/xi ) n Z 0
YnTy + 1
= = >1
Yn+1 \/ﬂ(l—i—yn) n =z
nt1
Ty = ﬁn_l% n Z 1

with o = V2, m0 = 2+ V2,91 = v/2. One can show that if n > 2

271,+1

10~

>, —m > 0.

This says that after 10 iterations we have 7 to the accuracy of over 2000 decimal
digits. After 20 we heve over 2000000 digits.

2.4.9 Exercise.

1. Use a computer algebra system to check that the iteration does indeed give
the asserted accuracy for n = 2,3,4,5 (asserted 8,16,32,64 digits). Devise
an algorithm combining 2.4.7 Exercise 1 with the above iteration to get a high
precision algorithm for 7 with no square roots.
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3 The emergence of algebra

As we saw in chapter one the ancient Babylonians and Egyptians had an under-
standing of much of what we would now call Algebra. For the most part their
algebra comes down to us in the form of problems that are not very different
from those that are assigned to modern students. The ancients certainly had
an understanding of how to solve linear and quadratic equations in one variable.
The Babylonians with the use of copious tables could solve some cubic equa-
tions. But they were hampered in their lack of two basic formalisms that we
take for granted. The first is that they had no concept of negative numbers and
they had no notation such as our modern algebra which allowed them to handle
an unknown quantity as if it were a number. There was still a basic distinction
between the role of numbers for counting and numbers for measurement. As
we shall see, the final synthesis involves the identification of the two notions of
number.

3.1 Algebra in Euclid’s Elements.

In Euclid’s elements Book IT can be considered to be devoted to algebra. For
example, Proposition 4 book II says:

If a straight line be cut at random, the square on the whole is equal to the
squares on the segments and twice the rectangle contained by the segments.

A X CY_B

y Sy
e !
X X

We will not go through Euclid’s proof here (which is surprisingly long). We
will just point out that what it says is that the square ADE B is made up of the
two squares CBIG, DFGH and the two equal rectangles ACGH and FEIG.
In more modern notation the side of the big square is AB = x +y. The side
of the square CBIG is y that of DFGH is x and the two adjacent sides of the
two rectangles are x,y. Thus the content of the Proposition is

(z+1y)* = 2% + 2zy + 2.

We will see that until the time of Descartes, the part of mathematics that
we consider to be algebra was consistently phrased in geometric terms. In
Euclid’s number theory a number was a concatenation of unit intervals. He
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only considers whole numbers. In his geometric algebra (Book IT) he considers
lengths and areas but gives no direct relationship with the concept of number
which comes later (Book VII). Thus intervals, squares and rectangles, cubes are
dealt with as if they are what we consider to be numbers. The addition and
subtraction meant putting together figures as in the one above. The amazing
aspect of all of this is that within these constraints mathematicians were able
to do serious work in algebra such as solving a polynomial of degree3 or 4. The
constraints were broken by the seventeenth century French mathematicians.

3.2 The Arabian notation.

In chapter 1 we studied the methods that were used by several early cultures to
represent numbers. We also looked at our own decimal system. This positional
system was used by the peoples of the middle east and comes to us under the
name Arabic notation. This notation when it appeared in Europe was very
similar to our modern notation (however it is likely that it had its genesis in
India). One of the most important and earliest western advocates of this
system was Leonardo of Pisa (alias Fibonacci) who used the system in his book
Liber Abaci (published in 1228). In this book he used the arabic notation for
everything but fractions. For fractions he used sexagesimal, Egyptian fractions
and common fractions (that is a/b in lowest terms). He preferred the latter
two types. We have seen that he devised an algorithm to convert common
fractions to Egyptian fractions. We also observed that he gave a complete
characterization of Pythagorean triples.

3.2.1 The completion of the characterization of Pythagorean triples.

The following argument involves the understanding of squares of integers. Fi-
bonacci was so enamored of squares that he wrote a book Liber Quadratorum
(Book of Squares) which contained the proof of the following theorem (see also
Euclid Book X, Lemmas 1,2 before Proposition 29):

If a,b, c are positive integers such that a®+b% = c? then one of a andb, say,
b must be even and there exist numbers m,n,x such that a = x(m? —n?),b =
2zmn, c = z(m? +n?). If a,b are relatively prime we can take x = 1.

To prove this assertion we first show that one of a or b must be even. Suppose
not. Thena = 2r+1,b=2s+1andsoc® = a?>+b% = 4r2+4r+1+4s>+4s+1 =
4(r®+r+s?+5)+2. We can thus conclude that ¢? is even. This can only be so
if ¢ is even. But then ¢ = 2¢t. We conclude that 4% = 4(r? 47 +s%+s) +2. This
leads to the conclusion that 4 divides 2. We can thus assume that b is even. To
complete the hard part of the argument we first observe that the last assertion
implies the main assertion. Indeed, if = divides a@ and b then 22 divides ¢ so
x divides ¢. (You should be starting to see why the book had its title.). Thus
if a,b,c is a Pythagorian triple and if x is the greatest common divisor of a
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and b then £, %, < is a Pythagorian triple. So we are left with showing the last
assertion. We thus may assume a and b are relatively prime and that b is even.

Since a? + b* = ¢? it follows that ¢ — a® = b?. So (¢ —a)(c+ a) = b%. We
notice that if ¢ were even then a must be even. But then a and b would have 2
as a common factor. Thus a and ¢ are odd. If y is odd and divides both ¢+ a
and ¢ — a then y divides their sum and difference which are 2¢ and 2a. But
then 2 divides b?. So x divides b which is contrary to our assumption. Thus
if p is an odd prime so that p" divides b then p divides exactly one of ¢+ a and
¢ — a thus p*" divides one of the factors. Hence if b = 2!p]* - pl'v is a prime
factorization of b then we can reorder the indices so that ¢+ a = 2”1{7?1 N
and c—a = 2“’p§j:1“ <o p2re with v +w = t. If v and w were both bigger than
1 then 4 would divide both 2c¢ and 2a. Since both are at least one we see that
one of w and v must be one. This implies that the other must be odd. If v =1
then c+a = 2m? and ¢ —a = 2n2. It is clear that if w = 1 we come to the same
conclusion. Thus b2 = 4m?n? so b = 2mn. Also 2¢ = (c+a)+(c—a) = 2(m?+n?)
and 2a = (¢ + a) — (¢ — a) = 2(m? — n?). So a,b, ¢ are of the desired form.

3.2.2 Exercises.

1. Observe that if m = 2,n = 1 then m? —n? =3, 2mn =4, and m? +n? = 5.
If m =3, n=1then m?—n? =38, 2mn = 6 and m? +n? = 10. Thus aside from
the factor of 2 and the order the two give the same Pythagorian triple. Show
that if m,n are relatively prime then the greatest common divisor of any pair
of the Pythagorian triple is either 1 or 2.

2. Show that if z, y are rational numbers such that x? +y? = 1 then there exist
integers m,n such that either

m? —n?2  2mn

m2 +n?2’ m?2 4+ n?

(z,y) = ( )

or
2mn  m? —n?

(-T,y) = (m2+n27m2+n2)'

Hint: y = £v/1 —22. If = £ in lowest terms then 1 — 22 = 02_2‘12. If the
Y c c

square root is rational then ¢ — a? must be the square of an integer b. Thus
a?+ b =c?)

3. What is the overlap between the sets described by the two formulas in
problem 27

4. If we divide the numerators and denominators of the first expression in
problem 2 by n? and write t = “ then we have

1—¢2 2

=i

).

Show that the only pair of real numbers (x,y) not covered by a value of ¢ is
(—1,0). This is called the rational parametrization of the circle.
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5. Look at Euclid Book X. Lemmas 1,2 before Proposition 29 and write out
what the assertions mean algebraically.

3.2.3 Polynomials of higher degree.

Not as well known is the fact that Fibonacci studied cubic equations. Studying
algebraic equations was quite difficult in his time due to a lack of appropriate
notation and since the algebra of Fibonacci was still the geometric algebra of
Euclid. Furthermore, cube roots were not constructed in the plane geometry so
they were somewhat more mysterious. In his book the Flos (1225) he studied
some cubic equations in particular

3 + 222 + 10z = 20.

He proved that this equation has no rational roots and even no roots of the form
© + /v with u and v rational. He also gave an approximate solution to the
equation in sexagesimal (1;22,7,42,33,4,40).

The Middle Eastern mathematicians had methods of calculating roots of
polynomials to arbitrary precision. Most notable is the work of Abul Kamil
(850-930). Also Omar Khayyam (1050-1130) had interpretations of roots of
certain cubics as intersections of conic sections.

One reason for the slow progress in general methods of solution of polynomial
equations was the lack of good notation (which persisted into the seventeenth
century) and a lack of the ability to manipulate unknowns and indeterminates.
For example, the unknown quantity « made sense to them (even to the ancients)
as “a quantity” one could also say a “cube” a “side” and a “face” none of which
are known. Then a description of a cubic equation could be given as a cube
added to 2 times a face added to 6 times as side is equal to 12. We would write
this as

23+ 222 + 62 = 12.

The mathematicians developed clever short hand notations for such expressions.
However, they did not go to the next stage and replace the 2, 6,12 by indeter-
minates a, b, c thus getting

22 4+ az® + br = c.

Rather, they dealt with the specific equation with explicit coefficients and used
techniques that could work with many other coefficients. We have seen this
approach in Euclid. It persisted into the seventeenth century and the work of
Viéte and Descartes.

3.2.4 Exercises.

1. Show that there are no rational solutions to the equation

3 + 222 + 10z = 20.
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nt: xr = + 1n lowest terms then
Hi If ‘; in h
a® + 2a%b + 10ab? = 20b°.

Thus every prime divisor of b divides a. Hence b = 1. Now conclude a divides
20 and check all of the cases.)

2. Convert Fibonacci’s approximation to decimal and check that it is a good
approximation.

3.3 The solution of the cubic and quartic
3.3.1 The Tartaglia, Cardano approach to the cubic.

In spite of the fact that modern algebraic notation did not exist in the sixteenth
century the general solution to the cubic (degree 3) and to the quartic (degree
4) was deduced by the Italian mathematicians Niccolo Tartaglia (1500-1577)
and Gironomo Cardano (1501-1576) for the cubic and Ludovico Ferrari (1522-
1565) for quartic. The history of that endeavor is not the most savory in
the annals of mathematics and in fact it is almost certain that the solution
to the cubic is in fact due to Scipione del Ferro (1465-1526) but unpublished.
It seems that neither Tartaglia nor Cardano were morally as strong as they
were mathematicians. It also seems that Tartaglia’s role in the solution of the
cubic was much more substantial than that of Cardano, although he seems to
have been influenced by the rumors that a solution by Ferro existed.. We will
leave these historical questions aside and just point out that there is an English
translation of the Ars Magna published by the M.IT Press (1968), translated
by T.R.Witner, also the book A History of Mathematics by C.B.Boyer, et al
has an interesting discussion of this history and further references. What seems
to be well documented is that Tartaglia could solve a general cubic of the form

2+ ax = b.

It is quite conceivable that Cardano’s contribution was to reduce the general
cubic
B4 +de=e

to this form. In modern notation this is a fairly simple task. Set x = y — w.
Then the equation says

y> — 3uy?® + 3uy — v + cy® — 2cuy + cu® + dy — du = e.
So if u = § then the equation is given in y as
y +ay="b

with a = d — é and b = % +e— % This step seems to be truly minor in

our notation. But in the sixteenth century the methods used to derive such
formulas were completely geometric. Recall that cubes had to be interpreted
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as volumes and squares as areas. Also the formulas used had to be given as
geometric properties of areas of geometric figures. The final problem was that
negative numbers were still not allowed and so there were many variants of the
equations that needed to be analyzed. For example

2 4ar+e=0

was not seen as the same
2 t+ar=>

with b = —c. Similarly, the term az might be on the right hand side of the
equation. In addition to all of these complications, there was still no direct way
of dealing with general quantities such as a and b above (the x was better un-
derstood). Thus rather than write the equation above Cardano would consider
(say)
23+ 3z = 4.

He would than say: Let the cube plus 3 times the side equal 4. The 3 and the 4
would take the place of the a and the b. He would then go through an equivalent
geometric discussion to the one below with the special values of a and b. With
these provisos we will now derive a solution to the above reduced form of the
cubic.

The critical idea is to write x = uw — v . Then substituting in the equation
we have

u® — 3u?v + 3uv? — v* 4+ a(u —v) =b.

That is
u® — 3uv(u —v) — v + a(u —v) = b.

If we take 3uv = a then the equation becomes

w—vd =0

Now v = g-. So upon substitution we have
3 a3 1
u’ —(5)°— =0
(3) u3

Multiply through by u? and we have

ub — bu® — (%)3 = 0.

Apply the quadratic formula to solve for u® and get
:,)_bi,/b2—i-4:(%)3_bi b)2+(a
-2 T2 3

u

Notice that Cardano must choose the plus sign. Now v® = u3 — b. Thus we
have (at least as a possibility)

v= {/\/<§>2+<§>3+§—§/ (372 + (505
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This is one of Cardano’s solutions (depending on various signs as we have
pointed out). Notice that in the course of this development we have made
choices. However, if we assume that a¢ > 0 and that the only cube roots we can
have are positive then we can reverse the steps

i/\/é)z+<§>3+§§/\/<§>2+<§>3—g
3 b2 Q. . b272 a,ia
= \/(5) +EP-Er={Er =53

3 3

Thusx3+aw—<§/\/( )H(%)M%) (i‘/ ()2+(%)3§> =b.

3.3.2 Some examples.

SIS
SIS

First let us give some examples of Cardano’s formula. Consider the equation

2424z =14

The first step is to eliminate the x?. According to the recipe above, taking

c=1,d=1, e =14 we are “reduced” to

y’ +ay=b

with a = % and b = %. We can no plug into the formula

C L (BY (382388 s (), (385 385
v= 9 54 54 9 54 54
Observe that this expression involves only square roots of positive numbers so

at least it makes sense geometrically. If you do the calculation indicated you
are looking at

3/ 17 385  4/17 385
v= {5V 5 T
We now know that y — % is a solution to our original equation. If you use
a calculator and evaluate this expression numerically you will find that y — %
is approximately 2 and if you substitute 2 into the original equation you will
find that 2 is indeed a solution. This indicates that there could be serious
difficulties in the use of the elegant formula above. We will look at several other
such difficulties in the exercises. Cardano and his contemporaries were much
more worried about another problem. Which we will now describe.
First we must consider the form that was necessary for they must use to
write the solution to
23 = ax +b.
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without recourse to negative numbers. We would replace a by —a and use the
previous solution. Cardano did something equivalent using the substitution
x = u + v. This gave rise to the solution

o= jgﬂ/(gv-@m jg-\ugv-(gw.

If the term under the square root sign was non-negative then he had no trouble
understanding the solution. However, if we consider (as Cardano did)

% = 15z + 4.

The formula yields

§/2+\/—121+ \3/2—\/—121

which made no sense to Cardano. If you ask a mathematical software package to
evaluate this expression numerically then it yields 4.0. Direct check shows that
x = 4 is indeed a solution. The mathematics package would be hard pressed
to see that this expression is ezactly 4. (In Maple V version 4 the simplify
operation doesn’t yield 4. However, the factor operation does. Mathematica
4 (but not 3)actually returns 4 when it encounters this expression.)

We note that 23 —152—4 = (z—4)(22—4x+1). This implies that the equation
has three distinct roots: 4 and the roots corresponding to the quadratic factor
that involve square roots of positive numbers. Getting ahead of ourselves, we
will see that if all three roots of a cubic are real and distinct Cardano’s formula
always involves a square root of a negative number (see exercise 3 below)

3.3.3 Exercises.

54 3
using Cardano’s formula. (Show that the only real root of the corresponding
equation is 2.)

2. Observe that if that if = is real then /—z = —¥/xz. Use this to see that the
choice made in the derivation of Cardano’s formula didn’t change the outcome.

1. Show that the number {’/%\/57+ 35845 - {’/% 57 — 385 _ 1 5 equal to 2

3. Consider the equation 23 — 2z = 5. Calculate the solution given by an
appropriate variant of Cardano’s formula. Next use a calculator or a computer
to do Newton’s iteration to derive an approximate solution (Newton actually
did this calculation to 5 decimal places in 1669.) The Newton method is to
guess a solution xg. The iteration is

Tpt+1 = Tn — f/(il,' )
n

Here f(z) = 2% — 22 — 5 and f’(z) = 32% — 2. Thus if we start with the

approximate root 2 then
1
=24 —.
T + 10
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Newton showed that xo was accurate to 5 decimal places.

4. Let f(z) = (x — u)(z — v)(z — w) with u,v,w distinct and real. Assume
that u +v +w = 0. Show that f(z) = 2® — ax — b with a = u? + uv + 02,
b= (uv)(u+v). Show that (2)? — (£)3 is always negative. Thus if there are 3
real roots then the formula cannot be written directly in terms of real numbers.

3.3.4 The early attempts to explain the paradox.

This strange expression

</2+\/7121+ {’/27\/—121

that must be 4 was a thorn in the side of the remarkable achievement of solving
the cubic (and relatively soon the quartic). The resolution of this paradox that
the expression must be 4 but involves meaningless objects would not be fully
resolved for about 400 years. As we shall see it goes to the heart of what we
understand of numbers. Cardano had in earlier studies encountered other types
of equations with solutions had a form

(u+v=v) + (u— /)

and he knew that 2u was indeed a solution. Such numbers are now called
conjugate complex numbers and we know that they do indeed add up to a
number closer to the sense of Cardano and his contemporaries.

Rafael Bombelli (1526-1573) made a proposal the explain the paradox. He
suggested the following “wild thought”. Suppose the cube roots of a pair of con-
jugate numbers were conjugate? That is suppose we could write v/2 4+ /—121 =
u++/—v and /2 — /=121 = u — \/—v. Then the irksome sum would be 2u.
Since he “knew” that by all rights 2u should be 4 he chose v = 2. He then com-
puted (24 /=v)3 =8 — 6v + \/—(12 — v)2v. Thus if Bombelli’s wild thought
is to work he must have 8 — 6v = 2. He was therefore forced to have v = 1 and
he found (probably to his own amazement) that 2 4+ /=121 = (2 + /—1)3 and
2 —/—121 = (2—+/—1)3. He now felt justified to plug his newfound cube roots
into the Cardano formula and found that with his interpretation the Cardano
solution was indeed equal to 4.

This brilliant analysis was no doubt very convincing at the time. However,
from our perspective it leaves open more questions than it answers. However,
before we begin to attempt to study the larger issues we will need to “bite the
bullet” and understand what is meant by numbers. This will be begun in the
next section when we discuss “analytic geometry”. First we will give a short
discussion of Ferrari’s solution of the quartic and another related problem that
arises from that result.
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3.3.5 The solution of the quartic.

We first describe Ferrari’s reduction of the solution of the quartic to the cubic.
We are considering
zt 4+ ux® + vz +w = ma.

Cardano’s technique for eliminating the square term in the cubic can be used
to eliminate the cube. That is replace = by = — 4. Then the equation is in the
form
4 2 _
4+ az®+b=cz.

The idea of Ferrari is to complete z* + az? to a square by adding % to both
sides. We are thus looking at

a2

(22 + 3)2 = (T —b) +ew
The critical step is to throw in another parameter (say) y in the left hand side
and to observe that

a a a
@ +5+y)° = @ +35)° 2"+ 5y +y
a2
= (Z—b)+cx+2x2y+ay+y2.

For the last equation we have substituted (% —b) + ca for (2 + %)% This
term can be written in the form Ax2 + Bx + C. With A = 2y,B = ¢,C =
(% —b) + ay + y*. We solve for y so that the quadratic equation has exactly
one root. That so that B? — 4AC = 0 (i.e. we eliminate the + term in the
quadratic formula). Substituting the values of A, B, C we have

CL2

B? —4AC = ¢ — 8y(( 1

b) + ay + y?).
This is a cubic equation in y. Let u be a root of this equation (which we
presumably can find using Cardano’s formula). Then for this value we have

a?

(x2+g+u)2 — (Z_b)+cx+2x2u+au+u2
-B
= A’ + Br+C=Alw— (7))
= 2u(m+ﬁ)2.

That is

(z% + % +u)? = 2u(x + £)2

This says that to find a solution x we need only solve
c

s fu= V2u(x + 4u)'

2
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To do this we can apply the quadratic formula. The point of this is that in
light of Cardano’s formula we can write a solution to the quartic as an algebraic
expression that involves arithmetic operations on square roots and cube roots
of arithmetic operations on the coefficients of the equation. This is also true
for the cubic and the quadratic formula does the same for degree 2. Of course,
we must take into account the same provisos as we did for the cubic. When we
study analytic functions of a complex variable we will come back to the sense
in which Cardano’s solution to the cubic (and thereby Ferrari’s of the quadric)
is actually a well defined solution.

In spite of these possible misgivings these results came at least 4000 years
after the Babylonians understood how to solve the quadratic equation. The next
natural problem was to find a solution of the quintic (fifth degree polynomial)
in terms if arithmetic operations (addition, subtraction, multiplication, and
division) and square roots, cube roots and fifth roots (radicals). The greatest
mathematicians of that time and in fact for about the next 200 years could
not find any clever method that would solve this problem. The answer to this
problem was given by two of the most tragic cases in the history of mathematics.
We will first discuss the solution of the problem for the quintic.

3.3.6 The quintic

The success of the Italian algebraists of the sixteenth century was extraordinary.
The next step would be the quintic and then, of course, equations of higher
degree. To the surprise of the mathematical community, there were no clever
methods that they could find to reduce the solution of the quintic to that of the
quartic, cubic and quadratic and extraction of fifth roots (or for that matter
roots of any order). The prevailing idea had always been that one should be
able to find the roots of any polynomial by doing arithmetic operations and
extraction of roots. However, in 1799, Paolo Ruffini (1765-1822) published his
two volume treatise Teorie Generale delle Equazioni in which he included an
argument to show that there was no such method of solving the quintic. As
happens in the history of mathematics, announced proofs of major new results
are often incomplete or even wrong. Ruffini, in fact was on the right track
but wrong in detail. One can imagine the scrutiny to which this treatise was
subjected. The proof of the impossibility for the quintic was given a rigorous
proof by Nicolas Abel (1802-1829) at the age of 19 (notice that he lived at most
27 years!). He published his proof in the form of a pamphlet at his own expense
in 1824. Due to his limited funds, he had to keep the pamphlet brief and for
that reason it was extraordinarily difficult to understand. He later proved a
theorem that applied to all equations of degree 5 and higher. It states

If n > 5 then there is no formula for a solution involving arithmetic opera-
tions and extraction of roots on the coefficients of the equation

2"+ a1z 4 a2+ ... +a, =0.
This assertion is now known as the Abel-Ruffini theorem. A great deal of

mathematics ocurred in the time that intervened between the work of Cardano,
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et. al. and the work of Abel. Most notably, the algebraic notation, which
we now take for granted, was invented. Also the understanding and general
usefulness if negative numbers was finally a standard part of mathematics.

Another major development in the interim was the invention of complex
numbers. We will make a first (relatively geometric) attempt at explaining
complex numbers in this chapter and will approach this concept more analyt-
ically in the next chapter. These numbers were used in so-called conjugate
pairs in Bombelli’s solution of the apparent paradox in the solution of the cu-
bic. Within the system of complex numbers Carl Friedrich Gauss (1777-1855)
proved the fundamental theorem of algebra which states

Within the complex numbers every equation

2"+ az" P a2+ . 4+a, =0

with n > 0 has a root.

Here we have two seemingly contradictory theorems. Abel asserts that there
is no way of writing a formula (involving extraction of roots) for a solution if
n > 5 and Gauss asserts that even so there is a solution. We will encounter such
apparently paradoxical situations throughout our investigations. It should also
be pointed out that Abel sent his pamphlet to Gauss who was acknowledged to
be the most important mathematician of his time. Gauss was furious with the
brevity of the work and made scathing remarks about it. Abel’s article on this
subject was eventually published in Crelle’s Journal (founded in 1826) in the
first issue which in addition contained 21 other articles by Abel. The theorem
of Gauss will be studied in more detail in the later chapters (however, we will
discuss an important special case later in this chapter). This theorem appeared
in the thesis of Gauss and he went on to give numerous alternative proofs. The
most notable aspect of the theorem is that it is not really a theorem in algebra.
The reason for this is that, as we shall see, complex numbers (and in fact real
numbers) are of a very different nature from integers and rational numbers.
This difference is the basis of mathematical analysis (modern calculus).

Before we leave this subject in order to learn enough mathematics to discuss
it in more depth, we should point out that the theorem of Abel only proves that
there is no general formula. Obviously there are equations that we can solve by
radicals. For example,

2% —2=0.

It is thus reasonable to ask the question: What equations can be solved by
radicals? Here we mean that even though we can’t find a formula we can still
write out a solution in terms of the coefficients of the equation using arithmetic
(that is addition, multiplication and division) and extraction of roots (square
roots, cube roots, fifth roots, etc.). Abel studied this problem also and laid
the partial foundation of the mathematical theory of groups (terms like abelian
groups are in the honor of Abel’s work). However, the solution of this problem
was completed by another teenager, Evariste Galois (1811-1832). Galois gave a
complete criterion as to when an equation can be solved by radicals. But we are
now well ahead of ourselves in this story. We now return to the situation at hand
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and begin the development of a broader notion of number that would at least
include the expressions described (recall Bombelli’s analysis). In this broader
formulation Gauss’s fundamental theorem of algebra will hold. We will next
need to introduce the theory of Galois (now called appropriately Galois Theory)
which lays the basis of the theory of groups. The latter will be studied in later
chapters. To begin the analysis of the first problem we must step back to the
seventeenth century and study the work if Descartes.

3.4 Analytic Geometry.

René Descartes (1596-1650) is now mainly known for the notorious x,y axis
and Cartesian coordinates (which we will see he never directly used) and for
the quotation “I think therefore I am”. Both are oversimplifications of what he
actually did and what he actually meant. We will discuss his geometry which
was an important beginning to what we now take for granted in algebra. The
work that we will discuss is The Geometry which was published in 1637 as an
addendum to his treatise The Discourse on Method. The Geometry consists of
three books (we would probably call them sections). The first establishes a basis
for the meaning of number in terms of geometry and establishes the notation
that we still use today for polynomials with indeterminate coefficients. In the
second he shows how one can use his algebraic methods to analyze plane figures
in terms of polynomial equations. The third analyzes 3 and higher dimensions.
It relates his notation with the earlier works of Cardano, et. al. and for example
writes out Cardano’s formula in exactly the same way we do.

There were several people whose work predated Descartes who understood
the idea of independent variable and dependent variable. Nicole d’Oresme
(1323-1382) actually did graphing of data much the way we do today (he did
explicitly use what we call Cartesian coordinates thus a more accurate but cum-
bersome name might be Oresmian coordinates). We will have more to say about
the work of this amazing man in the next chapter. Also, Francoise Viéte (1540-
1603) established our formalism of unknown quantities that we manipulate in
the same way as if they were known numbers. Bombelli, in addition to his work
on the mysteries of the cubic and the foundations of complex numbers wrote a
treatise on algebra in which he also handled unknowns algebraically. Bombelli
did not label his unknowns by letters, instead he invented a symbol for an un-
known (not unlike our "frowning face" -( rotated ninety degrees). Fortunately
that notation didn’t catch on.

3.4.1 Descarte’s notation and interpretation of numbers.

He begins his first book with the following assertion (we will use the translation
given by David Eugene Smith and Marcia Latham):

Any problem in geometry can easily be reduced to such terms that a knowl-
edge of the lengths of certain straight lines is sufficient for its construction.
Just as arithmetic consists of only four or five operations, namely, addition,
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subtraction, multiplication and the extraction of roots, which may be considered
a form of division, so in geometry, to find required lines it is merely necessary
to add or subtract other lines; or else, taking one line which I shall call unity
in order to relate it as closely as possible to numbers, and which can in general
be chosen arbitrarily, and having given two other lines, to find a fourth which
shall be to one of the given lines as the other is to unity (which is equivalent to
multiplication);...

Before going on let us see what he means here. First he chooses a line
segment which he calls unity and in the diagram below (which is essentially the
same picture that occurs on page one in The Geometry) is denoted AB on the

inclined
E
/ |
D A B

line he measures BC' (the first line) and on the line containing AB he measures
BD. He then joins the points A and C. From D he draws the parallel line to AC
which intersects the line containing BC at E. He then says that if we consider
the ratios of BC and BD to AB then the ratio of BE to AB is the product of
the corresponding ratios. Let us demonstrate the correctness of this assertion
(Descartes feels no need to explain any more than what we have already said).
The triangles ABC and DBE are similar. Thus the corresponding sides are
all in the same proportion (Euclid, Elements, Book VI, Proposition 10). Thus
BE — BO  1f we think of BE as c times a unit, BC as a times a unit, BD as b
times a unit and AB as 1 times a unit then the assertion is just that a x b = c.

Descartes also had a method for doing division geometrically (we will give
it as an exercise). We now come to an important point.

Often it is not necessary thus to draw lines on paper, but it is sufficient to
designate each by a single letter. Thus to add the lines BD and GH, I call
one a and the other b and write a +b. Then a — b will indicate that the line b
is subtracted from a; ab is the line a multiplied by b;...

Here he is saying that a+b is just the line corresponding to hooking together
BD and GH on the same line. ab denotes the geometric operation of multipli-
cation. The symbol a is a bit more abstract than a line since it corresponds
to a line measured by a unit (shades of Euclid!). He writes division as we do
and aa is a? and if this is multiplied by a then we have a3, etc. The square
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root of a? + b? is denoted v/a2 + b2. The cube root of a® — b? + ab? is written
va3 — b3 + ab? and as he says similarly for other roots. Notice that so far
he has only taken square roots of combinations of squares and cube roots of
combinations of cubes or rectangular solids. Now comes the crux:

Here it should be observed that by a?,b3 and similar expressions, I ordinarily
mean only simple lines, which however I name squares, cubes, etc., so that I may
make use of the terms employed by algebra.

This means that even though we might be looking at a line segment of length
2 times the unit and then considering a cube that has one edge that segment we
can think of the corresponding volume as a unitless number 8. This is obvious
to us but it was not standard at the time. Further, it leads to our modern
approach to numbers being produced by geometry. Descartes goes on to study
the variants of the quadratic formula that are formed by changing the signs of
the coefficients. Again his approach is quite modern and he writes such things
as

z? = —azx + b7

To him negative numbers have a right to existence. However, since he still
interprets the solution of the equation geometrically he looks three cases the
above, 22 = ax +b? and 22 = ax — b?. We show how Descartes handles the first
two. Consider the following figure:

L M

He takes LM N to be a right triangle with LM = b, LN = §. Now prolong M N
to M@ a distance equal to NL. Then x = M@ is the solution. If on the other
hand we were considering the equation 22 = —ax + b then we would use the
same figure from the point NV we lay off NP on the line NM with the length
of NP = NL. This time x = PM is the answer. The last case is perhaps more
interesting we are looking at 2 = ax — b%. For this we consider the following
figure:
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Q

L M

Here LM is of length b, LN is of length § perpendicular to LM and the circle
is of radius NL. The line through M is parallel to NL. There are three pos-
sibilities. The first is that the circle cuts the line through M in 2 points R, @
and both M@ and MR are solutions. The second is that the circle touches in
one point, say @, then MQ is the solution. The third is that b > & that is the
circle doesn’t touch the line through M. Then he asserts that the equation has
no solution. The main distinction between Descartes and his contemporaries is
that his reason for the geometric constructions is the quadratic formula. So in
the first example x = MQ = QN +NM. QN = § and the Pythagorian theorem

says that NM = \/QN? + LM? = \/%2 +b0?sox =%+ \/an + b2. Which is
the positive solution given by the quadratic formula. We will leave the other
cases to the reader in the exercises.

The point here is that in Descartes formalism numbers and their units have
been separated. Viéte had allowed for the handling of unknowns as numbers
but he still considered a product of two numbers to be an area, of three a
volume. Thus 22 + 2z 4+ 1 makes sense to him as making an area that is a
disjoint combination of a square of side x, a rectangle of side x and side 2 and
a figure of area 1. For Descartes this "homogenization" is unnecessary.

Even Descartes makes a distinction between positive solutions (actual) and
negative (false). In the third case he has a third possibility no solution. In
the The Geometry he has several results about counting actual solutions or
converting false solutions into actual ones. Thus although he did not believe
that negative numbers could be actual solutions to geometric problems he was
aware of their existence in his algebraic formalism.

Book 2 of The Geometry is a study of curves in the plane. Although, the
familiar x,y axes of analytic geometry do not appear explicitly in Descartes’
work they are certainly implicit. We will come back to these ideas in the next
chapter. In the next subsection we will consider his approach to what we now
call analytic geometry.

3.4.2 Exercises.

1. Show how to divide using the same diagram as Descartes used to give a
geometric interpretation of multiplication.
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2. Consider the figure below. We quote Descartes: If the square root of GH
1s desired, I add FG equal to unity; then bisecting FH at K, I describe the
circle with radius FK with center K, and draw from G the perpendicular and
extend it to I, and GI is the required root. Show that this is indeed a geometric
interpretation of the square root of GH.

3. Show that Descartes’ geometric method does indeed describe the solutions
to the quadratic equations described above.

3.4.3 Conics and beyond.

The second book of The Geometry contains the meat of the Cartesian method of
algebraic geometry it has the title On the nature of Curved lines. The opening
paragraph says:

The ancients were familiar with the fact that the problems of geometry may
be divided into three classes, namely plane, solid, and linear problems. This is
equivalent to saying that some problems require only circles and straight lines for
their construction, while others require a conic section and still others require
more complex curves. I am surprised, however, that they did not go further,
and distinguish between different degrees of these more complex curves ...

The chapter ends with (the perhaps unwarranted) paragraph:

And so, I think I have omitted nothing essential to an understanding of
curved lines.

Descartes begins by rejecting the study of certain curves such as spirals by
saying that they “really belong only to mechanics”. We will study one example
from that chapter that first shows how configurations involving two lines (we will
make this more precise) yield conic sections which can be described by quadratic
equations and that if one if one allows a line to be a conic section then one has
a cubic equation. We will also show how to use Descartes’ method to derive an
equation for an ellipse. We start with the following picture.
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J

The angles at A, B, L are right angles. Descartes looks at the curve traced out
as follows (this is just a paraphrase of what he actually says the algebra, however
is the same as his). The points G and A are fixed. The dimensions of the figure
KNL are fixed and the side KL is slid up and down the line AB. As it slides
we look at the path that the point of intersection, C', of the line joining G to L
and the line extending K N. He then observes that the two quantities BC' and
AB determine the point C'. Since they are unknown he uses the notation y for
BC and z for AB. (This is as close as he gets to the z,y axes.) The quantities
that are known (or fixed) are AG which he calls a, KL which he calls b and
LN which he calls c. He then uses similar triangles to observe that % = g—g.
Thus % = %. That is, BL = %y — b. He uses similar triangles again to
see that % = g—g. That is, %7 = g¢- This gives aBL = y(z + BL). So
%by —ab=yx+ y(%y —b)=yx+ %y2 — by. Multiplying through by 7 we have
ay —ac = {yr + y? — cy. We therefore have

c
2= (a+c)y— oY — ac.

Which Descartes observes is the equation of a hyperbola.

He then observes that if the figure to be slid were say a hyperbola then one
would have gotten a higher order equation. Let us do one more example. We
will follow his method to calculate an equation for the locus of points so that
the sum of the distances from two fixed points is fixed (we now call the figure
an ellipse). Consider the following diagram
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P is the point on the ellipse. The two fixed points are A and B. (' is the
midpoint of the line segment AB joining A and B. The line PD is perpendicular
to AB. We will call the constant value of the sum of the distances from P to
A and to B, 2a. We will also denote by ¢ the length of the segment AC. Then
AP + PB =2a. We set x = CD and y = PD. Then the Pythagorian theorem
says that

AP? = (c+2)* + 42,

PB? = (¢ — z)? + 42
Thus

AP? — PB? (c+2)* — (c—x)?

= (4 2cx +2?) — (* — 2cx + 2°) = 4zc.

Now
AP? — PB? = (AP — PB)(AP + PB) = 2a(AP — PB).

We therefore have
AP — PB = %
a
Since AP — PB+ AP + PB = 2AP and by the above AP — PB+ AP+ PB =
% + 2a we have

AP =a+ .
a
Similarly, AP + PB — (AP — PB) = 2PB. Thus

PB=a- 25
a

We have (a — %)2 =1y?+(c—x)?. Hence (a2 —2zc+ %) = y?+c?—2zc+a?.
This gives
2
2

c
2—62+—2:L'.
a

24 =a
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2 — ¢2. Then we have

2_b2 b2
x2+y2:b2+a 5 xzsz—l—xQ——Q:lcQ.
a a

It is convenient to write b = a

This implies that
2

b
JZEQ + y2 = b2.
Dividing both sides of this equation by ? we have

2 2
x
T+l
a b?
Notice that here the x,y axes are not explicitly drawn but they are used
implicitly.

3.4.4 Solution to higher degree equations in The Geometry.

The Third Book of The Geometry has the title On the Construction of Solid and
Supersolid Problems. This chapter establishes our normal notation for higher
degree equations. It also lays the foundation for polynomial algebra. Descartes’
first order of business is to make clear that only positive roots of equations are
true. We quote: It often happens, however, that some of the roots are false or
less than nothing. He gives the example, first considering (z—2)(x—3)(z—4) =
23 — 922 4 262 — 24 with roots 2,3,4. He then multiplies by z 4 5 that has false
root 5 (notice a false root in his sense is still described by a positive number
and labeled as false). Thus he has

2t — 423 — 1922 4+ 1062 — 120

which has three true roots 2,3,4 and one false root 5. He uses this as an
example for his celebrated Law of Signs. Which says (the assertions refer to the
signs occurring before the coefficients the coefficient of z* should be taken as
+1).

An equation has as many true roots as it contains changes of sign from +
to - or from - to +; and as many false roots as the number of times two + or
two - are found in succession.

We note that 0 should be ignored. Thus the quartic example above the
signs are +, —, —, +, — thus it has 3 changes + - — — + — — and two — in
succession so the theorem asserts that the number of true roots (i.e positive) is
3 and the number of false (negative) is 1. Thus the theorem is correct without
any interpretation in this case. In general, there are some caveats. First we
must count a root with multiplicity since z?> — 2z + 1 = 0 has signs +,-,+.
Hence 2 sign changes. But it only has one root 1. The method that he finds
the example by successively multiplying seems to be all he feels is necessary for
a proof of his assertion. In fact, proofs are noticeably absent from Descartes’
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book. However, there are several detailed derivations of formulas. In this case
one can easily see that the above assertion is false as stated. If we consider

22 —2242=0

then the sequence of signs is +,-,+ so he predicts two true roots and no false
ones. However there are no real roots of this equation by the quadratic formula.
We must therefore interpret the result to be about equations with all roots true
or false.

The next really substantive part of this chapter involves what happens when
one starts with a polynomial in an unknown x and substitutes * = y — a (in
fact he uses the example of a = 3 in a variant of the polynomial he has been
studying. He says that he has increased by 3 every true root and decreased by
3 every false root that is greater than 3. He then gives a full discussion of how
to carry out the substitution on a specific quartic. He then considers the same
calculation but this time diminishing by a that is substituting z = y + a (again
a = 3 and he looks at a specific quartic). These calculations take up a full half
page of this extremely terse book. But then we come to the point he says:

...we can remove the second term of an equation by diminishing its true roots
by the known quantity of the second term divided by the number of dimensions
of the first term, if these terms have opposite signs; or if they have like signs by
increasing the roots by the same quantity.

In other words the reduction used in Cardano’s Ars Magna. Descartes’ for-
mulas look just like ours but his text is still far from our approach of considering
negative numbers as “true” objects. It is also important to note that it is here
that he considers equations with indeterminate coefficients (we know them but
they are arbitrary).

He later applies these considerations to the cubic and for all practical pur-
poses gives a derivation of Cardano’s formula for the solution of the cubic geo-
metrically but writes the formula in exactly the same way that we do. We note
that Descartes attributes it to Ferro (he in fact says that “..the rule, attributed
by Cardan to one Scipio Ferreus ...”).

In the rest of the book he considers equations of higher degree mainly 6 and
gives methods of solving specific equations. This small book lays the foundation
of a synthesis of algebra (polynomials) and geometry. It lays out the power of
a notational scheme that has lasted through our time.

3.4.5 Exercises.

1. Prove Descartes’ rule of signs for polynomials of degree 1,2,3,4 with only real
roots.

2. In the derivation of the equation for the ellipse it is necessary to have a > c.
However, if we had a < ¢ then we would have had to write —b% = a? —c?. Follow
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the line of argument from there to see that

Can you make any sense out of this?
3.5 Higher order equations.

As we indicated Abel proved that, in general, an equation of degree 5 or higher
cannot be solved using algebraic operations combined with extraction of roots
(i.e. solvable by root extraction). Galois gave a method of determining which
equations could be solved. Before we study what these two prodigies actually
did in later chapters. In this chapter we will content ourselves with a better
understanding of their accomplishment by improving our understanding of the
concept of number. We will also resolve some ambiguities that arise in Cardano
formula when we include (as we must) complex numbers. We will not attempt,
as yet, to be completely rigorous (perhaps we never will) with this concept
but will build on Descartes’ ideas. We first introduce the concept of complex
number more carefully than we did when we studied Bombelli’s explanation of
Cardano’s strange example.

3.5.1 Complex numbers.

To Descartes, once a unit square is chosen the square of a number a, a®> must be

considered to be the area of the square of side a. Thus the square of a number
can never be negative. However, in the Cardano formula we must include the
possibility of taking the square root of a negative number. We note that if we
wish to allow for this possibility we must only find a meaning for /=1 since
if @ < 0 then ¢ = —b with b > 0. So square root of a could be taken to be
V=1 x v/b. Thus if we wish to allow square roots of any number we need only
make up a symbol for /—1. Engineers generally use j and mathematicians
use i (for imaginary no doubt). Since there is no real number with our desired
property we must “throw in” our new number ;. Now we have a more complex
type of number that looks like ¢ = a 4 bi. We would like to maintain the rules
of arithmetic so we are forced into

(a+bi)+ (c+di)=(a+c)+ (b+d)i
and

(a+bi)(c+di) = (a+bi)c+ (a+bi)di=
ac+ bei + adi +bdi® = (ac — bd) + (be + ad)i.

In other words with only our symbol ¢ thrown in we can with apparent consis-
tency define an addition and a multiplication. If we assume (as we must) that
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there is no relation of the form a + bi = 0 with a or b non-zero then we have a
system that is consistent with arithmetic. We also note that if a or b is not 0
then
(a4 bi)(a—bi)=a®— (bi)? =a® — (1)%(b*) = a®> +b* > 0.
Thus if we set a + bi = a — bi. Then if ¢ = a + bi, ¢& = a® + b? thus

[ [

¢ a?+b2’

Q

So

c cc
2re Tare !

This tells us that if ¢ # 0 then ¢ exists and is given by —=5. We now have
a number system that contains the square root of every real number. Let us
call (as does everyone else) these numbers complex numbers. We assert that
every complex number has a square root. In fact, the Fundamental Theorem
of Algebra (mentioned earlier) asserts that every non-constant polynomial with
complex coefficients has at least one root. The proofs of this theorem involve
a deeper understanding of numbers than we have as yet and we will defer this
to the next chapter where we will come to grips with the problem of rigorously
explaining numbers. We will content ourselves, in this chapter, to showing
that every complex number has n-th roots for all n = 2,3, ... For this we need
trigonometry.

3.5.2 Exercises.

1. Show that (1 +14)% = 2i.

2. If a and b # 0 are given real numbers and if ¢ = |/ 2“2/ and d = L then
show that (¢ + di)? = a + ib.

3. Use the formula in 2. to calculate \/;

3.5.3 Trigonometry.

We have seen in our discussion of Euclid’s Elements that the Greeks were very
interested in the properties of circles. They also had a notion of angle and
studied methods of bisecting and trisecting angles. Our trigonometry is based
on the understanding that angles can be represented by points on the unit circle.
This is motivated by the following calculation. Consider (x + iy)(u + iv) =
(zu —yv) + (xv + yu)i = t +is. We calculate

t? 4 5% = (zu—yv)* + (zv+yu)? = 2?u® — 2xyuv +y*0* + 20 + 2ryun +y*u® =
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22u? + y?0? + 220% + y?u? = (22 + y2) (W? + v?).

The conclusion we have been aiming at is that if 22 +y? = 1 and u? +v% =1
then the point that corresponds to (x + iy)(u+iv) also has this property. If we
define the unit circle to be the set of all complex numbers z = x + iy such that
22 +y? = 1. Then we conclude that the product of two elements of the unit
circle is on the unit circle. We also note that if y > 0 and x = iy is on the unit
circle then y = v1 — 22, If y < 0 then y = —/1 — 22. Thus up to the sign we
have parametrized the unit circle in terms of the value of the x coordinate and
a sign. We are looking for a “better” parametrization in terms of a parameter
6. We wish to have z(0) = z(0) + iy(0) with z(01)z(02) = z(61 + 62). If we
multiply out we have

z(01)x(02) — y(61)y(02) = (61 + 02)

and

z(01)y(02) + x(02)y(61) = y(01 + 02).

Also we have assumed that
50(0)2 + y(t9)2 =1.

There is an amazing fact that we will prove in our discussion of calculus. It
says that if we have two functions of a real parameter satisfying the above three
conditions and one more that asserts that if we make a small change in the value
of 6 then this induces a small change in the value of each of z(0) and y(6) then
there is a fixed real number ¢ such that z(0) = cos(cf) and y(#) = sin(cf). This
is why the first two equations look so familiar. For the moment we will assume
that we are all experts in trigonometry. We have therefore observed that the
points of the unit circle can be described as z(0) = cos(#) + isin(6). We also
know that there is a number 7 with the property that if we consider the values
z(0) for 0 < @ < 27 then every point of the circle has been parametrized with a
unique parameter. We also note that if have set up our parameter so that we
traverse the circle counter-clockwise then we most have z(0) = z(27). Then
using the property
z(a+b) = z(a)z(b)

we must have z(0)? = z(0). Now this implies (2(0) — 1)z(0) = 0. Since 2(0) is
not zero (its on the unit circle). We must have z(0) = 1.

We can now make an observation due to Abraham De Moivre (1667-1754)
(and perhaps to Jean d’Alembert (1717-1783)). If z is a complex number then
we can write z = rz(0) with r = \/22 4+ ¢2 and 2(0) = z/r. We presume that
we can take arbitrary roots of non-negative real numbers. So if we want an n-th
root of z we can take 7 z(%) This says that a complex number has at least
one n-th root for each n. We have seen that a positive real number has two
square roots ++/7 the square-root symbol always stands for the non-negative
square root. The point here is the square roots of 1 are 1. The same sort of
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thing happens in general. If a™ = b™ = z then (a/b)™ = 1. Thus the ambiguity
in taking roots is contained in the n-th roots of unity. Here is the observation:

ok

- V= 2(2nk) = 2(2m)F = 2(0)F = 1F = 1.

2(

This is explained in terms of the following picture (here we have plotted 8 equally

spaced points on the circle % with £ =0,1,2,3,4,5,6,7)

We can see that we are just putting n (in this place 4) equally spaced points
on the circle with the first one 1. Multiplication by the second one clockwise
cycles the points clockwise around the circle.

Interpretation of Cardano’s formula. We now see that there is a real
problem with Cardano’s formula (and Ferrari’s for that matter). In Cardano
there are two cube roots and two square roots thus there is a possible thirtysix-
fold ambiguity in the formula. The only way to make it a formula again is to
give a rule for how to choose the roots. Let’s look at the equation

2 =ax+b

again. The formula says

L (3) @) G -G

. . 2
is a root. We note that the formula involves both square roots of (%) — (5)3

symmetrically. So the ambiguity involves only how we choose cube roots. We

. 2 .
will therefore use the same square root, v,of (%) — (%)3 in both parts of the

formula. We write u = %. Then we must choose a cube root « of u+v and a cube
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root 8 of u—w so that x = o+ 3 is a solution to the equation. Let us calculate.
With «, 8 arbitrary choices of cube roots. Then z3 = o + 3a23 + 3a8% + 3.
We therefore have

22 =u+v+3a28+3a8%+u—v=">b+3a%8+ 3a5>.

Now 30?83 + 3a8® = 3af(a + B). We note that o®f® = (u + v)(u —v) =
u? —v? = (%)2 - ((%)2 - (%)3) = (%)3 Thus to help resolve the ambiguity of
cube roots we choose o and 3 so that a8 = £. (Notice that we can do this by
multiplying one of « or 3 by a complex number whose cube is 1.) We now note
that a + 8 = = (by our definition) and 33 = 3§ = a. Thus 3028+ 3a8% = ax.
With these choices and = a + 3 then the equation 2% = az + b is satisfied.
We also note that since the choice of « forces that of 8 and vice-versa there is
now only a threefold ambiguity. Which is what we would have if a = 0. The
“general” polynomial of degree three has 3 roots.

3.5.4 Exercises.

1. What are the 4 eighth roots of 17

2. Find a fourth root of —1 and show that its powers give up to reader the 8
equally spaced points around the circle in the picture above.

3. Resolve the ambiguity in Cardano’s formula for a solution of z3 + az = b.

4. Write out the three roots of the equation x3 + 2z = 4.

3.5.5 Polynomials of degree 5 or higher.

We will begin this section with a special case of Gauss’s fundamental theorem
of algebra. A fuller explanation of the argument in the next subsection will
be given in the next chapter. Also the following theorem will be an ingredient
in our development of the full theorem. We will see that the result is based on
a deeper understanding of the concept of a real number. We will be studying
the full fundamental theorem of algebra in the next chapter. Here we will
give an argument for polynomials with real coefficients of odd degree that uses
methods of analysis (the subject of the next chapter). The proof involves a deep
property of real numbers which we will assume. The reader who has not had
any introduction to the manipulation of inequalities might find that the proof
below is gibberish. Try reading it anyway. The mysteries will be expanded on
in the next chapter.
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Polynomials of odd degree. The purpose of this subsection is to discuss
the following

Let f(x) = ag+ a1z + ... + anx™ be a polynomial with a,, # 0, ag, ..., a, real
numbers and n odd. Then there exists a real number ¢ such that f(c) = 0.

Notice this assertion is not about arbitrary polynomials but only ones of odd
degree and having real coefficients. In particular, if the coefficients are rational
then there is a real root. As we observed above this result is a consequence of a
deep property of real numbers which will be delved into more deeply in the next
chapter. We first note that we may assume that a,, = 1 since we can divide
through by a,. Thus we are looking at

f(z)=2" 4 (a0 + a1z + ... + ap_12™ 1),

We assume that C' > |a;| for all i = 0,...,n—1. Then |ag+ar1z+...+a,_12" "1 <
lao| + |a1||z| + ... + |an—_1]]z|*~t. Then

lag + a1z 4 ... + ap_12" " < O+ Cla| + ... + Cla|" L.
Thus if |z| > 1 then we have
lag + a1 4 ... + ap_12" "t < nClz|" L.

We now note that if x is real then f(x) < 2™ + nC|z|"~!. Now suppose that
x <0 and |z| > 2nC. Then since n is negative " = —|z||z|*~!. Thus

f(x) < —|z|jz|"t + nClz|" < —2nClz|" ! + nClz|" ! = —nClz|" ! < 0.

We conclude that if < 0 and |z| > 2nC then f(z) < 0. We note that if a and
b are real numbers then a + b > a — |b|. Indeed if b < 0 then this is an equality
and if b > 0 then b > —|b|. Thus if z > 2nC and x > 1 then

f(i[,’) > " - |ao+a1m+...+an,1x"—1| an—n0|$‘n_1
= Jalle|"" = nCla["! > 2nCla|" " — nCla[*" = nClz|" " > 0.

We have thus shown that if # < —nC and x < —1then f(z) < 0 and if x > 2nC
and x > 1 then f(z) > 0. Fix u < —1 and u < —nC. Fix v > 1 and v > 2nC.
Then f(u) <0 and f(v) > 0. The deep property that we need is that if g is a
polynomial and if we have two real numbers a < b then for every real number,
¢, between g(a) and g(b) there exits a real number, y, with @ < y < b such then
9(y) =c.

We apply this to f. Then since f(u) < 0 and f(v) > 0 the number 0 is
between f(u) and f(v) and thus there exists y with u <y <wv and f(y) = 0.

The property we have used is called the intermediate value property and it
applies in much greater generality than polynomials (as we shall see in the next
chapter).
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Why haven’t we found a paradox? In the previous subsection we have
observed that if we have a polynomial of odd degree with real coefficients then it
has a real root. The existence of the root is demonstrated using a deep property
of the real numbers not by giving a formula. This leads to the question: If we
have a polynomial of degree 5 with rational coefficients then what is the nature
of the real numbers that are its real roots? The point is that for degrees 2,3
and 4 the roots were found it the collection of complex numbers that can be
found by the following operations on rational numbers:

1. Arithmetic (addition, subtraction, multiplication and division).

2. Extraction of roots (=, ¢/z,...) which we now understand how to do using
trigonometry.

For example in Cardano’s formula we must extract a square root of an ex-
pression involving the coefficients of the polynomial, do arithmetic with that
not necessarily rational number combined with a further coefficient and then
extract cube roots and then subtract these numbers.

The amazing outcome of the work of Ruffini, Abel and Galois is that these
operations are not enough to find all roots of polynomials with rational coeffi-
cients of degree at least 5. This goes far beyond showing that we cannot find
an explicit formula using only operations of type 1. or 2. It shows that roots
of polynomials with rational coefficients form an algebraic object that is much
more subtle than was imagined. In the next chapters we will endeavor to ex-
plain the analysis that is involved in Gauss’s fundamental theorem of algebra.
This analysis comes from the foundations of the differential and integral calcu-
lus which had been developed for totally different purposes (the determination
of velocities, accelerations and tangents). Also the study of roots of equations
led to what is now called abstract algebra. The abstraction of addition, multi-
plication and division. The whole is a startling edifice that will be one of the
main subjects of the remaining chapters.

We will content ourself with a discussion of why the Abel, Ruffini, Galois
theory was a surprise to the mathematicians of the eighteenth and nineteenth
centuries (as the theory developed). This involves the question of why mathe-
maticians with only the knowledge that there is a formula for a solution of an
equation of degree two with (say) rational coefficients seemed to expect that
there would be analogous formulas in higher degrees? Since it apparently took
mankind about 4000 years from the realization that there was a quadratic for-
mula to the time of Cardano and Ferrari when formulae for degrees 3 and 4
were discovered, why were mathematicians not looking for reasons why this
couldn’t be done? The expectation that it could, in fact, be done was correct
for degrees 3 and 4 but definitely incorrect for higher degree. This time it took
approximately 200 years to come to the realization that one could not do for
degree 5 what was done for 2,3 and 4. This is not unlike the prevailing feeling
of mathematicians before the nineteenth century that the parallel postulate was
a consequence of the other axioms of Euclid’s geometry. The point is that
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the mathematicians had decided that they believed the validity of a statement
that they could not prove. Since there was no justification for this belief one
should perhaps call it a prejudice. In the latter part of the twentieth century
and the beginning of this (the twenty first) century there has been a new de-
bate on the question of truth without proof Brilliant expositors of mathematics
justify their views of computability and artificial intelligence with just such an
idea. Indeed, the argument is that if a human being can discern the truth of
an assertion without a proof then he can find true statements that could never
be found by a computer. Thus human beings must be more than biological
computers. We will not enter this fray which is poised at a higher level than
we have scaled as yet. Rather, the history of the search for formulae for the
solution of polynomial equations and the prejudice that this could be done is
perhaps related to a problem with the flexibility of the human mind. That so
many believe that assertions must be true even though we can’t prove them may
be related to the prejudices that were at the root core of the horrible events of
the twentieth century.

3.5.6 Exercises.

1. Does the intermediate value property: If a polynomial, f(x) with real coeffi-
cients, takes two values f(a) >0 and f(b) < 0 then there exists a real number,
¢, between a and b such that f(c) = 0. Seem obvious? Is it it true if we replace
the word real by rational?

2. Let f(z) = 2° + 222 + = + 1 show that there is a real root between —1.23
and —1.22 by calculating the two values and seeing that one is negative and the
other is positive. If you have access to a computer algebra package you could
use it to check that the intermediate root does indeed exist.

4 The dawning of the age of analysis.

Archimedes (287-212 BC) proved that the area of a circle is equal to the area, A,
of a right triangle with one side equal in length to the radius and the hypotenuse
equal to the circumference (see in discussion in Chapter 2). His method was
to observe that the area of the triangle in question is either equal to, strictly
less than or strictly greater then the area of the circle. He then inscribes reg-
ular polygons with the number of sides increasing indefinitely and shows that
they are eventually bigger in area than any number strictly less than A he then
circumscribes regular polygons of increasingly many sides and shows that even-
tually they have area less than any number strictly larger than A. He then
concludes that the only possibility left is that A is the area. This type of argu-
ment replacing direct calculation with upper and lower bounds is the method of
modern analysis. The main impetus for the development of a rigorous branch
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of mathematics which we now call analysis was the need for a consistent under-
pinning for (what we now call) Calculus (Isaac Newton(1642-1727), Gottfried
Leibniz(1646-1716). The term calculus is a generic term that roughly means “a
method of calculation”. It was a revolutionary idea that led to simple methods
of calculating areas and tangents in geometry and velocities, accelerations and
trajectories in mechanics. In particular, the clever method of Archimedes be-
comes unnecessary within the framework of Calculus. Unfortunately, the early
methods were completely formal implicitly assuming that one can deal with
quantities that were so small that their squares could be treated as 0 (fluents
in the terminology of Newton, infinitesimals to others). Although there was no
rigorous notion of infinitesimal in the seventeenth and eighteenth century the
idea led to such amazing simplifictions of difficult problems that the theory led
to a revolution in mathematics. As we shall see in later chapters a more rigorous
approach to solving the same problems was developed in the nineteenth century
and was based on the ideas of “modern analysis”. We wiill see in this chapter
that Fermat (1601-1665) had developed methods consistant with modern analy-
sis to compute certain important areas and tangents. But he had no general
calculus based on modern analysis. In the twentieth century a more rigorous
version of the infinitesimal calculus was developed by Abraham.Robinson(1918-
1974) based on a deep understanding of logic which made the formal methods
of the seventeenth and eighteenth centuries more acceptable in the twentieth
centuries.

All attempts at understanding a firm basis of calculus are in the end based
on attempts to understand the real number system. This was part of our goal
in the previous chapter. There, we showed how Euclid and Descartes had
developed numbers out of geometry. Descartes went much further and showed
that the algebraic manipulation of numbers could replace the clever methods
of geometry. However, Descartes’ numbers did not have any existance beyond
geometry. We also saw that the basic question of whether ther exist roots of
polynomial equations and whether or not we can calculate them also devolves on
the question: “What is a real number” and thereby “what is a complex number”.
We will be studying these points in this chapter. The modern formulation of
real and complex numbers will have to wait for the next chapter.

4.1 Early aspects of analysis.
4.1.1 Zeno’s paradox.

We will begin this chapter with a standard puzzle usually attributed to Zeno
(490-425 B.C.). Suppose there were a tortoise and a hare (sometimes it is
Achilles) such that the hare moves twice as fast as the tortoise. To simplify
things we assume that the tortoise can move 1 unit in a second and the hare
can move 2 units in a second. Suppose that the tortoise starts moving first along
a straight line and travels a distance d before the hare begins moving along the
same line. We then have the following situation in the first % seconds: the hare
is d units from the starting point and the tortoise is 3—2‘1. In the next % seconds
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the hare has moved to 3—2d units and the tortoise is at %, that is the tortoise is
still ahead by % units. After the next g seconds the tortoise will be ahead by g
units, etc. Thus the hare will never catch the tortoise! We know that there is
something wrong here since it is obvious that the hare will eventually pass the
tortoise.

Aristotle (384-322 B.C.) used this “paradox” as evidence for the premise that
infinity is meaningless. This is, certainly a practical point of view. We cannot
do an infinite number of operationseach of which take at least a fixed amount
of time to accomplish. But this is not what is happening in our discussion of
the tortoise and the hare. If we redid the steps and did the measurement in
fixed units of time, say one second. Then after n seconds the tortoise would
be at d + n units from the start and the hare would be at 2n units. Thus after
(say) d + % seconds the tortoise would be at 2d + % units from the start and
the hare would be 2d + 1 units. That is they will pass each other before d + %
seconds elapse. Let’s look at our original analysis let us make the problem more

concrete by taking d ot be 100. Then after 10 steps the tortoise is % units
ahead of the hare. After 20 interations of this procedure it is % ahead.

If say the units were meters then this is less than .0001 meters and the amount
of time to travel that far for the tortoise would be that many seconds. This
is absurd. There is no way we can measure that small an interval in time (let
alone what we would have a few iterations further along). The time intervals
are becoming so small as to be meaningless. However this is not a solution to
the “paradox”. For example, it is possible for the toroise to move as far as he
wishes even if he moves in certain incriments of time that become arbitrarily
small. Here we look at just the tortoise and look at where he is from the start
after 1 seccond, a 1/2 half second later, a 1/3 second later,... Then after 2 such
time intervals he would have gone % = 1.5 units, after 4 he would have gone
% ~ 2.08, after 8 it would be % ~ 2.72, after 16 it would be 2742306752509 ~ 3.3,after
200 it would be about 5.88. after 10000 it would have gone 9.79 units. We will
show that the numbers defined in this way increase without bound (see the
section immediately below on the harmonic series). Thus just saying that the
time incriments are becoming too small to measure does not resolve the puzzle.
Many look upon this puzzle as indicating a need for a better understanding of
infinity. We will take a different approach and explain how the techniques of
modern analysis explain that the “puzzle” is merely a missunderstanding of the
finite.

4.1.2 The harmonic series.

In this section we will use the method of Nicole d’Oresme (1323-1382) to show
that the numbers 1 + % + % + ...+ % increase without bound with n. The idea
of Oresme can be seen as follows:

1

1
1+-=1+-
Jr2 +27
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1+1+1+1>1+1+1+1—1+1+1
2 3 4 2 4 4 2 9

(here we have observed that 3 > 1)

2 3 4 5 6 7 8
1 1 1 1 1 1 1
I+s+(G+7)+tz+s+3)>

2 3 4 5 6 7 8
1+1+1+&+1+1+1yﬂ+1+1+1
2 2 '8 8 8 8 2 2 2
The pattern is now clear if we add up
! + ! + .t !
2n+1 242 7 gndl
We have 2™ terms that are all at least as big as 2"% Thus they add up to a
number that is at least 2" (2n—1+1) = % The conclusion is that the sum
1 1 1 1 n
I+ =+ +..+ +—>14—.

2 3 2n—1 27— 2
If we define the integral logarithm in base 2 by Ilog,(N) = n if 271 < N < 27,
Then we have 11 1

1+§+§+”'+E > 1+ I'logy(n).

This beautiful argument actually gives a very good idea of how this series of
numbers grows with n. One can show that there exists a constant (Euler’s
constant) that is usually denoted v and another constant we will call g which (we
shall see just the natural logarithm of 2) such that if we substitute increasingly
larger values of n in the expression

1+ L + ! + ..+ !

T3t tgm -7

it becomes smaller than any preassigned (small number). We will discuss this
in more detaiol when we talk about logarithms. This constant v occurs in many
contexts in mathematics and has been calculated to high precision. However,
it is not known if it is a rational number.

Exercises.

1. Suppose you have blocks each 1 unit thick 4 units wide and 12 units
long (the unit could be inches or centlmeters the dimensions are not terribly
important) made of a uniform material. Suppose you were to pile the bocks one
on top of each other so that the second overhangs the first the third overhangs
the second, etc. How big an overhang could we achieve?

2. Use a computer algebra package or calculater with high precision and
natural logarithms (In )to calculate

1 1 1
1+-+-+..+—-1
tgtgtto n(n)

for large n. What is the value of v that your calculation predicts.
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4.1.3 Another look at the methods of Archimedes.

As we saw Archimedes developed a method of proving formulas for areas of
geometric figures. His method was to have a target value, A, for the area in
mind and to show that for any B > A there exists a geometric figure strictly
containing the one in question with area that we know how to compute and
which is less than B. He then showed that if C' < A then there was a figure
stricly inside the one in question with area bigger than C'. He than concludes
that the area is bigger than any number strictly bigger than A and is less than
any number strictly bigger than A. He then asserts that this implies that the
area must be A. The argument is ingenious but once understood seems self
evident. However, there are several (reasonable) assumptions that have been
made and there is one problem with the “method”. We will first look at the
assumptions. The first is about numbers (which eventually leads to the notion
of a Dedekind cut) the then there are two about areas. The assumption about
numbers is:

1. If A and D are numbers then A = D if the following two conditions are
satisfied

a) Every B satisfying B > A also satsifies B > D.

b) Every C satsifying C' < A also satsifies C < D .

The first assumption about areas is:
2. If F and G are subsets of the plane with areas A and B and if every point
in F' is also in G then A < B.

It is hard to disagree with these two assumptions. The next is not clearly
an assumption at all will eventually become part of the definition of a set with
area.

3. Let F be a subset of the plane. Suppose that A is a number such that
whenever GG is a set that has an area B that contains F' then B > A and
whenever L is a set that is contained in F' and has an area C then C < A.
Then F has area A.

The first “assumption” is part of the order properties of the real numbers.
The second is a property that must be satisfied if we are to have a reasonable
notion of area. The third has to do with the fact that in the contexts that are
least “weird” to mathematicians not every set can be allowed to have an area
with condition 2. (and a few more equally “obvious” conditions) satisfied.

We also indicated that there was a problem with Archimedes method. The
problem is that it is a method that proves that a value asserted for an area is
the correct one. It gives no method of finding what the value should be. We
know that Archimedes was aware that the area of the circle of radius r is mr2.

He also clearly knew that the circumference is 2wr. The right triangle with
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sides of length r and and the other of length the circumference has area
1
37 (27r) = 7.

Thus he has proved the formula that we believe. (Actually what he has done
is reduced the problem of calculating the area to the problem of calculating the
circumference or vice-versa.) A general method for calculation was one of the
main aims in the development of the infinitesimal and integral calculus.

Archimedes was the first to calculate the area of a segement of a parabola.
We will not go into his derivation but say that his basic axioms of area were
also used and the area was given in terms of the area of a triangle that one can
only feel was an outgrowth of an amazing insight. After we discuss calculus we
will explain Archimedes remarkable formula.

Recall that a parabola is a conic section that is determined by a point, P,
and a line, L. The curve is the locus of points whose distance to P is equal to
its distance to the line L. For instance

\

The point P is called the focus of the parabola and the line perpendicular to
L through P is called the axis of the parabola. The Greeks understood that
for a conic section a line could intersect it in two, one and no points. A line
that intersected the curve at one point would be called the tangent line to that
point (it was known to be unique). Archimedes in 777 set about to calculate
the area of what he called a section of the parabola, that is,the set is cut out
by a line intersecting with the parabola at two points A and B.
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He assumes that the point A and B are on different sides of the axis and A is
closer. He then considers the triangle ABC formed by the tangent line through
B the segment AB and the line parallel to the axis of the parabola through A.

c
The theorem of Archimedes is:

The area of the parabolic segment is one third the area of the triangle ABC.

This theorem is one of the high points of Greek geometry. Archimedes
approach (as we have pointed out) involved a guess of the area and then trhough
brilliant upper and lower estimates proving that his asserted area is correct. In
fact, he had a method of deciding what the appropriate value should be that
involved what he called The Method. This method was based on what is now
called statics in physics involving the theory of levers and pulleys. So in addition
to being one of the greatest mathematicians who ever lived he was also a great
physicist. The story of how The Method was rediscovered after seeming to be
lost for over a thousand years is also very interesting. We refer to more standard
texts in the history of mathematics for this story (e.g. C. Boyer et. al. A History
of Mathematics).
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Exercises.

1. Derive an equation for the parabola using the plane coordinates (z,y) if
we take the line L to be given by y = —1 and the focus to be the point (0, 4).

2. For the parabola in problem 1. show that if the line AB is parallel to the
axis then the endpoints are given with A having z-coordinate —a and B having
z-coordiane a and the area of the indicated triangle is 4a® so the area of the
sector is %.

3. Show that the theorem of Archimedes shows that the area of the parabolic

segment AB depends only on the sum of the distances of A and B to the axis.

4.2 Precursors to calculus.

As mentioned above, Nicole d’Oresme had developed methods for studying the
growth of infinite sequences of numbers. He also understood fractional powers
of positive numbers and most astonishingly used graphical methods to plot data
(using a horizontal axis for the independent variable and the verticle axis for
dependent variable. However, very little progress was made in the years between
Archimedes and Oresme in the calculation of areas bounded by curves. One
major drawback was that the mathematical notation was still quite cumbersome
and the methods of Oresme to visualize were not widely used.

In the last chapter we mentioned the work of Viéte which explained how
to deal with unknown quantities and thereby led to the concept of function.
However, his work did not separate the notion of number from geometry. Thus,
positive numbers were lengths of intervals, products of positive numbers were
areas of rectangles, triple poducts were volumes, etc. He also used cumbersome
notation for powers writing something like xzcube for what we would write as
2. Thus he would have x zsquare = zcube. This did not afford a useful
formalism for doing algebraic manipulation of polynomials. In our notation, a
polynomal:

23+ 222 + 5041

would be understood to represent a volume so the 2 would would be in units of
length, the 5 in units of area and the 1 would be a volume. You could then
visualize a cube of side x a rectangular box with base of side x and height 2, a
rectangular box with base of area 5 and height x and a three dimensional figure
of volume 1 all attached to each other in some way.

This all changed with the French mathematicians of the first half of the
seventeenth century. We have already written about Descartes’ explanation
of how to interpret products of positive numbers as intervals and thereby freed
polynomials of units. Of the great mathematicians of this time the one who
arguably came the closest to calculus was Fermat. He, in fact, was more in the
tradition of Archimedes than the later formal methodology of calculus. That
is, more in line with the modern notion of analysis.
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4.2.1 The Pascal triangle and the Leibniz harmonic triangle.

We recall that (x +y)? = 22+ 2y +y2. Multiplying out we see that (z +y)3 =
2% 4 32%y + 32y + 3. We can continue to multiply indefinitely and we see
that (z +y)™ has n + 1 terms the ith a multiple of 2"y, If we lay out the
coefficients we have for n =0,1,2,3,4,5.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Blaise Pascal (1623-1662) observed the pattern that one had a triangle with
the two legs all ones and the interior values gotten by adding together the two
adjacent values one row up for the interior points. Thus for the fifth power we
would get 1,5,10,10,5,1 and, say, 10 =4+ 6. The standard method of writing
these coefficients is (7;) SO (;) = 10. With the conventions that (7;) =0ifi<0
or i >n. It is convenient to write () =1 and (7) = 1 (these account for the

n
n
outer legs of the triangle). We have

n n n
(x+y>n = " 4 <1)$n—1y+ (2>xn—2y2 o+ <n_ 1>xyn—1 _|_yn.

If we multiply this identity by (z + y) then we have

n n n
(z-+y)z"+ (1) (z+y)a™ " y+ (2) (z+y)z" 2y 4.t (n - 1) (z+y)zy" " +y".

Now (7)(z+y)z""ty" = (7)a" iyt + ()" ~"~1yT1 This says that in the

product the coefficient of "1~y is

(") ()

Which is the pattern Pascal observed. We will call this the generating identity
for the binomial coefficients. We note that if 0 < ¢ < n then (?) # 0.

Some years after Pascal’s discovery Christiaan Huygens (1629-1695) asked
Leibniz to sum the series:

2 2 2

i+ 2210 T amrn T

that is the sum of the reciprocals ﬁ, n =1,2,3,.... The rigorous theory of
2

summing such series had not as yet been developed. However, Leibniz came up
with as solution that incontrovertibly summed the series to 2. Here is what he

did. He observed that
1 1 1

nin+1) n n+1
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This says that if we sum the first, say, 5, terms we have

1 1 1 1 1 1 1 1 1 2
2(1—-<= 2(=—= P 2(=—-= 2(=—=)=2—-=.
(1-3) 2 (-35) (1) =2 (i-5) =2 (5-5) -2
If we sum the first n terms we get 2 — niﬂ Thus if we sum a million terms the
sum is 2 to 5 significant figures. The more terms we add the closer the value is
to 2. This is essentially the modern version of sumation of infinite series. We

should, however, point out that one must be careful about formal manipulation
of infinite series. For example, suppose we want to sum

1-1+1-1+4+1+..

If we sum the first 2n terms we get (1 —1)+(1—1)+...+(1—1) =0. If we
sum the first 2n+1 terms we get (1—1)+(1—1)+...4+(1—1)+1=1. Leibniz
felt that a reasonable value for the sum of this series should be %

Returning to the reciprocals of the binomial coefficients (";1) Leibniz made
a beautiful discovery that allowed him to compute many more infinite series
using exactly the same trick.. He first observed Pascal’s triangle could be written

somewhat differently as

1 1 1 1 1
3 4 5 6 7
6 10 15 21 28
10 20 35 56 84
15 35 70 126 210
21 56 126 252 462
28 84 210 462 964

el e e
N O U W=

One observes that except for the first row and column if we look at an entry in
this double array then it is the difference between the entry directly below and
the entry one below and one to the left. Thus 6 in the third row has 10 directly
below and four one down and one to the left We have 6 = 10 — 4. To see this
property is true we note that the entries in the first row are (8), (é), (3), (3)

Those in the second row are (7), (), (3), (‘11) in the third (3), (%), (5). (3) .-

etc. Thus the entry in the ¢, j position is (j ﬁ12). In other words the element

in the 3,5 positions is (852) = 15 that in the 5,4 position is (;) = 35. The

assertion above is just (]jif) = (H‘i_l) — (j+i_2) moving the negative term to
the right hand side we see that this is the generating identity for the binomial
coefficients. Now if we use the method of Leibniz above we find that if we
consider an entry not on the first row or column and add up all the entries in
the column directly to its left that are either on the same row or a higher row

then we get the original entry . For example:

462 =210+126+704+35+15+5+ 1.
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The harmonic triangle of Leibniz is given by

;L 1 1 1 1 1
PR SR RN SRS S JR
A T R L U G o
FANN G L U R S
1P 140 250 51 80
30 105 280 6 1260 2310
P 195 2400 630 1360 23
2 168 504 1260 2772 5544
§ 4 9 i i
7 56 252 840 2310 5544 12012

Here the first row consists of the numbers 1, %, 3i, %, ... that is the terms in
1

the harmonic series. The second row consists of the numbers FCEs)) that is
%, %, %7 2—10, ... The third row consists of the numbers W that is §7 1—12, 3—107 6—10,
The k-th row has entries W
k
triangle. Leibniz’ observation was that the sum of the entries in the k-th row

from the n-th poistion on is given by the number in the k — 1-st row in the n-th

position. Thus the sum
1 1 1 1 1
—_— —_— + —_—

60 + 105 168 = 252 o= 20°

That is we are summing the entries in the third row starting with the fourth
entry the sum is the fourth entry in the second row. In particular the answer
to Huygen’s question is twice the sum of the entries in the second row which is
twice the first entry in the first row which is 2.

Although the Leibniz method was ingeneous it was a severely limited ,method
of summing infinite series. A series that looked very similar to the series

1

2
144+ +—F+ ..
HERET e Y

these entries can be read off from Pascal’s

is
1+ ! + ..+ 1 +

gttt
This series baffled Leibniz who was asked to sum it in 1673 by Henry Oldenburg
(1615-1677) and, in fact, all mathematicians until Euler determined its sum in

about 1736. We will come back to this series later in this chapter.

Exercises.
1. Use the harmonic triangle to sum the series
= + ! + ..+ ! +
6 24 7 (n+2)(n+ln

2. Use the method that Leibniz used in answering Huygens to show that the
entire harmonic triangle works as advertised. Hint: we need to show that

R S
BT BT DGR
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3. You may wonder why we called Leibniz’ array a triangle. If you rotate
the rectangular version of Pascal’s triangle 45 degrees to the right (clockwise)
then it it is a triangle. Do the same with the harmonic version. Explain the
“geometyr” of summing series in terms of the version that is given as a triangle.

4.2.2 Fermat’s calculation of areas.

Fermat considered the problem of calculating the area of a figure bounded by
a line pL17 a line Lo perpenducular to L; and a curve which we would write as
y = x 7 with p,q > 0 relatively prime integers. He also allowed p to be negative
but his method failed for 2 = —1. We will discuss this case later, although it
was done chronologically earlier. In fact, the case of ¢ = 1 had been handled
by several authors who came before Fermat. Here is a picture of Fermat’s area
corresponding to the curve y = 2% with the base of length 2.

Let the length be denoted m. His idea was as follows consider a number
0 < E < 1 then one has the points E*m for k = 0,1,2,.... Which start with m
and decrease to indefinitely becoming arbitrarily close to 0. He then drew the
corresponding rectangles corresponding to the vertical lines through these points
he would then have two collections of rectangles one inside and one outside the
area in question. In our example above with E = % this looks like:v

==

18 114 112 1 2

He then sums the areas of the corresponding rectangles: The inner being

(Em)(m — Em) 4 (E*m)e (Em — E*>m) + ... + (E*m) (E* 'm — E*m) + ...
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and the outer being
(m)(m — Em) + (Em)s (Em — E*m) + ... + (E*"'m) 5 (E*'m — E*m) + ....

The idea of Fermat is to add up the first k terms of these sums we first look at
the outer sum and write it out

mEt - Emit 4 Bt BERp i BTt gk
= mit 1 —E)+miT 1 —E)E T + 4 mit (1 - E)EFTTR 4
= mit 1 -E)Q+ET 4 4 BRI ),
If we set ' = E< 1! then the outer sum is given as

mit (1 —E) 1+ F+F?+ ..+ FF)

with F = Eat', Fermat writes this as F = F Ly ‘We now recall that we can
close this expression
1— Fk+1
1+F+F?+ .  +FF=—"
+ F+ + ...+ -7

He now has the expression

by (- B)(1— P&+
m 1—F .

Now comes the brilliant “trick”. We look at G = E7 then F = GP*¢ and
FE = G4. Thus we have

1-F  1-G7 1-G?7 1-G

1-F 1-Grte  1-G 1-Grta’

So
1-@Ge 1-G

1-G 1-Grta

piq (1 —E)(1— Fkt!
2 (L= E) )

T :m%+1(1ka+1)

which is equal to

1+G+ ..+ Gt
1+ G+ ...+ Grre-t’

m%“(l _ Fk+1)

Now the total sum over all values (i.e. not stopping at k) is larger than the
indicated area. But the only part of the above expression that depends on k
is the term 1 — F**1. Which is always less than one. We conclude that for all
values of F with 0 < E < 1 the number

ey 1+4G+ ..+ G
1+G+...+Grta—1

is an upper bound for the area. If we evaluate this for £ = 1 we get mgﬂp%

q
as an upper bound for the area. If one looks at the expression for the sum of
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the inner rectangles it is just F & times the expression for the outer ones. We

therefore find that
22y 14G+ .. +GT!

Eim
1+G+ ...+ Gprta-l
is a lower bound for the area. We can evaluate this at £ = 1 to see that the
: Z2+1_q 2+1 _gq ;
area is at least m e and at most m pt Hence it must be equal to
L+1_¢
ma

If we write r = % then we have the familiar expression (for those who know

mr+1

some calculus) that the area is “ .

Fermat used a similar method for negative powers, r = —2. Here one should
look at the curve over the half line of all numbers > m. The method involves
taking £ > 1 and looking at the points m < Em < E?m < .... This time the
upper sum for the points m, Em, ..., E*m is:

4
q

m~ % (Em —m) + (Em)”"%(E*m — Em) + (E*m)~
4 (E*m)~ % (E*'m — EFm).

(E3m — E?m) +

2y

This time we can factor out m ™« 1 and have

m AT (E—14+E P2 g gy Rk _p k) o

m Y E - 1)1+ E ¢t 4 ETHT2 L BT 4 By =

1 — Fk+t
m™ B - )5

with F = E'~¢ = E="2". This time we write G = E~ i and we have

_£+1E(1 — G9)(1 — G+D(=a))
" (1 — Gp—q)

Now if p > ¢ then as k is evaluated at increasinly large values the only term
involving k is closer and closer to 1. As in the earlier case we have

1+4G+...+Ge1
1+G+...+Gp—a-1"

m~ i E(1 — GHHDe—a))

We see that the upper sum is always at most

. 1+G+...+Git
1+G+...+Gpa-1’

Now eveluating at F =1 (thus G = 1) we have as an upper bound on the area
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Notice that this method only works for § > 1. If we need the area over a
finite interval 0 < m < M then we can just subtract the area above M from the
area above m and get

P y2)
m-atl MTatt

p_1  B_71°"
q q
If 0 < 2 < 1 one can see that this formula is also true In the case of positive
powers 1t is clear that if we wish an area for 0 < a < z < m then one can
subtract the area between 0 and a and get

mr+1 ar—l—l

r+1 r+1
for r = §. We can see that the formula for the area over the same interval for
r:—§<0butnot —1is

r+1 r+1

m a

r+1 r+1

Exercises.

1. For the indicated case of y = x%, and m = 2 calculate (using
precision calculator or math software package) the upper sums for E =
and say 100 terms. Compare with the answer.

2. Why didn’t the method above work for r = —17

3. Complete the argument for the inner sum in the first part of the discussion.

4. Complete the argument for » < —1 by analyzing the lower sum.

5. What do you think Fermat did for rational numbers r with 0 > r > —17

high
1
5

a
11
203

4.2.3 Fermat’s derivation of tangents.

In addition to his calculation of the area under the curves y = " with r rational
but not —1. Fermat also calculated the tangent lines. Here he also used
methods that were clear precursors to what we call calculus. He observed that
if one has a curve given as y = x™ then the slope of the line through the points
(z,2™) and (x + E, (x + E)") is

(x+E)"—2" (v+E)"—a"

(z+E)—z E

The figure below is y = 22 and A and B are two such points.
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He observed that if F is chosen progressively smaller the connecting line would
rotate to a tangent line (for the moment we will take this to mean that any line
through A gotten by slightly rotating the tangent line intersects the curve at a
nearby point, we will come back to the idea of a tangent line). Fermat (and
probably many others) observed that if n is an integer then

n(n—1)

5 E*2x" 24+ . 4+ E™

(x+ E)" —a" =nEx" ' +
Thus every term is divisible by E. We therefore have

E)" — o —1
(z+ ; x :nx”_1+n(n2 )

He could then put E = 0 and finds the slope of the tangent line at (a,a™) to
be na”"!. However, Fermat did more, he in fact calculated the slope of the
tangent if n is only rational. Here we write n = % and assume that p,q > 0.

We are looking at

Ez" 24+ . 4+ E" L

(x+E)i —ah _ ((@+ B)s)" — (ai)r

E E

We note that if £ > 0 then (z + E)7 = 27 + F with F > 0. Thus taking ¢-th
poweres of both sides of this equation we have

1,q(@-1)

t+E=x+qFz' 7 + 5 F2'"% 4 . 4+ F,

Thus subtracting = form both sides of this equation and dividing by F' we have

q(q—1)
2

E 171 +
— = qgxr q
Ia q

This means that we can substitute F equals zero in this equation since if £ =0

1
then F' = 0. We therefore have if £ = 0 then we can evaluate % and get qz' 7.
We now have

Fal=% 4. 4 FaL,

(@+EB)% —af (21 +F)P — (@i)P F

E F E
in both we can substitute £ = 0 and get

This certainly shows that Fermat knew a great deal of what we usually think
of as basic calculus. However, he did not invent calculus. The point here is
that by its very name calculus is a “method of computation”. Fermat relies
on brilliant relationships between rational and integral powers. He is not in
the tradition of Archimedes either since he does not use true limits but rather
uses a more algebraic formalism that allows substitution. We will discuss these
distinctions more carefully when we get to our discussion of calculus.
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4.2.4 Further precursors to calculus.

Mathematics flourished in the seventeenth century, Mathematicians finally had
a notational system that had enough flexibility that they could study very gen-
eral mathematical relationships. Also numbers had finally been divorced from
units.  Thus numbers could be manipulated algebraically without recourse
(unless so desired) to geometric constructs. In Europe mathematicians were
analysing areas, volumes, and tangents as they had never been before. As an
example, we will take a look at the work of Isaac Barrow (1630-1663) who held
the Lucasian Chair at Cambridge before Newton. He was more a geometer than
an algebraist and had a low regard for abstract manipulation. His approach to
the tangents studied by Fermat would be substantially as in the following dis-
cussion (we will, however, replace his geometric arguments with more algebraic
ones). He would consider two positive relatively prime integers p and ¢ yielding
the curve that is the locus of points (z,y) with

y? —aP =0.

To calculate the tangent to this curve at the point (a, b), fixed and on the courve,
he would substitute x = a + u, y = b+ v. Thus he would have

Y~ = (b o) — (at ) =

b — aP + qb? tv — pa? " tu + E(u,v)

with F(u,v) a sum of terms involving u” or v® with r,s > 2. The term
a? — b? = 0 by assumption. Thus if u,v had been chosen very small and such
that (@ 4+ u,b+ v) is on the curve then the quantity

gb? v — paP~tu

must be very close to 0 (since if u is smaller than 1 then u? is smaller than u).
This indicates that if we had a particle moving along the curve then at the point
(a,b) it would be moving in the direction of the line

gb? v — paP~tu = 0.

That is along the line
paP~1
y= Wﬂf-

. p—1 D_ . . . .
since o=t = as ! This agrees with Fermat’s solution. Barrow’s approach is
now called “implicit differentiation”.

Exercises.

1. Complete the calculation that Barrow’s method gives the same answer as
Fermat’s.

2. Use Barrow’s method to calculate the tangent to the ellipse z2 + 32 = 1.
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4.3 Calculus.

As we have seen, the first half of the seventeenth century was brimming with
activity on calculations of areas and tangents. A substantial part of what we call
calculus had already been discovered before either Newton or Leibniz had begun
their work. However, it was these exceptional mathematicians who actually
established the calculus. The term calculus means “a method of calculation”.
This is precisely what they developed. Their method unified what had been
done before and established rules which if followed would lead to solutions to
problems which heretofore were solved using ingeneious methods. As we have
seen, one reason for the explosion of activity was the development of a notational
system and an abstract formalism that simplified the task of communicating
mathematics. In most aspects of the rivalry between Newton and Leibniz
(actually the rivalry was between their adherents and desciples) the history gives
the edge to Newton. However, when it comes to the notation that would be
used in communicating and working with the calculus Leibniz wins hands down.
Their independent work was published in several places. Leibniz published “A
new method for maxima minima as well as tangents” in Acta Eruditorum, 1684.
A year later Newton published “De methis Fluxionen” and claimed that the
paper was written in 1671. Newton’s masterpiece Principia Mathematica was
published in 1687. In the introduction to the first edition he said:

“In letters that passed between me and that most excellent geometer G. W. Leibniz
10 years ago, when I signified that I knew a method of determining mazima and
minima, of drawing tangents and the like, and when I concealed it in transposed
letters... the most distinguished man wrote back that he had also fallen on a
method of the same kind, and communicated his method which hardly differed
from mine except in his forms of symbols.”

The first calculus text was published in 1696 by the Marquis de L’Hospital
called “Analyse des infinement petits” which was a compendium of lessons by
his private tutor John Bernouli.

4.3.1 Newton’s method of fluxions.

In this subsection we will describe Newton’s approach to differential calculus.
Since Leibniz’ approach is essentially the same, we will emphasize the notational
differences in the next subsection. Suppose we fix the independent variable to
be & and y varies with = according to a predetermined rule. We think of the
symbol o as indicating a very small change in = this symbol is a fluxion and at
first we will take it to be an independently varying very small value. Then we
think of = + o as a very small change in . Now when z has moved to z + o
the value of y changes to a new value y + z (not Newton’s notation). This z is
an arbitrarily small change in y and so to Newton it should be proportional to
o. That is z = o and this proportionality should be a new function of z. The
term go is called a fluent and ¢ is the derivative.

We will now look at an example. y = z™ and n a positive integer. Then
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using the binomial formula we have
(z +0)" = 2" + na" ‘o + higher powers of o.

Since o is to be thought of as arbitrarily small the terms beyond the first power
cannot contribute to the fluent. Thus the fluent if nz" !0 and § = na"~!. This
isn’t much different from what Fermat might do. We nor look at the case when
n = 2. Then y = 29 0yl = 2P (looks a bit like Barrow’s start). This says that

(y+5o)* = (z+0)”
Now
(x4 0)P = 2P + pzP~ 1o
and
(y +50)* =y +qy* 'go
thus equating coefficients of o we have
qy™'go = pa? o

This implies that

o = Byl_qxp_lo _ 2x<1—q)%xp—10 _

q
Notice that we have neglected the “higher powers of 0”. This is a consistant
part of the method. The point here is that it is a method and not just a clever
trick.
We look at one more example (which is a special case of the chain rule).
Consider y = ——. Then

1—x°

p_
xa !

ISl k-]

1-xz)y=1
SO
(I—z—o)(y+yo)=1.
Expanding we have
(1—2z)y—oy+ (1 —2z)jo=1.

Using the relation we have

(1 —a)jo=oy
SO

Y 1

YomT 07 (1—95)20

and we conclude 4

T
Exercises.
1. Calculate ¢ for y = 23 4+ 3z + 1 using the method of fluxions.
2. Suppose that you know y use the method of fluxions to calculate Z if
z=1,
37.4 Compare for the case of y = x™ with n rational compare the method in
this subsection with that of Fermat and that of Barrow.
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4.3.2 The Leibniz notation.

The notation of Leibniz is now the standard method of expression in calculus.
He wrote dx for Newton’s £o and when y = f(x) then what we denoted by y
(this is not Newton’s notation) he wrote %. In his notation one sees whar us
called the chain rule in modern calculus immediately if y = f(z) and z = g(x)

then
dy _dy

de  dz dz’

Leibniz is also credited with the product rule (also called the Leibniz rule).
Suppose that f(z) = g(z)h(xz). That is y = wv witt u = g(z) and v = h(x)

then
@ _ du dv

d  de’ Vaw
In fact y+dy = (u+du)(v+dv) = ww+vdu+udv+dudv = y+vdu+udv. Now
subtract y from both sides of the equation and divide by dz. This condition has
come to be called Leibniz’s rule.
Exercise.
1. Do problem 2. of the previous section using the chain rule.

4.3.3 Newton’s binomial formula

Newton thought of o as small to first order, that is o? is negligable and he
understood that one could equally well introduce objects small tosecond order
say u with u,u? not negligable but. One would have

Flatu) = @) + @+ ol

1—L

with g(z) to be dertermined. He looked at f(z) = x# then f'(z) = Logl=m.
We now expand out

flatru)m = (f(:c) + fla)u+ %g(x)zﬂ)m _

sy mpe) (Feyu+ Jaton?)
$ D) a2 fapu+ Lgap).

Expanding in powers of u we have

z4+u = flz4+uw)™
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Thus

m— - 1
%x mlg(x) m2m =0
we can solve the equation and get g(z) = fmm—glx%”. Observe that
m—1 1.1
- = —(—=-1).
m2 m (m )
So the third term is Lo
mlm =1 15
2
Proceding in this way Newton derived his formula that the k£ + 1 term is
11 1

k1

. Newton intruduced a notation analogous to ours for binomial coefficients to
denote this expression. In modern notation we write

<a) _ala—1)(a—k+1)

k k!

From this derivation he asserted that
1 1 1
(z+t)m =z + <T>x%1t + <g‘>x%2t2 + .+ <Z>x%ktk + ..

This formally derived formula he checked by taking the m-th power.
One can then do the same for rational powers and get

(z+1t)* =z + (T) x4+ (;) TV L+ (Z)xaktk +..

This is Newton’s binomial series.
Exersizes.

1. Consider t or be the independent variable and calculate the derivative of
y = (z+1t)*. Then differentiate the individual terms in Newton’s series. Check
that the two series for the same thing agree.

4.3.4 The fundamental theorem of calculus.

e

—_— ] ¥

We consider rhe following picture
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If we think of A as the infinitesimal o then we have the area Ao under the curve
above the interval is between yo and (y + go)o. But we can ignore the 0% terms
so Ao = yo. This says the A = y. In other words the area under the curve
y = f(z) from a to x thought of as a function of x has derivative f(z) at .
Thus the area under the curve between a and b with a < b is F(b) — F(a) for any
function such that F(z) = f(x). This is the fundamental theorem of calculus
which was first enunciated by Leibniz.

Of course, this argument is not in any way complete but it gives a method
and that method yields the correct answer in all cases where another technique
could be used. For example if f(z) = 2™ with m # —1 then F(z) = mL_me“
and so we have the same outcome as Fermat (which was completely justified).
Exercises.

1. Use the fundamental theorem of calculus to derive the special case of
Archimedes’ theorem in exercise 2 of subsection 1.3 of this chapter.

2. This problem is difficult and can be considered a research project. Use
the fundamental theorem of calculus to derive the theorem of Archimedes on
the area of a sector of a parabola.

4.3.5 Logarithms

As we saw in the last subsection the Newton-Leibniz method has no problem
calculation areas once a function is found with the appropriate derivative. The
appropriate function for " is T—}rlxr"’l except, of course, for r = —1. We will use

the notation g’ for what we wrote as ¢ and f’(z) for f (x). The question then
remains what about y' = %? This is serious since it is necessity if we wish to
calculate areas related to the hyperbola uv = 1. As it turns out the appropraite
function had been discovered before calculus and for different reasons. We will
digress from our main line and study the history of the “missing function”. We
first consider = as a function of y. Then y( (y)) = y. Thus the chain rule says

that y'(z(y))z'(y) = 1. But y'(z(y)) = 555 So

In other words if we find a function such that f/(z) = % then we would also find
a function such that ¢’(z) = g(z). Such a function with value g(0) = 1 has the
remarkable property that g(a + b) = g(a)g(b). That is, it changes addition into
multiplication or vice-versa. We are ahead of our story.

John Napier (1550-1617) had an interest in making mechanical devices that
would allow one to do complicated calculations precisely and easily. Before him
there were several methods found of converting multiplication and division to
addition and subtraction. One based on trigonometry that was perfected by the
Arab mathematicians called prosthapaeresis. We will not go into this method
here but suffice to say, it helped Tycho Brahe do his intricate calculations and
was based on tables involving for sets of trigonometric identities involving multi-
plication addition and subtraction. Others, notably Michael Stifel (14877-1567)
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had observed that if we fix a number a then
a®a¥ = a* "y, @ =a" Y.
a¥y

This certainly changes multiplication and division into addition and subtraction.
However, for Stifel there were only caculations of such powers for a, x, y integers
and for rational numbers one would need very accurate methods of extracting
roots. Napier decided to just use integral powers of a number that had the
property that the successive powers were close enough together that if one drew
a straight line between the successive values (interpolated) the value would still
be within a desired tolerance. This would allow one to use only integral powers
in the tables or on the device to be constructed.

Napier chose the number N = 0.9999999. He then considered N to have
logarithm L. In order to avoid small decimals he in fact considered 10000000N*
as having logarithm L.Now to multiply 10000000N % by 10000000N% all you
need do is add K + L look at the table to find the number with logarithm
K + L (or interpolate to get it) and then shift by 7 decimal positions. This was
implemented in a slide rule type mechanism. Note that if L = 1 corresponds
to the number 9999999 and L = 0 to 10000000. Now if we calculate he value
10000000N L for L = 10000000 we get 3678794 to seven digit accuracy. It
therefore gave an efficient method of doing 7 digit multiplication and division.
But except for turniing multiplication into division what does it have to do with
the problem of finding a function whose derivative is % ?

A hint can befound in the following observation. If f(z) satisfyies f'(x) =
f(x) and f(0) = 1 then to seven significatnt figures f(1) = 2.718281. The
reciprical of this number is 0.3678794 to 7 decimal places. This cannot be an
accident.

The upshot is that a function whose derivative is % is very different then
a function whose derivative is ™ for any integer other than —1. The function
that has this derivative and value 0 at 1 is usually denoted In(z) and is called
the natural logarithm. It is also denoted simply as log(z) when logarithms to
base 10 are note being used. Convarting a base involves the simple maneuver of
multiplying by the logarithm of the inverse. Thus log(z) = 11:((110))' The number
that yields a natural logarithm of 1 is usually denoted by e. This number is not
rational and as observed above it is 2.718281 to seven decimal places.

Exercise.
Suppose Napier had used 100000000 = 10% so he would have been logking
at powers of N = .99999999. What would the Napier logarithm of 108 N'?" be?

4.3.6 The trigonometric functions.

We have seen that the ancient Greeks had an extensive knowledge of trigonom-
etry. We have given an interpretation of trigonometry in section 3.5.3. In
particular, the two basic trigonometric functions cos(z) and sin(x). Notice that
we are using x for the variable rather than a more traditional Greek letter and

123



thinking of the functions as being attributes of angles. We have seen that these
functions have the following properties:

cos(0) = (0) =0.
os(r)? + sm( )2 =1
sin(x 4 y) = sin(z) cos(y) + sin(y) cos(z).
cos(z + y) = cos(z) cos(y) — sin(z) sin(y).

o =
Q

We will calculate the derivatives of these functions using techniques of analy-
sis. We will use the prime rather than the dot notation. Consider the picture
below of a circle of radius 1.

ap

The lengh of AB is the sin(f) where 6 is the angle AOB. The length of OA is
cos(6). The length of the arc CB is 6 and the length of CD is tan(f) = =)

cos(0)
We note that the area of the triangle COB is w. The area of the triangle
COD is % (see exercise 1below) and the area of the part of the interior of
the circle COB is g(at least for 0 positive and a rational multiple of 7 that is
at most %). To see this last assertion note that the area of a quadrant is %
(since the area of the interior of the circle is 7). To get a quadrant we take
0 =7%5. If 6 =7 then we would get half the area which is § = 5. If 0 =
with k a p051tlve integer than we would have area l times that of the area of
the quadrant. That is Q If we multiply 6 by a posmve integer m and 6 is very
small then we get the area of m equal pieces corresponding to #. Thus the area
is m_0 We therefore see that if 6 is a positive rational multlple of 5 less than

or equal to 5 then the area of the piece of the circle is 5. We now observe that
since the three areas are nested we have
sin(f) 6  sin(9)

5 “3° 2 cos()

in the range 0 < 0 < 5. We therefore see that Sine(e) <1 and Sm(e > cos(f) =

/1 —sin(6)2. Using 0 < sin(f) < 0 we see that Sin(e) 1- 92 From this we
see that as we choose # positive and progresswely smaller the value of 21 ) is
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being crushed to 1. This says that the slope of the tangent line to y = sin(z) at
x = 0is 1.That is sin’(0) = 1. It is easier to see that cos’(0) = 0. Indeed, since
cos(x)? + sin(x)? = 1 we can use Leibniz rule to see that

2 cos'(z) cos(z) + 2sin’(x) sin(z) = 0.
Subsituting z = 0 gives
2 cos’(0) cos(0) + 2sin’(0) sin(0) = 0.

We have cos(0) = 1 and sin(0) = 0. So cos’(0) is indeed 0.

To calculate all derivatives we note sin(z + o) = sin(x) cos(0) + cos(x) sin(0).
Now cos(0) = cos’(0)o = 0 and sin(o) = sin’(0)o = 0. So sin(z + 0) = cos(z)o.
Similarly, cos(x + 0) = cos(z) cos(o) — sin(x) sin(o) = — sin(z)o.

This yields

4. cos'(z) = —sin(x) and sin’(z) = cos(x).

In the above derivation we used the fact that by choosing 6 is small we can
make /1 — 62 as close to 1 as we wish. This is true and you might think that it
is obvious but it does need proof in modern mathematics. We will discuss this
point in the exercises.

Exersizes,
1. Use the theory of similar triangles to deduce that in the figure above

CD = tan6, (Hint: §2 = %.
2. Here we will sketch that assertion that if —1 < 0 <1 then 1 —+/1 — 62 <
0. First check that

0 =(1—-V1-0*)(1+V1-6%.

Next observe that in the range indicated 1+ /1 — 6> > 1. Conclude

4.3.7 The exponential function.

In this section we will discuss Euler’s unification of logarithms and trigonom-
etry. This was essential done section 3.5.3. We will first take another look at
logarithms. We saw that in Napier’s work on logarithms the number
1
= 1 L
w=(1--)
with n = 10000000 = 107 played an important role. Also, we pointed out that
if f(z) were a function with f’(z) = f(z) and f(0) = 1 then to seven significant
figures f(1) = L. Euler established the standard notation e = f(1). Now, f(x)
satisfies f(z 4+ y) = f(z)f(y). This is reminicent of the known formula a**¥ =
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a®a¥ for x,y rational. Further, a® = 1 is the standard interpretation of the 0-th
power and we have by definition a' = a. This led to the notation f(z) = e®.
The distinction is that this function is defined for all real numbers. If we have
a = e” then we say that L = In(a). This defines the natural logarithm that is
up to a sign and a shift essentially Napier’s logarithm (that is to 7 significant
figures). We have seen that In'(z) = 1 giving the “missing” derivative.

We note that this new function allows us to define a” for @ > 0 and any real
number, z, by a* = e™(®)7,

In section 3.5.3 we also saw that in the realm of complex numbers if we set

2(0) = cos(#) + isin(6)
then the trigonometric identities of the previous section can be written
2+ B) = z(@)z(B).

We also note that z(0) = 1. This led Euler to define e® = cos(x) + i sin(z).
This allowed the exponential function to be defined for all complex numbers
as
e” T = ¢® (cos(y) + isin(y)) .

The basic properties are still satisfied in this context.

1.e9 = 1.
2.e7TW = gZeW,

FEuler was especially intrigued with the formula
em+1=0

which he called the relationship between the 5 most important constants of
mathematics.

At this point we are ahead of our story. We need to learn a few things from
Euler’s teachers.

Exercises.

1. What are the 5 constants in Euler’s ‘for‘mula?

2. What value would you assign to (e’)"™? How would you interpret the
value?

4.3.8 Power series expansions.

We have already encountered Newton’s bininomial formula which is an infinite
series. This formula showed how one might express a function as an infinite
series. In this case it is the function ﬁ with a rational and —1 < =z < 1.
One notes that if we differentiate this k£ times one gets

ala+1)---(a+k—1)
(1 — z)kta '
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Thus if we call the function f(x) then Newton’s binomial formula becomes

@) = 10)+ O+ L0 o SOy

Here () is gotten by differentiating f repeatedly k times. This result was
generalized by many authors but most notably Brook Taylor (1685-1773) and
later Colin Maclaurin(1698-1746) who are interchangeably named for the gen-
eralization. It says that a function can be expanded in the form

fleta) = £0) + P -0 + LD — 0 4. L2

(x—c)fF + ...

We will call this series the Taylor series of f(z) at c.
For example of f(z) = e”. Then f'(z) = f(x) and f(0) = 1. Thus f"(z) =
(fY(x) = f'(x) = f(z). So f*)(0) = 1 for all k. This says that the Taylor

series of % is
2 3 ok

4o+ o+ b+ 4
SRR v e
Similarly we have
cos'(z) = —sin(z) and sin’(z) = cos(x).

This gives

cos”(z) = —sin’(z) = — cos(x).
and

sin”(z) = cos’(z) = —sin(x).

This says that even repeated derivatives are given as follows
cos®®) () = (=1)F cos(z) and sin®*(z) = (—1)" sin(z).
The odd repeated derivatives are given as
cos® T (z) = (=1)* cos'(z) = (=1)* ! sin(z)

and
sin* ) (z) = (=1)Fsin’(z) = (—1)* cos(z).

Since cos(0) = 1 and sin(0) = 0 we have the Taylor series

2 4 L 22k
cos(z) = 1—3—&-1 — .+ (-1 oh) + ...
and 3 2%k+1
T 5 T
51 =r——=4 = —.. L —————
sin(x) = @ 5 T + (1) k1) +
If we add together cos(z) + i sin(z) then we have
I R - 22k 221
l+iz— % ——+ = +i+..+ (-1)F —1)* .
M S T TR B S s T TR S oy T
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if we write z = iz then 2% = (i%%)z? = (i?)F22F = (—1)*2?F and 22F! =
ix(2%F) = ix(—1)kz? = (=1)%ix? 1. Thus in terms of z we have
A S
2 3 k!
This says that Euler’s interpretation of ¢ as cos(z) + isin(z) is completely
consistant with Taylor series.

4.3.9 EFEuler’s summation of a series.

As we mentioned the value of the series

1 1 1
1+2—2+§+...+§+...
was a mystery to some of the greatest minds of the seventeenth and early eigh-
teenth centuries. We have discussed the method of Leibniz that summed the

series
T R s E -
staat -t amen T2
One notes that each term of the first series is less than the corresponding one
in the second. This implies that the series sums to a number that is infact less
than 2.
Before we give Euler’s ingeneous deduction of the sum there is another sum

that the previous section allows us to calculate.

1 1 1 1 B
—|—2+6+...+n! +..=e.
The terms in the sum are fairly simple but the number e is not a simple rational
number. One doesn’t guess such a value and in fact it had no name until Euler
named it. It is therefore not a reasonable idea to just guess an answer.

He first observes that if we have a polynomial of the form

1— a1z + asx® + ... + apa™

and if this polynomial has roots rq, ..., 7, counting multiplicity then if this roots
are non-zero we have

To see this we observe that the polynomial with value 1 at 0 and roots r1, ..., 7,

(-£)0-2)-(-2)

Now compare the coefficient of . We will come back to this in the exercises.
Euler’s leap was to apply this observation to an infinite series (as in the last
section). He considers

=4
SCS SCO :L,2n+1

sinfz) =2 — —+—— ...+ (-1)"

TR e

(2n+1)
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Thus

sin(z) 2?2t , oz
. _1_§+5_'”+(_1) er...

as series with only even powers. Assuming that we can expand it as a polynomial
the roots being +nw wint n = 1,2, 3, ... So we could expect that this is given by

(-2 () e - ) 2

2 nm

ZCQ .’132 $2
- (“F) (“H)"'(l‘m)'“

which also has even powers. Thus if you consider the series

x? "

X
T | VSN S
TR i s v T

then it is reasonable to think that it is given by

(1-2)(1-5) (- 7)

Thus if we apply the observation (valid for polynomials) we have

R .
3 w2 42 T 22 T
This yields
USRS S SR S
sl gttt

Although no one doubted this as the sum of the series after they saw the mar-
velous argument the reader should be cautioned that this is not a proof of the
formula (as Leibniz’ derivation is of his value for his series). As it turns out this
argument can be made rigorous using a theory of infinite products. Indeed, the
above infinite products can be be proved to converge in a well defined sense to
the desired function and the suggested formal manipulation actually gives the
Taylor series.

Exercise.
1. If f is a polynomial of degree n with roots 1, ...,7, (allowing for repiti-
tions) then f is a multiple of

(x—r1)...(x —ry).

Assuming that f(0) = 1 show that

= (-£)(-8) (-2)

Hint: The multiple is (1"

TIT2 Ty
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4.3.10 The question of rigor.

There were two controversies that arose in the development of the Calculus.
The first was the question of priority between Newton and Leibniz. It can
be said that Newton came out ahead on that issue (although few doubt the
independence of Leibniz’ contribution). However, Newton’s apparent victory
was one of the causes of the eclipse of English mathematics during the eighteenth
century. There are many explanations of this but one the strongest (to our mind)
is just that the Leibniz notation was superior. The second contraversy had to
do with the very roots of the Calculus.

The scientific community knew that caculus gave them an entirely new ar-
sonal of tools to study problems in simple mechanical ways that had been only
handled in special cases by methods that were extremely clever and complicated.
However, the method of both Newton and Leibniz involved the multiplication
and division of objects that were not exactly numbers. Newton’s symbol o
was an object that one should consider to be such that 0? can be neglected in
expressions where it occurs.. The ratio M = f’(x) is the derivative.
Leibniz’ approach was similar he had dz and one should think of (dz)? = 0 but
% was the derivative. Many scientists, philosophers,etc. felt that there was a
dangerous lack of foundation for these methods. However, the methods always
gave correct answers to the problems to which they were applied.

However, the application of the methodology was becoming more and more
of a specialty. For example, in the derivation that we gave in the previous
section we saw an argument that as it turns out gives the correct answer but
is based on a premise that has not been checked. One starts with (at least the
hope that) something like the following statement is true.

1. f(0)=1.

2. f'(0) = —a.
Then a is the sum of the reciprocals of the roots of f (the numbers ¢ such that
f(e)=0.

This is true for polynomials if one includes complex roots. However it is
definitely false for even very nice functions. For example, e* has the properties
1. and 2. with @ = —1. But it is never 0 (this includes using the extended
definition e**% = e%(cosy + isiny) of Euler. This says that the argument
of Euler is only rigorous if he shows that the function that he defined has
the property that the sum of the reciprocals of its roots is the negative of its
derivative at 0.This can be done, as we indicated in the previous section by
giving a rigorous meaning to the product formula for S22,

Even before Euler at the very beginning of the development of Calculus
there were skeptics about the foundations (not the applications). One of the
most serious attacks was made by Bishop George Berkeley (1685-1753). In his
pamphlet The Analyst in 1734 he expressed doubts about the foundations of
Calculus in particular of Newton’s fluxions. His point was you cannot have
something that behaves like a very small but non-zero number and still has the
property that its square is 0. It is clear that you must exercise great care when
yo divide by something whose square is 0. He labled such objects infinitesimals
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and argued that they cannot have an independent reality. Here is a quote from
The Analyst in his discussion of fluxions:

...they are neither finite quantities nor quantities infinitely small, not yet
nothing.

In fact, one can develop a rigorous theory with highly restricted classes of
functions. For example, if we only consider polynomials then we well see in the
next chapter that we can have a completely consistant theory with polynomials
in two variables with one variable having the property that it is not 0 but its
square is 0. This theory would also wallow for power series and explain why
the Newton-Leibniz method always gave the right answer for functions given
by power series. A more radical consistant theory which allowed for objects
like the ones that Berkeley disparaged was developed by Abraham Robinson
in his theory of non-standard analysis. Roughly speaking, he hypthesized the
existance of non-standard numbers that were allowed to “fit between” actual
numbers. To describe these numbers we must understand our usual number
system in a more rigorous manner than we have so far.

There were other problems with the foundations of calculus that were less
apparent in the seventeenth and eighteenth centuries. This had to do with how
careful one must be in the choice of functions that are analyzable using the
methods at hand. For example if we considered the function |z| (z if z > 0 and
—z if £ < 0) Then if x > 0 we have

|z +o|l—|z] z+o—x _

o o
and if x < 0 we have

p+ol—fp] _—z+o)-(-2) -0 _

o o o

However if we consider = 0 then we are dealing with

o

In other words we must figure out a meaning for |o|. much worse phenomena are
possible and can actually occur in useful applications of mathematics. Calculus
had to be given a firm footing,
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