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Abstract. A method is proposed for finding the global minimum of a multivariate polynomial via sum of
squares (SOS) relaxation over its gradient variety. That variety consists of all points where the gradient is
zero and it need not be finite. A polynomial which is nonnegative on its gradient variety is shown to be SOS
modulo its gradient ideal, provided the gradient ideal is radical or the polynomial is strictly positive on the
real gradient variety. This opens up the possibility of solving previously intractable polynomial optimization
problems. The related problem of constrained minimization is also considered, and numerical examples are
discussed. Experiments show that our method using the gradient variety outperforms prior SOS methods.
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1. Introduction

We consider the global optimization problem

f ∗ = min
x∈Rn

f (x) (1)

where x = (x1, . . . , xn) ∈ R
n is a real vector, and f (x) is a multivariate polynomial

of degree d. As is well-known, the optimization problem (1) is NP-hard even when d

is fixed to be four [22]. A lower bound can be computed efficiently using the Sum Of
Squares (SOS) relaxation

f ∗
sos = maximize γ subject to f (x) − γ �sos 0, (2)

where the inequality g �sos 0 means that the polynomial g is SOS, i.e. a sum of squares
of other polynomials. We refer to [19, 23, 26–28] for introductions to SOS techniques
and their applications. The SOS relaxation (2) can be reduced to a Semidefinite Program
(SDP, see [35] for an introduction). The size of the matrix in the corresponding SDP is(
n+d
d

)
, which is polynomial if either n or d is fixed. The relationship between (1) and (2)

is as follows: f ∗
sos ≤ f ∗ and the equality holds if and only if f (x) − f ∗ is SOS.
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Blekherman [4] recently showed that, for fixed even degree d ≥ 4, the ratio between the
volume of all nonnegative polynomials and the volume of all SOS polynomials tends
to infinity when n goes to infinity. In other words, for large n, there are many more
nonnegative polynomials than SOS polynomials. Parrilo and Sturmfels [27] have used
(2) to solve optimization problems (1) which were drawn at random from a natural
distribution. Their test family will be revisited in Section 6.1.

For dealing with the challenging case when f ∗
sos is strictly less than f ∗, Lasserre

[19] proposed finding a sequence of lower bounds for f (x) in some large ball {x ∈
R

n : ‖x‖2 ≤ R}. His approach is based on the result [2] that SOS polynomials are
dense among polynomials which are nonnegative on some compact set. This sequence
converges to f ∗ when the degrees of the polynomials introduced in the algorithm go to
infinity. But it may not converge in finitely many steps, and the degrees of the required
auxiliary polynomials can be very large.

In this paper, we introduce a method which can find the global minimum and termi-
nate in finitely many steps, under some mild assumptions. Our point of departure is the
observation that all local minima and global minima of (1) occur at points in the real
gradient variety

V R

grad(f ) = {u ∈ R
n : (∇f )(u) = 0}. (3)

The gradient ideal of f is the ideal in R[x1, . . . , xn] generated by all partial derivatives
of f :

Igrad(f ) = 〈∇f (x)〉 = 〈 ∂f

∂x1
,

∂f

∂x2
, · · · ,

∂f

∂xn

〉. (4)

There are several recent references on minimizing polynomials by way of the gradients.
Hanzon and Jibetean [14] suggest applying perturbations to f to produce a sequence of
polynomials fλ (for small λ) with the property that the gradient variety of fλ is finite
and the minima f ∗

λ converge to f ∗ as λ goes to 0. Laurent [20] and Parrilo [30] discuss
the more general problem of minimizing a polynomial subject to polynomial equality
constraints (not necessarily partial derivatives). Under the assumption that the variety
defined by the equations is finite, the matrix method proposed in [20] has finite conver-
gence even if the ideal generated by the constraints is not radical. Building on [14, 20],
Jibetean and Laurent [17] propose to compute f ∗ by solving a single SDP, provided the
gradient variety is finite (radicalness is not necessary).

There are also methods for minimizing polynomials based on exact real comput-
ing, such as [1, 13, 27, 32]. If the gradient ideal Igrad(f ) is zero-dimensional, i.e.,
∇f (x) = 0 has finitely many complex solutions, then we can apply these methods to
find all real solutions, and choose those which minimize f (x). If the gradient Igrad(f ) is
not zero-dimensional, perturbations may be applied to make Igrad(f ) zero-dimensional,
as in [17, 32]. However, even if Igrad(f ) is zero-dimensional, the system ∇f (x) = 0
usually has exponentially many solutions (the Bézout number is (d − 1)n), which is not
tractable in computations.

The approach of this paper is to find a lower bound f ∗
grad for (1) by requir-

ing f − f ∗
grad to be SOS in the quotient ring R[x1, . . . , xn]/Igrad(f ) instead of in

R[x1, . . . , xn]. Under the assumption that the infimum f ∗ is attained, i.e., there exits
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some x∗ ∈ R
n such that f (x∗) = f ∗, we can find a monotonically increasing sequence

{f ∗
N,grad} such that lim

N→∞
f ∗

N,grad = f ∗, and the equality f ∗
N,grad = f ∗ holds (i.e.,

finite convergence) for some large integer N when the ideal Igrad(f ) is radical.
This paper is organized as follows. Section 2 offers a review of fundamental results

from (real) algebraic geometry. In Section 3 we prove that a positive polynomial is SOS
modulo its gradient ideal. The same holds for non-negative polynomials if the gradient
ideal is radical. The resulting algorithms for unconstrained polynomial minimization will
be presented in Section 4. Section 5 generalizes our methods to constrained optimization.
In Section 6 we discuss numerical experiments. Section 7 draws some conclusions.

2. Tools from Algebraic Geometry

This section will introduce some basic notions from algebraic geometry needed for
our discussion. Readers may consult [7, 8, 11] for more details. We write R[x] =
R[x1, . . . , xn] for the ring of all polynomials in n variables x = (x1, . . . , xn) with real
coefficients. A subset I of R[x] is an ideal if p · h ∈ I for any p ∈ I and h ∈ R[x].
If g1, . . . , gr ∈ R[x] then 〈g1, · · · , gm〉 denotes the smallest ideal containing the gi .
Equivalently, 〈g1, · · · , gm〉 is the set of all polynomials that are polynomial linear com-
binations of the gi . Every ideal arises in this way:

Theorem 1. (Hilbert Basis Theorem, Section 5, Ch. 2, [7]). Every ideal I ⊂ R[x] has
a finite generating set, i.e., I = 〈g1, · · · , gm〉 for some g1, · · · , gm ∈ I .

The variety of an ideal I is the set of all common complex zeros of the polynomials
in I :

V (I) = {x ∈ C
n : p(x) = 0 for all p ∈ I }.

The subset of all real points in V (I) is the real variety of I . It is denoted

V R(I ) = {x ∈ R
n : p(x) = 0 for all p ∈ I }.

If I = 〈g1, . . . , gm〉 then V (I) = V (g1, . . . , gm) = {x ∈ C
n : g1(x) = · · · =

gm(x) = 0}. An ideal I ⊆ R[x] is zero-dimensional if its variety V (I) is a finite set.
This condition is much stronger than requiring that the real variety V R(I ) be a finite set.
For instance, I = 〈x2

1 + x2
2 〉 is not zero-dimensional: the real variety V R(I ) = {(0, 0)}

is only one point of the curve V (I).

Theorem 2. (Chapter 5,[7]). The following conditions are equivalent for an ideal I ⊂
R[x]:

(i) I is zero-dimensional (the variety V (I) is a finite set);
(ii) the quotient ring R[x]/I is a finite-dimensional R-vector space;

(iii) if G is a Gröbner basis of I , then for each 1 ≤ i ≤ n, there exists an integer mi ≥ 0
such that x

mi

i is the leading term of some g ∈ G.
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A variety V ⊆ C
n is irreducible if there do not exist two proper subvarieties V1, V2 �

V such that V = V1 ∪V2. Given a variety V ⊆ C
n, the set of all polynomials that vanish

on V is an ideal

I (V ) = {p ∈ R[x] : p(u) = 0 for all u ∈ V }.

Given any ideal I of R[x], its radical is the ideal

√
I = {

q ∈ R[x] : qm ∈ I for some m ∈ N
}
.

Note that I ⊆ √
I . We say that I is a radical ideal if

√
I = I . Clearly, the ideal I (V )

defined by a variety V is a radical ideal. The following theorems offer a converse to this
observation:

Theorem 3. (Hilbert’sWeak Nullstellensatz). If I is an ideal in R[x] such that V (I) =
∅ then 1 ∈ I.

Theorem 4. (Hilbert’s Strong Nullstellensatz). If I is an ideal in R[x], then I (V (I )) =√
I .

In real algebraic geometry, we are also interested in subsets of R
n of the form

S = {
x ∈ R

n : g1(x) = · · · = gm(x) = 0, h1(x) ≥ 0, · · · , h�(x) ≥ 0
}
,

where gi, hj ∈ R[x]. We call S a basic semi-algebraic set. With the given description
of S, we associate the following set of polynomials:

M(S) = {
σ0(x) +

m∑

i=1

λi(x)gi(x) +
�∑

j=1

hj (x)σj (x) :

σ0, · · · , σ� are SOS, λi(x) ∈ R[x]
}
.

Theorem 5. (Putinar, [31]). Assume that the basic semi-algebraic set S is compact
and there exists one polynomial ρ(x) ∈ M(S) such that the set {x ∈ R

n : ρ(x) ≥ 0} is
compact. Then every polynomial p(x) which is positive on S belongs to M(S).

Suppose we are given an ideal I = 〈h1, . . . , hr 〉 in R[x] and a polynomial f ∈ R[x].
Then we can regard f as an element in the quotient R[x]/I . Even if f is not SOS in R[x],
it is possible for f to be SOS in the quotient ring R[x]/I . For f to be SOS in R[x]/I
means that there exists a q ∈ I such that f − q is SOS in R[x], or, more explicitly, that
f has a representation

f (x) =
∑

j

q2
j (x) +

∑

i

φi(x)hi(x)

for some polynomials qj (x) and φi(x), Clearly, if f is SOS in R[x]/I then the function
f (x) is non-negative on the real variety V R(I ). The following partial converse holds if
V (I) is finite.
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Theorem 6. (Parrilo, [30]). Let I be a zero-dimensional radical ideal in R[x]. Then a
polynomial f ∈ R[x] is nonnegative on the real variety V R(I ) if and only if f (x) is
SOS in R[x]/I .

We close with the following theorem, which is a special case of the real Nullstellen-
satz.

Theorem 7. (Real Nullstellensatz, [3, 5, 6]). Let I be an ideal in R[x] whose real
variety V R(I ) is empty. Every polynomial f (x) is SOS in R[x]/I . In particular, −1 is
SOS in R[x]/I .

3. Polynomials over their Gradient Varieties

Consider a polynomial f ∈ R[x] and its gradient ideal Igrad(f ) as in (4). A natural
idea in solving (1) is to apply Theorem 6. to the ideal I = Igrad(f ), since the minimum
of f over R

n will be attained at a subset of V R(I ) if it is attained at all. However, the
hypothesis of Theorem 6. requires that I be zero-dimensional, which means that the
complex variety Vgrad(f ) = V (I) of all critical points must be finite. Our results in this
section remove this restrictive hypothesis. We shall prove that every nonnegative f is
SOS in R[x]/I as long as the gradient ideal I = Igrad(f ) is radical.

Theorem 8. Assume that the gradient ideal Igrad(f ) is radical. If the real polynomial
f (x) is nonnegative over V R

grad(f ), then there exist real polynomials qi(x) and φj (x)

so that

f (x) =
s∑

i=1

qi(x)2 +
n∑

j=1

φj (x)
∂f

∂xj

. (5)

The proof of this theorem will be based on the following two lemmas. The first is a
generalization of the Lagrange Interpolation Theorem from sets of points to disjoint
varieties.

Lemma 1. Let V1, . . . , Vr be pairwise disjoint varieties in C
n. Then there exist poly-

nomials p1, . . . , pr ∈ R[x] such that pi(Vj ) = δij , where δij is the Kronecker delta
function.

Proof. Our definition of variety requires that each Vj is actually defined by polynomials
with real coefficients. If Ij = I (Vj ) is the radical ideal of Vj then we have Vj = V (Ij ).
Fix an index j and let Wj denote the union of the varieties V1, . . . , Vi−1, Vi+1, . . . , Vr .
Then

I (Wj ) = I1 ∩ · · · ∩ Ij−1 ∩ Ij+1 ∩ · · · ∩ Ir .

Our hypothesis implies that Vj ∩ Wj = ∅. By Hilbert’s Weak Nullstellensatz (Theo-
rem 3.), there exist polynomials pj ∈ I (Wj ) and qj ∈ Ij such that pj + qj = 1. This
identity shows that pj (Vj ) = 1 and pj (Vk) = 0 for k �= j . Hence the r polynomials
p1, . . . , pr have the desired properties. ��
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Now consider the behavior of the polynomial f (x) over its gradient variety Vgrad(f ).
We make use of the fact that Vgrad(f ) is a finite union of irreducible subvarieties ([3,
§2]).

Lemma 2. Let W be an irreducible subvariety of Vgrad(f ) and suppose that W contains
at least one real point. Then f (x) is constant on W .

Proof. If we replace our polynomial ring R[x] by C[x] then W either remains irreduc-
ible or it becomes a union of two irreducible components W = W1 ∪ W2 which are
exchanged under complex conjugation. Let us first consider the case when W is irre-
ducible in the Zariski topology induced from C[x]. Then W is connected in the strong
topology on C

n (see [34]). Any connected algebraic variety in C
n can be connected by

algebraic curves. They may be singular, but they are images of nonsingular curves. So
W is smoothly path-connected. Let x, y be two arbitrary points in W . There exists a
smooth path ϕ(t) (0 ≤ t ≤ 1) lying inside W such that x = ϕ(0) and y = ϕ(1). By the
Mean Value Theorem of Calculus, it holds that for some t∗ ∈ (0, 1),

f (y) − f (x) = ∇f (ϕ(t∗))T ϕ′(t∗) = 0,

since ∇f (x) vanishes on W . We conclude that f (x) = f (y), and hence f is constant
on W .

Now consider the case when W = W1 ∪ W2 where W1 and W2 are exchanged by
complex conjugation. We had assumed that W contains a real point p. Since p is fixed
under complex conjugation, p ∈ W1∩W2. By the same argument as above, f (x) = f (p)

for all x ∈ W . ��
Proof of Theorem 8. Consider the irreducible decomposition of Vgrad(f ). We group
together all components which have no real point and all components on which f takes
the same real value. Hence the gradient variety has a decomposition

Vgrad(f ) = W0 ∪ W1 ∪ W2 ∪ · · · ∪ Wr, (6)

such that W0 has no real point and f is a real constant on each other variety Wi , say,

f (W1) > f (W2) > · · · > f (Wr) ≥ 0.

The varieties Wi are pairwise disjoint, so by Lemma 1 there exist polynomials pi ∈ R[x]
such that pi(Wj ) = δij . By Theorem 7., there exists a sum of squares sos(x) ∈ R[x]
such that f (x) = sos(x) for all x ∈ W0. Using the non-negative real numbers αj :=√

f (Wj ), we define

q(x) = sos(x) · p2
0(x) +

r∑

i=1

(αi · pi(x))2. (7)

By construction, f (x) − q(x) vanishes on the gradient variety Vgrad(f ). The gradient
ideal Igrad(f ) was assumed to be radical. Using Hilbert’s Strong Nullstellensatz (Theo-
rem 4.), we conclude that f (x)−q(x) lies in Igrad(f ). Hence the desired representation
(5) exists. ��
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In Theorem 8, the assumption that Igrad(f ) is radical cannot be removed. This is shown
by the following counterexample which was suggested to us by Claus Scheiderer.

Example 1. Let n = 3 and consider the polynomial

f (x, y, z) = x8 + y8 + z8 + M(x, y, z)

where M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 is the Motzkin polynomial, which
is is non-negative but not a sum of squares. The residue ring A = R[x, y, z]/Igrad(f )

is a real vector space of dimension 73 = 243 because the three partial derivatives form
a Gröbner basis:

∂f

∂x
= 8 x7 + 4 x3y2 + 2 xy4 − 6 xy2z2,

∂f

∂y
= 8 y7 + 2 x4y + 4 x2y3 − 6 x2yz2,

∂f

∂z
= 8 z7 + 6 z5 − 6 x2y2z.

Reduction modulo this Gröbner basis shows that f (x, y, z) is congruent to 1
4M(x, y, z)

modulo Igrad(f ). Hence it suffices to show that M(x, y, z) is not a sum of squares in A.
Suppose otherwise. Then there exist polynomials si, φ1, φ2, φ3 ∈ R[x, y, z] such that

M(x, y, z) =
∑

i

s2
i + ∂f

∂x
φ1(x, y, z) + ∂f

∂y
φ2(x, y, z) + ∂f

∂z
φ3(x, y, z). (8)

By inspecting ∂f
∂x

,
∂f
∂y

,
∂f
∂z

and M , we see that every monomial in the expansion of
∑

i s2
i

has degree at least six, and the monomials x6, y6, x4z2, y4z2, x2z4, y2z4 cannot occur.
This implies

si(x, y, z) = A
(i)
1 xy2 + A

(i)
2 x2y + A

(i)
3 z3 + A

(i)
4 xyz + higher order terms

φ1(x, y, z) = Bx + other linear and high order terms

φ2(x, y, z) = Cy + other linear and high order terms

φ3(x, y, z) = Dz + other linear and high order terms.

Comparing the terms in M(x, y, z) with the expansion of the right hand side in (8), we
get

x4y2 : 1 =
∑

i

A
(i)2

1 + 4B + 2C

x2y4 : 1 =
∑

i

A
(i)2

2 + 2B + 4C

z6 : 1 =
∑

i

A
(i)2

3 + 6D

x2y2z2 : −3 =
∑

i

A
(i)2

4 − 6B − 6C − 6D.
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Summing the above equations together results in

0 =
∑

i

A
(i)2

1 +
∑

i

A
(i)2

2 +
∑

i

A
(i)2

3 +
∑

i

A
(i)2

4 .

Thus A
(i)
1 = A

(i)2

2 = A
(i)2

3 = A
(i)
4 = 0 and B = C = D = 1

6 . Hence si only con-
tains terms of degree ≥ 4. Let E(i) be the coefficient of z4 in si(x, y, z). Comparing
the coefficient of z8 in (8), we get 0 = ∑

i E(i)2 + 4/3, which is a contradiction. We
conclude that the nonnegative polynomial f (x, y, z) = M(x, y, z) + x8 + y8 + z8 is
not SOS modulo its gradient ideal.

In cases (like Example 1) when the gradient ideal is not radical, the following still
holds.

Theorem 9. Let f (x) ∈ R[x] be a polynomial which is strictly positive on its real
gradient variety V R

grad(f ), Then f (x) is SOS modulo its gradient ideal Igrad(f ).

Proof of Theorem 8. We retain the notation from the proof of Theorem 8. Consider the
decomposition of the gradient variety in (6). Each Wi is the union of several irreducible
components. Consider a primary decomposition of the ideal Igrad(f ), and define Ji to
be the intersection of all primary ideals in that decomposition whose variety is contained
in Wi . Then we have Igrad(f ) = J0 ∩ J1 ∩ · · · ∩ Jr , where Wi = V (Ji) and, since
the Wi are pairwise disjoint, we have Ji +Jk = R[x] for i �= k. The Chinese Remainder
Theorem [11] implies

R[x]/Igrad(f ) � R[x]/J0 × R[x]/J1 × · · · × R[x]/Jr . (9)

Here V R(J0) = ∅. Hence, by Theorem 7., there exists a sum of squares sos(x) ∈ R[x]
such that f (x) − sos(x) ∈ J0. By assumption, α2

i = f (Wi) is strictly positive for all
i ≥ 1. The polynomial f (x)/α2

i − 1 vanishes on Wi . By Hilbert’s Strong Nullstel-
lensatz, there exists an integer m > 0 such that (f (x)/α2

i − 1)m is in the ideal Ji . We
construct a square root of f (x)/α2

i in the residue ring R[x]/Ji using the familiar Taylor
series expansion for the square root function:

(
1 + (f (x)/α2

i − 1)
)1/2 =

m−1∑

k=0

(
1/2

k

)
(f (x)/α2

i − 1)k mod Ji .

Multiplying this polynomial by αi , we get a polynomial qi(x) such that f (x)−q2
i (x) is in

the ideal Ji . We have shown that f (x) maps to the vector
(
sos(x), q1(x)2, q2(x)2, . . . ,

qr (x)2
)

under the isomorphism (9). That vector is clearly a sum of squares in the ring on
the right hand side of (9). We conclude that f (x) is a sum of squares in R[x]/Igrad(f ).
��
Example 2. Let f be the polynomial in Example 1 and let ε be any positive constant.
Theorem 9 says that f +ε is SOS modulo Igrad(f ). Such a representation can be found
by symbolic computation as follows. Primary decomposition over Q[x, y, z] yields

Igrad(f ) = J0 ∩ J1,
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where V R(J0) = ∅ and
√

J1 = 〈x, y, z〉. The ideal J1 has multiplicity 153, and it
contains the square f 2 of our given polynomial. The ideal J0 has multiplicity 190. Its
variety V (J0) consists of 158 distinct points in C

3. By elimination, we can reduce to the
univariate case. Using the algorithm of [5, 6] for real radicals in Q[z], we find a sum of
squares sos(z) ∈ Q[z] such that f − sos(z) ∈ J0. Running Buchberger’s algorithm for
J0 + J1 = 〈1〉, we get polynomials p0 ∈ J0 and p1 ∈ J1 such that p0 + p1 = 1. The
following polynomial is a sum of squares,

p2
1 · (sos(z) + ε) + p2

0 · ε · (1 + 1

2ε
f )2, (10)

and it is congruent to f (x, y, z) + ε modulo Igrad(f ) = J0 ∩ J1 = J0 · J1. Note
that the coefficients of the right hand polynomial in the SOS representation (10) tend to
infinity as ε approaches zero. This is consistent with the conclusion of Example 1.

4. Unconstrained Optimization

This section concerns finding the global minimum of a polynomial function f (x) on
R

n. Let R[x]m denote the
(
n+m
m

)
-dimensional vector space of polynomials of degree at

most m. Since the gradient is zero at local or global minimizers, we consider the SOS
relaxation

Maximize γ subject to f (x) − γ −
n∑

j=1

φj (x)
∂f

∂xj

�sos 0 and φj (x) ∈ R[x]2N−d+1.

(11)

Here d is the degree of polynomial f (x), and N is an integer to be chosen by the user.
Let f ∗

N,grad denote the optimal value γ of the optimization problem (11). This is a
lower bound for the global minimum f ∗ of the polynomial f (x). The lower bound gets
better as N increases:

· · · ≤ f ∗
N−1,grad ≤ f ∗

N,grad ≤ f ∗
N+1,grad ≤ · · · ≤ f ∗. (12)

4.1. SOS optimization using the software SOSTOOLS

The problem (11) is a standard SOS program. It can be translated into an SDP as described
in [26–28]. The decision variables in (11) are the real number γ and the coefficients the
multiplier polynomials φj (x). The resulting SDP is dual to the formulation of Lasserre
[19]. The SOS program (11) can be solved using the software package SOSTOOLS. We
refer to [29] for the documentation. For instance, if we take N = 4 and f (x, y, z) the
trivariate polynomial in Example 1 then (11) translates into an SOSTOOLS program as
follows:

syms x y z gam;
prog = sosprogram([x;y;z],[gam]);
f = xˆ8+yˆ8+zˆ8+xˆ4*yˆ2+xˆ2*yˆ4+zˆ6-3*xˆ2*yˆ2*zˆ2;
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vec = monomials([x;y;z],[0 1]);
[prog,phi_1] = sospolyvar(prog,vec);
[prog,phi_2] = sospolyvar(prog,vec);
[prog,phi_3] = sospolyvar(prog,vec);
G = f-gam-(phi_1*diff(f,x)+phi_2*diff(f,y)+phi_3*diff(f,z));
prog = sosineq(prog,G);
prog = sossetobj(prog,-gam);
[prog, info] = sossolve(prog);
gam = sosgetsol(prog,gam);

The system returns the following lower bound γ = f ∗
4,grad for the global minimum

f ∗ = 0:

gam = -.12077e-8

Even if we increase the value of N , the lower bound f ∗
N,grad always remains negative,

since f is not SOS modulo its gradient ideal. However, the sequence
{
f ∗

N,grad

}
N≥4

converges to zero.

4.2. Convergence of the lower bounds

We have the following general result concerning the convergence of the lower bounds.

Theorem 10. Let f (x) be a polynomial in n real variables which attains its infimum f ∗
over R

n. Then lim
N→∞

f ∗
N,grad = f ∗. Furthermore, if the gradient ideal Igrad(f ) is radi-

cal, then f ∗ is attainable, i.e., there exists an integer N such that f ∗
N,grad = f ∗

grad = f ∗.

Proof. Since f (x) attains its infimum, the global minima of f (x) must occur on the real
gradient variety V R

grad(f ). It is obvious that any real number γ which satisfies the SOS
constraint in (11) is a lower bound of f (x), and we have the sequence of inequalities in
(12). Consider an arbitrary small real number ε > 0. The polynomial f (x) − f ∗ + ε is
strictly positive on its real gradient variety V R

grad(f ). By Theorem 9, f (x) − f ∗ + ε is
SOS modulo Igrad(f ). Hence there exists an integer N(ε) such that

f ∗
N,grad ≥ f ∗ − ε for all N ≥ N(ε).

Since the sequence {f ∗
N,grad} is monotonically increasing, it follows that lim

N→∞
f ∗

N,grad

= f ∗.
Now suppose Igrad(f ) = Igrad(f −f ∗) is a radical ideal. The nonnegative poly-

nomial f (x) − f ∗ is SOS modulo Igrad(f ) by Theorem 8. Hence f ∗
N,grad = f ∗ for

some N ∈ Z>0. ��
Remarks: (i) The condition that f (x) attains its infimum cannot be removed. Otherwise
the infimum f ∗

grad of f (x) on V R

grad(f ) need not be a lower bound for f (x) on R
n. A

counterexample is f (x) = x3. Obviously f (x) has infimum f ∗ = −∞ on R
1. However,

f ∗
grad = f ∗

grad,N = 0 for all N ≥ 1 because f (x) = ( x
3 )f ′(x) is in the gradient ideal

Igrad(f ) = 〈f ′(x)〉.
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(ii) It is also not always the case that f ∗
grad = f ∗ when f ∗ is finite. Consider the

bivariate polynomial f (x, y) = x2 + (1 − xy)2. We can see that f ∗ = 0 is not attained,
but f ∗

grad = 1 > f ∗.

(iii) If f (x) attains its infimum but Igrad(f ) is not radical, we have only that lim
N→∞

f ∗
N,grad = f ∗. But there is typically no integer N with f ∗

N,grad = f ∗, as shown in
Example 1.

4.3. Duality and an algorithm for finding minimizing points

In this subsection, we describe a dual formulation of the SOS problem (11), and we
present an explicit algorithm for finding the global minimizer of a polynomial f (x).
First, we introduce some notation. Given any polynomial p(x) in R[x]m, we write
p(x) = ∑

|α|≤m pαxα where α ∈ Z
n
≥0 and |α| = ∑n

j=1 αj . In what follows, we

denote by p ∈ R(n+m
m ) the vector of coefficients pα of p(x). For any integer N , we

write Z
n
N = {τ ∈ Z

n
≥0 : |τ | ≤ N} and we denote by monN(x) the column vector of

monomials of degree up to N , i.e.,

monN(x) = (1, x1, · · · , xn, x
2
1 , x1x2, · · · , xN

1 , · · · , xN
n )T .

The dimension of monN(x) is the binomial coefficient
(
n+N
N

)
. Given any finite or infi-

nite vector y = (yα), indexed by integer vectors α ∈ Z
n
≥0, define MN(y) to be its

moment matrix

MN(y) = (yα+β)α,β∈Z
n
N
.

The moment matrix represents the linear map p �→ p ∗ y, where, for any polynomial
p(x) = ∑

β pβxβ , the vector p ∗ y has coordinates (p ∗ y)α = ∑
β pβyα+β .

Let f (x) be the polynomial we wish to minimize. Its vector of coefficients is f . Let
fi denote the vector of coefficients of the i-th partial derivative ∂f

∂xi
. We rewrite (11) as

follows:

f ∗
N,grad = max

γ∈R,σ∈R[x]2N

φj (x)∈R[x]2N−d+1

γ subject to σ(x) �sos 0

and f (x) − γ = σ(x) +
n∑

j=1

φj (x)
∂f

∂xj

.

We call the formulation above the dual SDP, because it is dual to the formulation pro-
posed in [19, 20]. The corresponding primal SDP supposes that d is even and it is given
by

f ∗
N,mom = min

y
f T y

s.t. MN−d/2(fi ∗ y) = 0, i = 1, · · · , n

MN(y) � 0, y0 = 1.

The following theorem relates the primal and dual objective function values f ∗
N,mom and

f ∗
N,grad , and it shows how to extract a point x∗ in R

n at which the minimum of f (x) is
attained.
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Theorem 11. Assume f (x) attains its infimum f ∗ over R
n (hence d is even). Then we

have:

(i) f ∗
N,mom = f ∗

N,grad and hence lim
N→∞

f ∗
N,mom = f ∗. This is referred to as strong

duality [35].
(ii) Suppose f ∗

N,grad = f ∗ for some N . If x∗ ∈ R
n minimizes f (x), then y∗ =

mon2N(x∗) ∈ R(n+2N
2N ) solves the primal SDP.

(iii) If y is a solution to the primal problem with rank(MN(y)) = 1, then factoring
MN(y) as column vector times row vector yields one global minimizer x∗ of the
polynomial f (x).

(iv) Suppose that f ∗
N,grad = f ∗ and σ(x) = ∑�

j=1(qj (x))2 solves the dual SDP.
Then the set of all global minima of f (x) equals the set of solutions x ∈ R

n to the
following equations:

qj (x) = 0, j = 1, . . . , �

∂f (x)

∂xi

= 0, i = 1, . . . , n.

Proof. Parts (i) and (ii) are basically a direct application of Theorem 4.2 in [19]. The
hypotheses of that theorem can be verified by an “epsilon argument” and applying our
Theorem 9. Let us prove part (iii). Since the moment matrix MN(y) has rank one, there
exists a vector x∗ ∈ R

n such that y = monN(x∗). The strong duality result in (i) implies
that

f (x∗) = f T y = f ∗
N,mom = f ∗

N,grad .

Since f ∗
N,grad is a lower bound for f (x), we conclude that this lower bound is attained

at the point x∗. Therefore, f ∗
N,grad = f ∗ and x∗ is a global minimizer. Part (iv) is

straightforward. ��
From Theorem 11 (ii), we can see that there exists one optimal solution y∗ to the primal
SDP such that rank(MN(y∗)) = 1 if f ∗

N,grad = f ∗ for some integer N . However, inte-
rior-point solvers for SDP will find a solution with moment matrix of maximum rank.
So, if there are several global minimizers, the moment matrix MN(y∗) at relaxation N

for which the global minimum is reached, will have rank > 1. Therefore, we need to
handle this situation. Fortunately, there is a suitable method in [16] which can detect
global optimality and extract optimal solutions. This method has been implemented
in the examples in Section 6. We refer to [16] for details. Here we briefly outline the
technique.

Suppose for some integer N at optimal solution y∗ to the primal SDP, the rank
condition

rank MN(y∗) = rank MN−d/2(y
∗) = r (13)

holds, which can be verified very accurately by Singular Value Decomposition (SVD).
Then as a consequence ofTheorem 1.6 in [10], there exist r vectorsx∗(1), · · · , x∗(r) ∈ R

n

such that

MN(y∗) =
r∑

j=1

νj monN(x∗(j)) · monN(x∗(j))T
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where
∑r

j=1 νj = 1 and νj > 0 for all j = 1, · · · , r . Henrion and Lasserre [16]
proposed a detailed algorithm to find all such vectors x∗(j). The condition (13) can be
satisfied for some N when Vgrad(f ) is finite; see [20] for a proof.

Now we discuss how to extract the vectors x∗(j), using the method described in
[16]. Since MN(y∗) � 0, its (pivoted) Cholesky factorization gives a lower triangular
matrix V such that MN(y∗) = V V T . Reduce V to column echelon form

U =



















1
∗
0 1
0 0 1
...

...
...

. . .

0 0 0 . . . 1
∗ ∗ ∗ . . . ∗
...

...
...

...
...

∗ ∗ ∗ . . . ∗



















by elementary column operations. Notice that the rows of U are indexed by mono-
mials xα up to degree N . Let β1, · · · , βr be the indices corresponding to the ones

in the above U . Let w = [
xβ1 · · · xβr

]T
. Then monN(x) = Uw for all solutions

x = x∗(j), j = 1, · · · , r . Thus for each variable xi, i = 1, · · · , n, we can extract the
r-by-r submatrix Ni from U such that

Niw = xiw, i = 1, · · · , n.

This means that xi is an eigenvalue of Ni . Now let N = ∑n
i=1 ρiNi where ρi ∈ (0, 1)

are random numbers such that
∑n

i=1 ρi = 1. Then compute the ordered Schur decom-
position N = QT QT where Q = [

q1 · · · qr

]
is orthogonal and T is real and upper

triangular with diagonal entries sorted increasingly. Then

x∗
i (j) = qT

j Niqj , i = 1, · · · , n, j = 1, · · · , r.

The justification of this process is in [16, 9].
Summarizing our discussion, we get the following algorithm for global minimization

of polynomials.

Algorithm 1. Computing the global minimizer(s) (if any) of a polynomial.

Input: A polynomial f (x) of even degree d in n variables x = (x1, . . . , xn).
Output: Global minimizers x∗(1), · · · , x∗(r) ∈ R

n of f (x) for some r ≥ 1.
Algorithm: Initialize N = d/2.

Step 1 Solve the pair of primal SDP and dual SDP described above.
Step 2 Check rank condition (13). If it is satisfied, extract r solutions x∗(1),

· · · , x∗(r) by using the above method, where r is the rank of MN(y∗),
and then stop.

Step 3 If (13) is not satisfied, N = N + 1 and then go to Step 1.
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As we pointed out after (13) ([20]), this algorithm will terminate if Vgrad(f ) is finite.
If Vgrad(f ) is infinite, it is possible to have infinitely many global minimizers and the
extraction method in [16] can not be applied generally (it may work sometimes). In such
situations we need to solve the equations in (iv) of Theorem 11 to find some global
minimizers.

4.4. What if the gradient ideal Igrad(f ) is NOT radical ?

The lack of radicalness of the gradient ideal Igrad(f ) would be an obstacle for our algo-
rithm. First of all, this does not happen often in practice because Igrad(f ) is generically
radical. The following result is proved by standard arguments of algebraic geometry. We
omit the proof.

Proposition 1. For almost all polynomials f in the finite-dimensional vector space
R[x]d , the gradient ideal Igrad(f ) is radical and the gradient variety Vgrad(f ) is a
finite subset of C

n.

Proposition 1 means that, for almost all polynomials f which attain their minimum
f ∗, Algorithm 1 will compute the minimum in finitely many steps. An a priori bound
for a degree N with f ∗

N,grad = f ∗ is given in [20].
Let us now consider the unlucky case when Igrad(f ) is not radical. This happened

for instance, in Example 1. In theory, one can replace the gradient ideal Igrad(f ) by its
radical

√Igrad(f ) in our SOS optimization problem. This is justified by the following
result.

Corollary 1. If a polynomial f (x) attains its infimum f ∗ over R
n then f (x) − f ∗ is

SOS modulo the radical
√Igrad(f ) of the gradient ideal.

Proof. Consider the decomposition (6) and form the SOS polynomial q(x) in (7). Since
f (x)−q(x) vanishes on the gradient variety V (Igrad(f )) = V

(√Igrad(f )
)
, Hilbert’s

Strong Nullstellensatz implies that f (x) − q(x) ∈ √Igrad(f ). ��
Suppose we could compute a set of polynomials {h1, h2, . . . , hr} which generate

the radical
√Igrad(f ) of the Jacobian ideal. Then we can replace the partial derivatives

∂f/∂xi by the polynomials hj in the SOS program (11). The resulting SDP will always
have the property that f ∗

grad = f ∗ provided this infimum is attainable. While there are
known algorithms for computing radicals (see e.g. [12, 18]), and they are implemented
in various computer algebra systems, running these algorithms is very time-consum-
ing. We believe that replacing Igrad(f ) by its radical

√Igrad(f ) is not a viable option
for efficient optimization algorithms. However, it is conceivable that some polynomials
in

√Igrad(f )\Igrad(f ) are known to the user (for instance, from the geometry of the
problem at hand). Including such polynomials in the sum of (11), will surely enhance the
speed of convergence of the sequence of lower bounds f ∗

grad,N , f ∗
grad,N+1, . . . −→ f ∗.

5. Constrained Optimization

This section discusses how to generalize the method in Section 4 to minimize a poly-
nomial function subject to polynomial constraints. The conditions for optimality are
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now expressed using the KKT (Karush-Kuhn-Tucker) equations instead of the gradient
ideal. We need to reformulate the problem accordingly. Similar results hold as in Sec-
tion 4. There is another paper ([24]) which studies the representation of nonnegative and
positive polynomials over noncompact semialgebraic sets. The authors refer to [24] for
its applications in constrained polynomial optimization.

We consider the following constrained optimization problem involving polynomials
in R[x]:

f ∗ = min f (x) (14)

s.t. gi(x) = 0, i = 1, . . . , m. (15)

One lower bound can be found by SOS relaxation

f ∗
sos = max

γ∈R

φi(x)∈R[x]

γ subject to f (x) − γ −
∑

i

gi(x)φi(x) �sos 0. (16)

There are several recent papers [19, 20, 30] on solving this kind of constrained prob-
lem using SOS or moment matrix techniques. The convergence of their methods is
based on the assumption that the real variety V R(g1, . . . , gm) is compact or even finite,
which allows the application of Putinar’s Theorem 5.. When V R(g1, . . . , gm) is com-
pact, the methods may not converge within finitely many steps. Laurent [20] estab-
lished the finite convergence of moment matrix techniques when V (g1, . . . , gm) is finite.
However, if V R(g1, . . . , gm) is not compact, then f ∗

sos may be smaller than f ∗ ([19,
31]); or even if V R(g1, . . . , gm) is compact, we may just get a sequence of bounds that
converge to f ∗ as the degrees of φi go to infinity [19].

As is well-known in optimization theory, the local or global optimal solutions to
problem (14)–(15) satisfy the KKT conditions (under some regularity conditions, see
[25])

∇f (x) +
∑

i

λi∇gi(x) = 0 (17)

gi(x) = 0. (18)

As we can see, the above KKT system is exactly the gradient of the Lagrangian function

L(x, λ) = f (x) +
m∑

i=1

λigi(x).

Therefore the methods in the previous sections can be generalized directly here. Define
the KKT ideal

Ikkt =




p(x, λ) ∈ R[x, λ] : p(x, λ) =

∑

j

(
∂f

∂xj

+
∑

i

λi

∂gi

∂xj

)ηj (x, λ)

+
∑

i

gi(x)φi(x, λ)

}

.
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Let I�,kkt denote the finite-dimensional R-linear subspace of the ideal Ikkt consisting of
all polynomials which have a representation as above where each summand has degree
at most �.

A lower bound for (14)–(15) can be found by solving the SOS programming problem

f ∗
N,kkt = max

γ∈R,σ∈R[x,λ]2N

γ subject to σ(x, λ) �sos 0 (19)

and f (x) − γ = σ(x, λ) mod I2N,kkt . (20)

Just like in Section 4, we call (19)–(20) the dual SDP formulation of our problem. Sim-
ilarly, we can derive the following results from Theorem 8 and Theorem 9 (see [24]).

Theorem 12. Suppose that either f (x) is positive on Vkkt , or f (x) is nonnegative on
Vkkt and Ikkt is a radical ideal. Then f (x) is a sum of squares in the residue ring
R[x, λ]/Ikkt .

Corollary 2. Assume the optimality conditions (17)–(18) hold at some global optima
of constrained optimization (14)–(15). Then we have lim

N→∞
f ∗

N,kkt = f ∗. Furthermore,

if the ideal Ikkt is radical, then f ∗ is attainable, i.e., there exist SOS polynomial σ(x, λ)

such that

f (x) − f ∗ = σ(x, λ) mod I2N,kkt

for some large enough integer N .

Corollary 2 does not need assume V R(g1, · · · , gm) to be finite or compact.

6. Numerical Experiments

The examples in this section have been computed using the software GloptiPoly[15]
and SOSTOOLS [29]. In Subsection 6.1 we compare our formulation (11) with the
formulation (2) by testing the family of polynomials considered in [27]. From the com-
parison tables listed below, we see that our new formulation (11) is faster by roughly a
quarter when compared to (2) on this family of polynomials. In Subsection 6.2, we test
our method on examples where the lower bound f ∗

sos is strictly less than f ∗. In all cases
our lower bound f ∗

N,grad equals f ∗ within rounding errors for suitable N .

6.1. Testing on the Parrilo-Sturmfels family of polynomials

In this subsection we consider the following family of polynomials of even degree d,

f (x1, · · · , xn) = xd
1 + · · · + xd

n + g(x1, · · · , xn),

where g ∈ R[x] is a random polynomial of degree ≤ d − 1 whose coefficients are
uniformly distributed between −K and K , for a fixed positive integer K . This family
of polynomials was considered in [27] where it was shown experimentally that the SOS
formulation (2) almost always yields the global minimum. Without loss of generality,
we can set K = 1, because any f (x) in the above form can be scaled to have coefficients
between −1 and 1 by taking
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fs(x1, · · · , xn) = α−d · f (αx1, · · · , αxn)

for some properly chosen α. As observed in [27], this scaling will greatly increase the
stability and speed of the numerical computations involved in solving the primal-dual
SDP.

We ran a large number of randomly generated examples for various values of d and
n. The comparison results are in listed in Table 1 and Table 4. The computations were
performed on a Dell Laptop with a Pentium IV 2.0 GHz and 512MB of memory. Table 1
is the comparison of the lower bounds by formulation (2) and (11). Taking N = d/2 in
Algorithm 1 appears to be good enough in practice for minimizing the Parrilo-Sturmfels
polynomials. Our experiments show that increasing N above d/2 will not increase the
lower bound significantly.

From Table 1, we can see that the lower bounds f ∗
sos and f ∗

N,grad are close, agreeing
to their leading 8 to 10 decimal digits, which confirms the observation made in [27]
that almost all the polynomials gotten by subtracting their infima are SOS. Tables 2–4
are comparisons of running time in CPU seconds for formulations (2) and (11). The
symbol “-” in the tables means that the computation takes more than one hour and we
then terminate it. And “*” means we use a different scaling as described below.

“-” means the computation is terminated if it takes more than one hour;
“*” means the coefficients of g(x1, · · · , xn) are scaled to belong to [−0.1, 0.1].

Table 1. The relative difference
|f ∗

N,grad
−f ∗

sos |
|f ∗

sos | × 1010, with N = d/2.

d \ n 3 4 5 6 7 8 9 10
4 5 7 9 10 11 13 14 15
6 10 19 38 41 232 – – –
8 17 78 186 233 – – – –

10 40 39* 102* – – – – –

Table 2. Running time in CPU seconds via traditional SOS approach (2)

d \ n 3 4 5 6 7 8 9 10
4 0.16 0.24 0.42 0.86 1.86 7.56 25.85 73.69
6 0.32 1.17 8.40 49.04 309.66 – – –
8 1.10 12.23 173.98 1618.86 – – – –

10 3.15 64.48* 2144.04* – – – – –

Table 3. Running time in CPU seconds via our approach (11), with N = d/2.

d \ n 3 4 5 6 7 8 9 10
4 0.12 0.18 0.32 0.68 1.46 5.65 18.85 54.97
6 0.23 0.91 6.39 35.16 241.71 – – –
8 0.84 9.54 129.53 1240.23 – – – –

10 2.59 45.14* 1539.80* – – – – –

Table 4. The ratio of CPU seconds between (2) and (11), with N = d/2.

d \ n 3 4 5 6 7 8 9 10
4 0.75 0.75 0.76 0.79 0.78 0.74 0.73 0.75
6 0.72 0.77 0.76 0.72 0.78 – – –
8 0.76 0.78 0.74 0.76 – – – –

10 0.82 0.70* 0.71* – – – – –
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Our formulation (11) uses about three quarters of the running time used by for-
mulation (2). This may be unexpected since the use of gradients introduces many new
variables. While we are not sure of the reason, one possible explanation is that adding
gradients improves the conditioning and makes the interior-point algorithm for solving
the SDP converge faster.

The numerical performance is subtle in this family of test polynomials. In the cases
(n, d) = (4, 10) or (n, d) = (5, 10), our formulation (11) has numerical trouble, while
(2) does not, and yet (11) is still faster than (2). However, for these two cases, if we scale
f (x1, . . . , xn) so that the coefficients of g(x1, . . . , xn) belong to [−0.1, 0.1], both (2)
and (11) do not have numerical trouble, and formulation (11) is still faster than (2). In
Table 4 we see that the time ratio between (11) and (2) under this scaling is smaller than
the time ratio for other values of (n, d). So numerical comparisons in Tables 1–4 for
(n, d) = (4, 10) or (n, d) = (5, 10) are implemented under this new scaling, while for
other values of (n, d) we still use the old scaling where the coefficients of g(x1, . . . , xn)

belong to [−1, 1]. A stability analysis for the scaling and the speed-up caused by adding
gradients may be a future research topic.

6.2. Other examples

The following examples demonstrate the effectiveness of our Algorithm 1 for a sample
of polynomials that have been discussed in the SOS optimization literature.

Homogeneous Polynomials Let f (x) be a homogeneous polynomial. Regardless of
whether f (x) is non-negative, we always have f ∗

N,grad = 0 for any N ≥ d/2. This

comes from the identity f (x) = 1
d

· ∑i xi
∂f
∂xi

, which implies that f (x) lies in its gradi-
ent ideal Igrad(f ). In order to test global non-negativity of a homogeneous polynomial
f (x), we can apply Algorithm 1 to a dehomogenization of f (x), as shown in Examples
4 and 5 below.

Example 3: f (x, y) = x2y2(x2 + y2 − 1). This polynomial is taken from [19]. It
has global minimum value f ∗ = −1/27 = −0.03703703703703.... However, f ∗

sos =
−33.157325 is considerably smaller than f ∗. If we minimize f (x) over its gradient
ideal with N = 4, then we get f ∗

4,grad = −0.03703703706212. The difference equals

f ∗ − f ∗
4,grad ≈ 2.50 · 10−11. The solutions extracted by GloptiPoly ([15]) are

(±0.5774, ±0.5774).

Example 4: The polynomial f (x, y) = x4y2 + x2y4 + 1 − 3x2y2 is obtained from the
Motzkin polynomial by substituting z = 1 as in [28]. We have f ∗ = 0 > f ∗

sos = −∞.
However, if we minimize f (x, y) over its gradient ideal with N = 4, we get f ∗

4,grad =
−6.1463 · 10−10. The solutions extracted by GloptiPoly are (±1.0000, ±1.0000).

Example 5: The polynomial f (x, y) = x4 + x2 + z6 − 3x2z2 is obtained from the
Motzkin polynomial by substituting y = 1. Now, f ∗ = 0 > f ∗

sos = −729/4096.
However, if we minimize f (x, z) over its gradient ideal with N = 4, we get f ∗

4,grad =
−9.5415 · 10−12. The solutions extracted by GloptiPoly are (0.0000, 0.0000) and
(±1.0000, ±1.0000).
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7. Conclusions

This paper proposes a method for minimizing a multivariate polynomial f (x) over its
gradient variety. We assume that the infimum f ∗ is attained. This assumption is non-
trivial, and we do not address the (important and difficult) question of how to verify that
a given polynomial f (x) has this property. A sufficient condition for f (x) to attain its
minimum can be derived from results of Marshall concerning stable compactness [21,
Theorem 5.1].

Every polynomial which is strictly positive on its real gradient variety is SOS modulo
its gradient ideal, even if the gradient variety is not zero-dimensional or radical. This fact
implies that we can find a sequence of lower bounds {f ∗

N,grad} which converges to f ∗.
Moreover, if the gradient ideal is radical, we showed that every nonnegative polynomial
is also SOS modulo its gradient ideal, which implies that f ∗

N,grad = f ∗ for some integer
N . This finite convergence property holds for random polynomials by Proposition 1.
Our method can also be generalized to constrained polynomial optimization. Instead of
using gradients, we minimizing the objective polynomial over the variety defined by its
KKT system. Similar results hold as in the unconstrained case.

Numerical experiments with SOSTOOLS suggest that our algorithm is effective for
unconstrained polynomial optimization. Our method (11) with gradients is faster than
the method (2) without gradients on the family of polynomials in Section 6.1. The reason
for the speed-up is not clear yet, which might be a future research topic.

The method is also effective for equality constrained optimization, when the number
of equality constraints are small compared with the number of decision variables. When
there are many equality or inequality constraints, the structure of the KKT system must
be exploited for computation efficiency.

Acknowledgement. The authors thank Claus Scheiderer for very helpful comments and for providing the
example at the end of Section 2. Jean Lasserre and Pablo Parrilo suggested one example in Section 3. The
authors are grateful to Monique Laurent for reviewing an early manuscript version and fruitful suggestions
that helped improved this paper. The authors also thank two referees for their valulable comments which
improves this paper. Jiawang Nie was supported in part by National Science Foundation (ELA-0122599).
Bernd Sturmfels was supported in part by the National Science Foundation (DMS-0200729).

References

1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer-Verlag, 2003
2. Berg, C.: The multidimensional moment problem and semi-groups. In: Moments in Mathematics, H.J.

Landau (ed.), AMS, Providence, RI, 1980, pp 110–124
3. Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry, Springer, 1998
4. Blekherman, G.: There are significantly more nonnegative polynomials than sums of squares. To appear

in Israel Journal of Mathematics
5. Becker, E., Neuhaus, R.: Computation of real radicals of polynomial ideals. Computational algebraic

geometry (Nice, 1992), 1–20, Progress in Mathematics, 109, Birkhäuser, Boston, MA, 1993
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