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Abstract. The k-ellipse is the plane algebraic curve consisting of all points whose
sum of distances from k given points is a fixed number. The polynomial equation defin-
ing the k-ellipse has degree 2k if k is odd and degree 2k−

` k
k/2

´

if k is even. We express

this polynomial equation as the determinant of a symmetric matrix of linear polyno-
mials. Our representation extends to weighted k-ellipses and k-ellipsoids in arbitrary
dimensions, and it leads to new geometric applications of semidefinite programming.
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1. Introduction. The circle is the plane curve consisting of all points
(x, y) whose distance from a given point (u1, v1) is a fixed number d. It is
the zero set of the quadratic polynomial

p1(x, y) = det

[
d + x − u1 y − v1

y − v1 d − x + u1

]

. (1.1)

The ellipse is the plane curve consisting of all points (x, y) whose sum of
distances from two given points (u1, v1) and (u2, v2) is a fixed number d.
It is the zero set of

p2(x, y) = det

2

6

6

4

d+2x−u1−u2 y − v1 y − v2 0
y − v1 d+u1−u2 0 y − v2

y − v2 0 d−u1+u2 y − v1

0 y − v2 y − v1 d−2x+u1+u2

3

7

7

5

. (1.2)

In this paper we generalize these determinantal formulas for the circle
and the ellipse. Fix a positive real number d and fix k distinct points
(u1, v1), (u2, v2), . . . , (uk, vk) in R2. The k-ellipse with foci (ui, vi) and
radius d is the following curve in the plane:

{

(x, y) ∈ R2 :

k∑

i=1

√

(x − ui)2 + (y − vi)2 = d

}

. (1.3)

The k-ellipse is the boundary of a convex set Ek in the plane, namely,
the set of points whose sum of distances to the k given points is at most d.
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Fig. 1. A 3-ellipse, a 4-ellipse, and a 5-ellipse, each with its foci.

These convex sets are of interest in computational geometry [16] and in
optimization, e.g. for the Fermat-Weber facility location problem [1, 3,
7, 14, 18]. In the classical literature (e.g. [15]), k-ellipses are known as
Tschirnhaus’sche Eikurven [11]. Indeed, they look like “egg curves” and
they were introduced by Tschirnhaus in 1686.

We are interested in the irreducible polynomial pk(x, y) that vanishes
on the k-ellipse. This is the unique (up to sign) polynomial with co-
prime integer coefficients in the unknowns x and y and the parameters
d, u1, v1, . . . , uk, vk. By the degree of the k-ellipse we mean the degree of
pk(x, y) in x and y. To compute it, we must eliminate the square roots in
the representation (1.3). Our solution to this problem is as follows:

Theorem 1.1. The k-ellipse has degree 2k if k is odd and degree

2k−
(

k
k/2

)
if k is even. Its defining polynomial has a determinantal repre-

sentation

pk(x, y) = det
(
x · Ak + y · Bk + Ck

)
(1.4)

where Ak, Bk, Ck are symmetric 2k × 2k matrices. The entries of Ak and

Bk are integer numbers, and the entries of Ck are linear forms in the

parameters d, u1, v1, . . . , uk, vk.

For the circle (k = 1) and the ellipse (k = 2), the representation (1.4)
is given by the formulas (1.1) and (1.2). The polynomial p3(x, y) for the
3-ellipse is the determinant of
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d+3x−u1−u2−u3 y−v1 y−v2 0

y−v1 d+x+u1−u2−u3 0 y−v2

y−v2 0 d+x−u1+u2−u3 y−v1

0 y−v2 y−v1 d−x+u1+u2−u3

y−v3 0 0 0

0 y−v3 0 0

0 0 y−v3 0

0 0 0 y−v3
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Fig. 2. The Zariski closure of the 5-ellipse is an algebraic curve of degree 32. The
tiny curve in the center is the 5-ellipse.

y−v3 0 0 0

0 y−v3 0 0

0 0 y−v3 0

0 0 0 y−v3

d+x−u1−u2+u3 y−v1 y−v2 0

y−v1 d−x+u1−u2+u3 0 y−v2

y−v2 0 d−x−u1+u2+u3 y−v1

0 y−v2 y−v1 d−3x+u1+u2+u3
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.

The full expansion of this 8 × 8-determinant has 2, 355 terms. Next, the
4-ellipse is a curve of degree ten which is represented by a symmetric 16×16-
matrix, etc....

This paper is organized as follows. The proof of Theorem 1.1 will be
given in Section 2. Section 3 is devoted to geometric aspects and connec-
tions to semidefinite programming. While the k-ellipse itself is a convex
curve, its Zariski closure { pk(x, y) = 0 } has many extra branches outside
the convex set Ek. They are arranged in a beautiful pattern known as a
Helton-Vinnikov curve [5]. This pattern is shown in Figure 2 for k = 5
points. In Section 4 we generalize our results to the weighted case and to
higher dimensions, and we discuss the computation of the Fermat-Weber

point of the given points (ui, vi). A list of open problems and future direc-
tions is presented in Section 5.
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2. Derivation of the matrix representation. We begin with a
discussion of the degree of the k-ellipse.

Lemma 2.1. The defining polynomial of the k-ellipse has degree at

most 2k in the variables (x, y) and it is monic of degree 2k in the radius

parameter d.
Proof. We claim that the defining polynomial of the k-ellipse can be

written as follows:

pk(x, y) =
∏

σ∈{−1,+1}k

(

d −
k∑

i=1

σi ·
√

(x − ui)2 + (y − vi)2

)

. (2.1)

Obviously, the right hand side vanishes on the k-ellipse. The following
Galois theory argument shows that this expression is a polynomial and that
it is irreducible. Consider the polynomial ring R = Q[x, y, d, u1, v1, . . . ,
uk, vk]. The field of fractions of R is the field K = Q(x, y, d, u1, v1, . . . ,
uk, vk) of rational functions in all unknowns. Adjoining the square roots
in (1.3) to K gives an algebraic field extension L of degree 2k over K.
The Galois group of the extension L/K is (Z/2Z)k, and the product in

(2.1) is over the orbit of the element d−
∑k

i=1

√

(x − ui)2 + (y − vi)2 of L
under the action of the Galois group. Thus this product in (2.1) lies in the
ground field K. Moreover, each factor in the product is integral over R,
and therefore the product lies in the polynomial ring R. To see that this
polynomial is irreducible, it suffices to observe that no proper subproduct
of the right hand side in (2.1) lies in the ground field K.

The statement degree at most 2k is the crux in Lemma 2.1. Indeed, the
degree in (x, y) can be strictly smaller than 2k as the case of the classical
ellipse (k = 2) demonstrates. When evaluating the product (2.1) some
unexpected cancellations may occur. This phenomenon happens for all
even k, as we shall see later in this section.

We now turn to the matrix representation promised by Theorem 1.1.
We recall the following standard definition from matrix theory (e.g., [6]).
Let A be a real m×m-matrix and B a real n×n-matrix. The tensor sum of
A and B is the mn×mn matrix A⊕B := A⊗In +Im⊗B. The tensor sum
of square matrices is an associative operation which is not commutative.
For instance, for three matrices A, B, C we have

A ⊕ B ⊕ C = A ⊗ I ⊗ I + I ⊗ B ⊗ I + I ⊗ I ⊗ C.

Here ⊗ denotes the tensor product, which is also associative but not com-
mutative. Tensor products and tensor sums of matrices are also known as
Kronecker products and Kronecker sums [2, 6]. Tensor sums of symmetric
matrices can be diagonalized by treating the summands separately:

Lemma 2.2. Let M1, . . . , Mk be symmetric matrices, let U1, . . . , Uk

be orthogonal matrices, and let Λ1, . . . , Λk be diagonal matrices such that

Mi = Ui · Λi · U
T
i for i = 1, . . . , k. Then

(U1 ⊗ · · · ⊗ Uk)T · (M1 ⊕ · · · ⊕ Mk) · (U1 ⊗ · · · ⊗ Uk) = Λ1 ⊕ · · · ⊕ Λk.
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In particular, the eigenvalues of the tensor sum M1 ⊕ M2 ⊕ · · · ⊕ Mk are

the sums λ1 + λ2 + · · · + λk where λ1 is any eigenvalue of M1, λ2 is any

eigenvalue of M2, etc.

The proof of this lemma is an exercise in (multi)-linear algebra. We
are now prepared to state our formula for the explicit determinantal rep-
resentation of the k-ellipse.

Theorem 2.1. Given points (u1, v1), . . . , (uk, vk) in R2, we define the

2k × 2k matrix

Lk(x, y) := d · I2k +

[
x − u1 y − v1

y − v1 −x + u1

]

⊕ · · · ⊕

[
x − uk y − vk

y − vk −x + uk

]

(2.2)

which is affine in x, y and d. Then the k-ellipse has the determinantal

representation

pk(x, y) = detLk(x, y). (2.3)

The convex region bounded by the k-ellipse is defined by the following matrix

inequality:

Ek =
{

(x, y) ∈ R2 : Lk(x, y) � 0
}

. (2.4)

Proof. Consider the 2 × 2 matrix that appears as a tensor summand
in (2.2):

[
x − ui y − vi

y − vi −x + ui

]

.

A computation shows that this matrix is orthogonally similar to
[√

(x − ui)2 + (y − vi)2 0

0 −
√

(x − ui)2 + (y − vi)2

]

.

These computations take place in the field L which was considered in the
proof of Lemma 2.1 above. Lemma 2.2 is valid over any field, and it implies
that the matrix Lk(x, y) is orthogonally similar to a 2k×2k diagonal matrix
with diagonal entries

d +

k∑

i=1

σi ·
√

(x − ui)2 + (y − vi)2, σi ∈ {−1, +1}. (2.5)

The desired identity (2.3) now follows directly from (2.1) and the fact that
the determinant of a matrix is the product of its eigenvalues. For the
characterization of the convex set Ek, notice that positive semidefiniteness
of Lk(x, y) is equivalent to nonnegativity of all the eigenvalues (2.5). It
suffices to consider the smallest eigenvalue, which equals

d −
k∑

i=1

√

(x − ui)2 + (y − vi)2.
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Indeed, this quantity is nonnegative if and only if the point (x, y) lies
in Ek.

Proof. [Proof of Theorem 1.1] The assertions in the second and third
sentence have just been proved in Theorem 2.1. What remains to be
shown is the first assertion concerning the degree of pk(x, y) as a poly-
nomial in (x, y). To this end, we consider the univariate polynomial
g(t) := pk(t cos θ, t sin θ) where θ is a generic angle. We must prove that

degt

(
g(t)

)
=

{

2k if k is odd,

2k −
(

k
k/2

)
if k is even.

The polynomial g(t) is the determinant of the symmetric 2k × 2k-matrix

Lk(t cos θ, t sin θ)= t ·

([
cos θ sin θ
sin θ −cos θ

]

⊕· · ·⊕

[
cos θ sin θ
sin θ −cos θ

])

+Ck. (2.6)

The matrix Ck does not depend on t. We now define the 2k×2k orthogonal
matrix

U := V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k times

where V :=

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]

,

and we note the matrix identity

V T ·

[
cos θ sin θ
sin θ − cos θ

]

· V =

[
1 0
0 −1

]

.

Pre- and post-multiplying (2.6) by UT and U , we find that

UT · Lk(t cos θ, t sin θ) · U = t ·

([
1 0
0 −1

]

⊕· · ·⊕

[
1 0
0 −1

])

︸ ︷︷ ︸

Ek

+ UT · Ck · U.

The determinant of this matrix is our univariate polynomial g(t). The
matrix Ek is a diagonal matrix of dimension 2k × 2k. Its diagonal entries
are obtained by summing k copies of −1 or +1 in all 2k possible ways.
None of these sums are zero when k is odd, and precisely

(
k

k/2

)
of these

sums are zero when k is even. This shows that the rank of Ek is 2k when k
is odd, and it is 2k −

(
k

k/2

)
when k is even. We conclude that the univariate

polynomial g(t) = det
(
t · Ek + UT CkU

)
has the desired degree.

3. More pictures and some semidefinite aspects. In this section
we examine the geometry of the k-ellipse, we look at some pictures, and
we discuss aspects relevant to the theory of semidefinite programming. In
Figure 1 several k-ellipses are shown, for k = 3, 4, 5. One immediately
observes that, in contrast to the classical circle and ellipse, a k-ellipse does
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Fig. 3. A pencil of 3-ellipses with fixed foci (the three bold dots) and different radii.
These 3-elliptical curves are always smooth unless they contain one of the foci.

not necessarily contain the foci in its interior. The interior Ek of the k-
ellipse is a sublevel set of the convex function

(x, y) 7→

k∑

i=1

√

(x − ui)2 + (y − vi)2. (3.1)

This function is strictly convex, provided the foci {(ui, vi)}
k
i=1 are not

collinear [14]. This explains why the k-ellipse is a convex curve. In or-
der for Ek to be nonempty, it is necessary and sufficient that the radius
d be greater than or equal to the global minimum d∗ of the convex func-
tion (3.1).

The point (x∗, y∗) at which the global minimum d∗ is achieved is called
the Fermat-Weber point of the foci. This point minimizes the sum of the
distances to the k given points (ui, vi), and it is of importance in the facility
location problem. See [1, 3, 7], and [15] for a historical reference. For a
given set of foci, we can vary the radius d, and this results in a pencil
of confocal k-ellipses, as in Figure 3. The sum of distances function (3.1)
is differentiable everywhere except at the (ui, vi), where the square root
function has a singularity. As a consequence, the k-ellipse is a smooth
convex curve, except when that curve contains one of the foci.

An algebraic geometer would argue that there is more to the k-ellipse
than meets the eye in Figures 1 and 3. We define the algebraic k-ellipse to
be the Zariski closure of the k-ellipse, or, equivalently, the zero set of the
polynomial pk(x, y). The algebraic k-ellipse is an algebraic curve, and it
can be considered in either the real plane R2, in the complex plane C2, or
(even better) in the complex projective plane CP2.
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Fig. 4. The Zariski closure of the 3-ellipse is an algebraic curve of degree eight.

Figure 2 shows an algebraic 5-ellipse. In that picture, the actual 5-
ellipse is the tiny convex curve in the center. It surrounds only one of the
five foci.

For a less dizzying illustration see Figure 4. That picture shows an
algebraic 3-ellipse. The curve has degree eight, and it is given algebraically
by the 8×8-determinant displayed in the Introduction. We see that the set
of real points on the algebraic 3-ellipse consists of four ovals, corresponding
to the equations

±
√

(x−u1)2+(y−v1)2±
√

(x−u2)2+(y−v2)2±
√

(x−u3)2+(y−v3)2 = d.

Thus Figure 4 visualizes the Galois theory argument in the proof of
Lemma 2.1.

If we regard the radius d as an unknown, in addition to the two un-
knowns x and y, then the determinant in Theorem 1.1 specifies an irre-
ducible surface {pk(x, y, d) = 0} in three-dimensional space. That surface
has degree 2k. For an algebraic geometer, this surface would live in com-
plex projective 3-space CP3, but we are interested in its points in real affine
3-space R3. Figure 5 shows this surface for k = 3. The bowl-shaped con-
vex branch near the top is the graph of the sum of distances function (3.1),
while each of the other three branches is associated with a different com-
bination of signs in the product (2.1). The surface has a total of 2k = 8
branches, but only the four in the half-space d ≥ 0 are shown, as it is
symmetric with respect to the plane d = 0. Note that the Fermat-Weber
point (x∗, y∗, d∗) is a highly singular point of the surface.

The time has now come for us to explain the adjective “semidefinite”
in the title of this paper. Semidefinite programming (SDP) is a widely used
method in convex optimization. Introductory references include [17, 19].



SEMIDEFINITE REPRESENTATION OF THE k-ELLIPSE 9

Fig. 5. The irreducible surface { p3(x, y, d) = 0}. Taking horizontal slices gives the
pencil of algebraic 3-ellipses for fixed foci and different radii d, as shown in Figure 3.

An algebraic perspective was recently given in [12]. The problem of SDP
is to minimize a linear functional over the solution set of a linear matrix
inequality (LMI). An example of an LMI is

x · Ak + y · Bk + d · I2k + C̃k � 0. (3.2)

Here C̃k is the matrix gotten from Ck by setting d = 0, so that Ck =
d · I2k + C̃k. If d is a fixed positive real number then the solution set to
the LMI (3.2) is the convex region Ek bounded by the k-ellipse. If d is an
unknown then the solution set to the LMI (3.2) is the epigraph of (3.1), or,
geometrically, the unbounded 3-dimensional convex region interior to the
bowl-shaped surface in Figure 5. The bottom point of that convex region
is the Fermat-Weber point (x∗, y∗, d∗), and it can be computed by solving
the SDP

Minimize d subject to (3.2). (3.3)

Similarly, for fixed radius d, the k-ellipse is the set of all solutions to

Minimize αx + βy subject to (3.2) (3.4)

where α, β run over R. This explains the term semidefinite representation

in our title.
While the Fermat-Weber SDP (3.3) has only three unknowns, it has

the serious disadvantage that the matrices are exponentially large (size
2k). For computing (x∗, y∗, d∗) in practice, it is better to introduce slack
variables d1, d2, . . . , dk, and to solve

Minimize

k∑

i=1

di subject to

[
di+x−ai y−bi

y−bi di−x+ai

]

� 0 (i=1, . . . , k).(3.5)

This system can be written as a single LMI by stacking the 2×2-matrices to
form a block matrix of size 2k× 2k. The size of the resulting LMI is linear
in k while the size of the LMI (3.3) is exponential in k. If we take the LMI
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(3.5) and add the linear constraint d1 + d2 + · · · + dk = d, for some fixed
d > 0, then this furnishes a natural and concise lifted semidefinite repre-
sentation of our k-ellipse1. Geometrically, the representation expresses Ek

as the projection of a convex set defined by linear matrix inequalities in
a higher-dimensional space. Theorem 1.1 solves the algebraic LMI elimi-

nation problem corresponding to this projection, but at the expense of an
exponential increase in size, which is due to the exponential growing of
degrees of k-ellipses.

Our last topic in this section is the relationship of the k-ellipse to the
celebrated work of Helton and Vinnikov [5] on LMI representations of pla-
nar convex sets, which led to the resolution of the Lax conjecture in [8].
A semialgebraic set in the plane is called rigidly convex if its boundary
has the property that every line passing through its interior intersects the
Zariski closure of the boundary only in real points. Helton and Vinnikov
[5, Thm. 2.2] proved that a plane curve of degree d has an LMI represen-
tation by symmetric d × d matrices if and only if the region bounded by
this curve is rigidly convex. In arbitrary dimensions, rigid convexity holds
for every region bounded by a hypersurface that is given by an LMI rep-
resentation, but the strong form of the converse, where the degree of the
hypersurface precisely matches the matrix size of the LMI, is only valid in
two dimensions.

It follows from the LMI representation in Theorem 1.1 that the region
bounded by a k-ellipse is rigidly convex. Rigid convexity can be seen in
Figures 4 and 2. Every line that passes through the interior of the 3-ellipse
intersects the algebraic 3-ellipse in eight real points, and lines through the
5-ellipse meet its Zariski closure in 32 real points. Combining our Theorem
1.1 with the Helton-Vinnikov Theorem, we conclude:

Corollary 3.1. The k-ellipse is rigidly convex. If k is odd, it can

be represented by an LMI of size 2k, and if k is even, it can be represented

as by LMI of size 2k −
(

k
k/2

)
.

We have not found yet an explicit representation of size 2k−
(

k
k/2

)
when

k is even and k ≥ 4. For the classical ellipse (k = 2), the determinantal
representation (1.2) presented in the Introduction has size 4 × 4, while
Corollary 3.1 guarantees the existence of a 2 × 2 representation. One such
representation of the ellipse with foci (u1, v1) and (u2, v2) is:

`

d
2+(u1−u2)(2x−u1−u2)+(v1−v2)(2y−v1−v2)

´

·I2+2d·

»

x − u2 y − v2

y − v2 −x + u2

–

� 0.

Notice that in this LMI representation of the ellipse, the matrix entries
are linear in x and y, as required, but they are quadratic in the radius

1The formulation (3.5) actually provides a second-order cone representation of the
k-ellipse. Second-order cone programming (SOCP) is another important class of con-
vex optimization problems, of complexity roughly intermediate between that of linear
and semidefinite programming; see [9] for a survey of the basic theory and its many
applications.
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parameter d and the foci ui, vi. What is the nicest generalization of this
representation to the k-ellipse for k even?

4. Generalizations. The semidefinite representation of the k-ellipse
we have found in Theorem 1.1 can be generalized in several directions.
Our first generalization corresponds to the inclusion of arbitrary positive
weights for the distances, while the second one extends the results from
plane curves to higher dimensions. The resulting geometric shapes are
known as Tschirnhaus’sche Eiflächen (or “egg surfaces”) in the classical
literature [11].

4.1. Weighted k-ellipse. Consider k points (u1, v1), . . . , (uk, vk) in
the real plane R2, a positive radius d, and positive weights w1, . . . , wk. The
weighted k-ellipse is the plane curve defined as

{

(x, y) ∈ R2 :

k∑

i=1

wi ·
√

(x − ui)2 + (y − vi)2 = d

}

,

where wi indicates the relative weight of the distance from (x, y) to the i-th
focus (ui, vi). The algebraic weighted k-ellipse is the Zariski closure of this
curve. It is the zero set of an irreducible polynomial pw

k (x, y) that can be
constructed as in equation (2.1). The interior of the weighted k-ellipse is
the bounded convex region

Ek(w) :=

{

(x, y) ∈ R2 :
k∑

i=1

wi ·
√

(x − ui)2 + (y − vi)2 ≤ d

}

.

The matrix construction from the unweighted case in (2.2) generalizes as
follows:

Lw
k (x, y) := d·I2k+w1 ·

[
x−u1 y−v1

y−v1 −x+u1

]

⊕· · ·⊕wk ·

[
x−uk y−vk

y−vk −x+uk

]

. (4.1)

Each tensor summand is simply multiplied by the corresponding weight.
The following representation theorem and degree formula are a direct gen-
eralization of Theorem 2.1:

Theorem 4.1. The algebraic weighted k-ellipse has the semidefinite

representation

pw
k (x, y) = detLw

k (x, y),

and the convex region in its interior satisfies

Ek(w) =
{

(x, y) ∈ R2 : Lw
k (x, y) � 0

}
.

The degree of the weighted k-ellipse is given by

deg pw
k (x, y) = 2k − |P(w)|,
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where P(w) = {δ ∈ {−1, 1}k :
∑k

i=1
δiwi = 0}.

Proof. The proof is entirely analogous to that of Theorem 2.1.

A consequence of the characterization above is the following cute com-
plexity result.

Corollary 4.1. The decision problem “Given a weighted k-ellipse

with fixed foci and positive integer weights, is its algebraic degree smaller

than 2k?” is NP-complete. The function problem “What is the algebraic

degree?” is #P-hard.

Proof. Since the number partitioning problem is NP-hard [4], the fact
that our decision problem is NP-hard follows from the degree formula in
Theorem 4.1. But it is also in NP because if the degree is less than 2k,
we can certify this by exhibiting a choice of δi for which

∑k
i=1

δiwi = 0.
Computing the algebraic degree is equivalent to counting the number
of solutions of a number partitioning problem, thus proving its #P-
hardness.

4.2. k-Ellipsoids. The definition of a k-ellipse in the plane can be
naturally extended to a higher-dimensional space to obtain k-ellipsoids.
Consider k fixed points u1, . . . ,uk in Rn, with ui = (ui1, ui2, . . . , uin). The
k-ellipsoid in Rn with these foci is the hypersurface

{

x∈Rn :

k∑

i=1

‖ui−x‖ = d

}

=

{

x∈Rn :

k∑

i=1

√
√
√
√

n∑

j=1

(uij−xj)2 = d

}

. (4.2)

This hypersurface encloses the convex region

En
k =

{

x ∈ Rn :

k∑

i=1

‖ui − x‖ ≤ d

}

.

The Zariski closure of the k-ellipsoid is the hypersurface defined by an
irreducible polynomial pn

k (x) = pn
k (x1, x2, . . . , xn). By the same reasoning

as in Section 2, we can prove the following:

Theorem 4.2. The defining irreducible polynomial pk
n(x) of the k-

ellipsoid is monic of degree 2k in the parameter d, it has degree 2k in x if

k is odd, and it has degree 2k −
(

k
k/2

)
if k is even.

We shall represent the polynomial pk
n(x) as a factor of the determinant

of a symmetric matrix of affine-linear forms. To construct this semidefinite
representation of the k-ellipsoid, we proceed as follows. Fix an integer m ≥
2. Let Ui(x) be any symmetric m×m-matrix of rank 2 whose entries are
affine-linear forms in x, and whose two non-zero eigenvalues are ±‖ui−x‖.
Forming the tensor sum of these matrices, as in the proof of Theorem 2.1,
we find that pn

k (x) is a factor of

det
(
d · Imk + U1(x) ⊕ U2(x) ⊕ · · · ⊕ Uk(x)

)
. (4.3)
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However, there are many extraneous factors. They are powers of the irre-
ducible polynomials that define the k′-ellipsoids whose foci are subsets of
{u1,u2, . . . ,uk}.

There is a standard choice for the matrices Ui(x) that is symmetric
with respect to permutations of the n coordinates. Namely, we can take
m = n + 1 and

Ui(x) =










0 x1−ui1 x2−ui2 · · · xn−uin

x1 − ui1 0 0 · · · 0
x2 − ui2 0 0 · · · 0

...
...

...
. . .

...
xn − uin 0 0 · · · 0










.

However, in view of the extraneous factors in (4.3), it is desirable to replace
these by matrices of smaller size m, possibly at the expense of having
additional nonzero eigenvalues. It is not hard to see that m = n is always
possible, and the following result shows that, without extra factors, this is
indeed the smallest possible matrix size.

Lemma 4.1. Let A(x) := A0+A1x1+· · ·+Anxn, where A0, A1, . . . , An

are real symmetric m × m matrices. If detA(x) = d2 −
∑n

j=1
x2

j , then

m ≥ n.

Proof. Assume, on the contrary, that m < n. For any fixed vector ξ
with ‖ξ‖ = d the matrix A(ξ) must be singular. Therefore, there exists a
nonzero vector η ∈ Rm such that A(ξ)η = 0. The set {x ∈ Rn : A(x)η = 0}
is thus a nonempty affine subspace of positive dimension (at least n − m).
The polynomial d2−

∑n
j=1

x2
j should then also vanish on this subspace, but

this is not possible since {x ∈ Rn : d2 −
∑n

j=1
x2

j = 0} is compact.

However, if we allow extraneous factors or complex matrices, then the
smallest possible value of m might drop. These questions are closely related
to finding the determinant complexity of a given polynomial, as discussed in
[10]. Note that in the applications to complexity theory considered there,
the matrices of linear forms need not be symmetric.

5. Open questions and further research. The k-ellipse is an ap-
pealing example of an object from algebraic geometry. Its definition is el-
ementary and intuitive, and yet it serves well in illustrating the intriguing
interplay between algebraic concepts and convex optimization, in particu-
lar semidefinite programming. The developments presented in this paper
motivate many natural questions. For most of these, to the best of our
knowledge, we currently lack definite answers. Here is a short list of open
problems and possible topics of future research.

Singularities and genus. Both the circle and the ellipse are rational
curves, i.e., have genus zero. What is the genus of the (projective) alge-
braic k-ellipse? The first values, from k = 1 to k = 4, are 0,0,3,6. What
is the formula for the genus in general? The genus is related to the class
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of the curve, i.e. the degree of the dual curve, and this number is the alge-
braic degree [12] of the problem (3.4). Moreover, is there a nice geometric
characterization of all (complex) singular points of the algebraic k-ellipse?

Algebraic degree of the Fermat-Weber point. The Fermat-Weber point
(x∗, y∗) is the unique solution of an algebraic optimization problem, for-
mulated in (3.3) or (3.5), and hence it has a well-defined algebraic degree
over Q(u1, v1, . . . , uk, vk). However, that algebraic degree will depend on
the combinatorial configuration of the foci. For instance, in the case k = 4
and foci forming a convex quadrilateral, the Fermat-Weber point lies in the
intersection of the two diagonals [1], and therefore its algebraic degree is
equal to one. What are the possible values for this degree? Perhaps a possi-
ble approach to this question would be to combine the results and formulas
in [12] with the semidefinite characterizations obtained in this paper.

Reduced SDP representations of rigidly convex curves. A natural ques-
tion motivated by our discussion in Section 3 is how to systematically
produce minimal determinantal representations for a rigidly convex curve,
when a non-minimal one is available. This is likely an easier task than
finding a representation directly from the defining polynomial, since in this
case we have a certificate of its rigid convexity.

Concretely, given real symmetric n × n matrices A and B such that

p(x, y) = det(A · x + B · y + In)

is a polynomial of degree r < n, we want to produce r × r matrices Ã and
B̃ such that

p(x, y) = det(Ã · x + B̃ · y + Ir).

The existence of such matrices is guaranteed by the results in [5, 8]. In
fact, explicit formulas in terms of theta functions of a Jacobian variety are
presented in [5]. But isn’t there a simpler algebraic construction in this
special case?

Elimination in semidefinite programming. The projection of an alge-
braic variety is (up to Zariski closure, and over an algebraically closed field)
again an algebraic variety. That projection can be computed using elim-
ination theory or Gröbner bases. The projection of a polyhedron into a
lower-dimensional subspace is a polyhedron. That projection can be com-
puted using Fourier-Motzkin elimination. In contrast to these examples,
the class of feasible sets of semidefinite programs is not closed under pro-
jections. As a simple concrete example, consider the convex set

{

(x, y, t) ∈ R3 :

[
1 x − t

x − t y

]

� 0, t ≥ 0

}

.

Its projection onto the (x, y)-plane is a convex set that is not rigidly con-
vex, and hence cannot be expressed as {(x, y) ∈ R2 : Ax + By + C � 0}.
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In fact, that projection is not even basic semialgebraic. In some cases,
however, this closure property nevertheless does hold. We saw this for the
projection that transforms the representation (3.5) of the k-ellipse to the
representation (3.3). Are there general conditions that ensure the semidef-
inite representability of the projections? Are there situations where the
projection does not lead to an exponential blowup in the size of the repre-
sentation?

Hypersurfaces defined by eigenvalue sums. Our construction of the
(weighted) k-ellipsoid as the determinant of a tensor sum has the follow-
ing natural generalization. Let U1(x),U2(x), . . . ,Uk(x) be any symmetric
m×m-matrices whose entries are affine-linear forms in x = (x1, x2, . . . , xn).
Then we consider the polynomial

p(x) = det
(
d · Imk + U1(x) ⊕ U2(x) ⊕ · · · ⊕ Uk(x)

)
. (5.1)

We also consider the corresponding rigidly convex set

{
x ∈ Rn : d · Imk + U1(x) ⊕ U2(x) ⊕ · · · ⊕ Uk(x) � 0

}
.

The boundary of this convex set is a hypersurface whose Zariski closure
is the set of zeroes of the polynomial p(x). It would be worthwhile to
study the hypersurfaces of the special form (5.1) from the point of view of
computational algebraic geometry.

These hypersurfaces specified by eigenvalue sums of symmetric matri-
ces of linear forms have a natural generalization in terms of resultant sums

of hyperbolic polynomials. For concreteness, let us take k = 2. If p(x) and
q(x) are hyperbolic polynomials in n unknowns, with respect to a common
direction e in Rn, then the polynomial

(p ⊕ q)(x) := Rest

(
p(x − te), q(x + te)

)

is also hyperbolic with respect to e. This construction mirrors the opera-
tion of taking Minkowski sums in the context of convex polyhedra, and we
believe that it is fundamental for future studies of hyperbolicity in polyno-
mial optimization [8, 13].
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