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Abstract. A set S ⊆ Rn is called to be semidefinite programming (SDP) representable if S

equals the projection of a set in higher dimensional space which is describable by some Linear Matrix
Inequality (LMI). Clearly, if S is SDP representable, then S must be convex and semialgebraic (it
is describable by conjunctions and disjunctions of polynomial equalities or inequalities). This paper
proves sufficient conditions and necessary conditions for SDP representability of convex sets and
convex hulls by proposing a new approach to construct SDP representations.

The contributions of this paper are: (i) For bounded SDP representable sets W1, · · · , Wm, we
give an explicit construction of an SDP representation for conv(∪m

k=1Wk). This provides a technique
for building global SDP representations from the local ones. (ii) For the SDP representability of
a compact convex semialgebraic set S, we prove sufficient: the boundary ∂S is nonsingular and
positively curved, while necessary is: ∂S has nonnegative curvature at each nonsingular point. In
terms of defining polynomials for S, nonsingular boundary amounts to them having nonvanishing
gradient at each point on ∂S and the curvature condition can be expressed as their strict versus
nonstrict quasi-concavity of at those points on ∂S where they vanish. The gaps between them are
∂S having or not having singular points either of the gradient or of the curvature’s positivity. A
sufficient condition bypassing the gaps is when some defining polynomials of S satisfy an algebraic
condition called sos-concavity. (iii) For the SDP representability of the convex hull of a compact
nonconvex semialgebraic set T , we find that the critical object is ∂cT , the maximum subset of
∂T contained in ∂conv(T ). We prove sufficient for SDP representability: ∂cT is nonsingular and
positively curved, and necessary is: ∂cT has nonnegative curvature at nonsingular points. The gaps
between our sufficient and necessary conditions are similar to case (ii). The positive definite Lagrange
Hessian (PDLH) condition, which meshes well with constructions, is also discussed.

Key words. convex set, convex hull, irredundancy, linear matrix inequality (LMI), nonsingular-
ity, positive curvature, semialgebraic set, semidefinite programming (SDP) representation, (strictly)
quasi-concavity, singularity, smoothness, sos-concavity, sum of squares (SOS)
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1. Introduction. Semidefinite programming (SDP) [1, 10, 11, 15] is one of the
main advances in convex optimization theory and applications. It has a profound
effect on combinatorial optimization, control theory and nonconvex optimization as
well as many other disciplines. There are effective numerical algorithms for solving
problems presented in terms of Linear Matrix Inequalities (LMIs). One fundamental
problem in semidefinite programming and linear matrix inequality theory is what sets
can be presented in semidefinite programming. This paper addresses one of the most
classical aspects of this problem.

A set S is said to have an LMI representation or be LMI representable if

S = {x ∈ Rn : A0 +A1x1 + · · · +Anxn � 0}

for some symmetric matrices Ai. Here the notation X � 0 (≻ 0) means the matrix X
is positive semidefinite (definite). If S has an interior point, A0 can be assumed to be
positive definite without loss of generality. Obvious necessary conditions for S to be
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LMI representable are that S must be convex and basic closed semialgebraic, i.e.,

S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}

where gi(x) are multivariate polynomials. It is known that not every convex basic
closed semialgebraic set can be represented by LMI (e.g., the set {x ∈ R2 : x4

1+x
4
2 ≤ 1}

is not LMI representable [8]). If the convex set S can be represented as the projection
to Rn of

Ŝ =




(x, u) ∈ R(n+N) : A0 +

n∑

i=1

Aixi +

N∑

j=1

Bjuj � 0




 ⊂ R(n+N), (1.1)

that is S =
{
x ∈ Rn : ∃u ∈ Rn, (x, u) ∈ Ŝ

}
, for some symmetric matrices Ai and

Bj , then S is called semidefinite programming representable or SDP representable.
Sometimes we refer to a semidefinite representation as a lifted LMI representation of
the convex set S and to the LMI in (1.1) as a lifted LMI for S, and to Ŝ as the SDP
lift of S.

If S has an SDP representation instead of LMI representation, then S might not
be basic closed semialgebraic, but it must be semialgebraic, i.e., S is describable by
conjunctions or disjunctions of polynomial equalities or inequalities [3]. Furthermore,

the interior
◦

S of S is a union of basic open semialgebraic sets (Theorem 2.7.2 in [3]),

i.e.,
◦

S =
⋃m

k=1 Tk for sets of the form

Tk = {x ∈ Rn : gj1(x) > 0, · · · , gjmk
(x) > 0}.

Here gij
are all multivariate polynomials. For instance, the set

{
x ∈ R2 : ∃u ≥ 0,

[
x2 x1 − u

x1 − u 1

]
� 0

}

is not a basic semialgebraic set. When S is SDP representable, S might not be closed,
but its closure S̄ is a union of basic closed semialgebraic sets (Proposition 2.2.2 and
Theorem 2.7.2 in [3]). For example, the set

{
x ∈ R : ∃u,

[
x 1
1 u

]
� 0

}
= {x ∈ R : x > 0}

is not closed, but its closure is a basic closed semialgebraic set. The content of this
paper is to give sufficient conditions and (nearby) necessary conditions for SDP rep-
resentability of convex semialgebraic sets or convex hulls of nonconvex semialgebraic
sets.

History Nesterov and Nemirovski ([10]), Ben-Tal and Nemirovski ([1]), and Ne-
mirovsky ([11]) gave collections of examples of SDP representable sets. Thereby
leading to the fundamental question which sets are SDP representable? In §4.3.1
of his excellent ICM 2006 survey [11] Nemirovsky wrote “ this question seems to be
completely open”. Obviously, to be SDP representable, S must be convex and semi-
algebraic. What are the sufficient conditions that S is SDP representable? This is
the main subject of this paper.
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When S is a basic closed semialgebraic set of the form {x ∈ Rn : g1(x) ≥
0, · · · , gm(x) ≥ 0}, there is recent work on the SDP representability of S and its convex
hull. Parrilo [12] and Lasserre [9] independently proposed a natural construction of
lifted LMIs using moments and sum of squares techniques with the aim of producing
SDP representations. Parrilo [12] proved the construction gives an SDP representation
in the two dimensional case when the boundary of S is a single rational planar curve
of genus zero. Lasserre [9] showed the construction can give arbitrarily accurate
approximations to compact S, and the constructed LMI is a lifted LMI for S by
assuming almost all positive affine functions on S have SOS representations with
uniformly bounded degree. Helton and Nie [6] proved that this type of construction for
compact convex sets S gives the exact SDP representation under various hypotheses on
the Hessians of the defining polynomials gi(x), and also gave other sufficient conditions
for S to be SDP representable. Precise statements of most of the main theorems in
[6] can be seen here in this paper in later sections where they are used in our proofs,
see Theorems 3.1, 5.2 and 5.3.

Contributions In this paper, we prove sufficient and (nearby) necessary conditions
for the SDP representability of convex sets and convex hulls of nonconvex sets. To
obtain these conditions we give a new and different construction of SDP representa-
tions, which we combine with those discussed in [6, 9, 12]. The following are our main
contributions.

First, consider the SDP representability of the convex hull of union of setsW1, · · · ,Wm

which are all SDP representable. When every Wk is bounded, we give an explicit
SDP representation of conv(∪m

k=1Wk). When some Wk is unbounded, we show that
the closure of the projection of the constructed SDP lift is exactly the closure of
conv(∪m

k=1Wk). This is Theorem 2.2. It provides a new approach for constructing
global SDP representations from local ones, and plays a key role in proving our main
theorems in Sections §3 and §4.

Second, consider the SDP representability of a compact convex semialgebraic set
S = ∪m

k=1Tk. Here Tk = {x ∈ Rn : gk
1 (x) ≥ 0, · · · , gk

m(x) ≥ 0} are defined by
polynomials gk

i ; note each Tk here is not necessarily convex. Denote by Z(g) the zero
set of a polynomial g. Our main result for everywhere nonsingular boundary ∂S is
approximately:

Assume each Tk has interior near ∂Tk ∩ ∂S and its boundary is nonsingular (the
defining polynomials gk

i at every point u ∈ ∂S ∩ Z(gk
i ) satisfy ∇gk

i (u) 6= 0). Then
sufficient for S to be SDP representable is: every ∂S ∩ Z(gk

i ) has positive curvature
(i.e. gk

i is strictly quasi-concave on ∂S ∩Z(gk
i )), and necessary is: every irredundant

Z(gk
i ) has nonnegative curvature on ∂S (i.e. gk

i is quasi-concave at u whenever Z(gk
i )

is irredundant at u ∈ ∂S ∩ Z(gk
i )).

The notion of positive curvature we use is the standard one of differential geometry, the
notion of quasi-concave function is the usual one and all of this will be defined formally
in §3. To have necessary conditions on a family F of defining functions for S we need
an assumption that F contains no functions irrelevant to the defining of S. Our notion
of irredundancy plays a refinement of this role. The gaps between our sufficient and
necessary conditions are ∂S having positive versus nonnegative curvature and singular
versus nonsingular points. A case bypassing the gaps is that gk

i is sos-concave, i.e.,
−∇2gk

i (x) = W (x)TW (x) for some possibly nonsquare matrix polynomial W (x).
Also when ∂S contains singular points u we have additional conditions which are
sufficient: for example, adding −∇2gk

i (u) ≻ 0 where ∇gk
i (u) = 0 to the hypotheses
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of the statement above guarantees SDP representability. We emphasize that our
conditions here concern only the quasi-concavity properties of defining polynomials
gk

i on the boundary ∂S instead of on the whole set S. See Theorems 3.3, 3.4, 3.5 and
3.9 for details.

Third, consider the SDP representability of the convex hull of a compact noncon-
vex set T = ∪m

k=1Tk. Here Tk = {x ∈ Rn : fk
1 (x) ≥ 0, · · · , fk

mk
(x) ≥ 0} are defined

by polynomials fk
i (x). To obtain sufficient and necessary conditions, we find that

the critical object is the convex boundary ∂cT , the maximum subset of ∂T contained
in ∂conv(T ). Our main result for ∂cT having everywhere nonsingular boundary is
approximately:

Assume each Tk has nonempty interior near ∂cT and the defining polynomials fk
i are

nonsingular at every point u ∈ ∂cT ∩ Z(fk
i ) (i.e. ∇fk

i (u) 6= 0). Then sufficient for
conv(T ) to be SDP representable is: every ∂cT ∩ Z(fk

i ) has positive curvature (i.e.
fk

i is strictly quasi-concave on ∂cT ∩ Z(fk
i )), and necessary is: every irredundant

Z(fk
i ) has nonnegative curvature on ∂S (i.e. fk

i is quasi-concave at u whenever fk
i is

irredundant at u ∈ ∂cT ∩ Z(fk
i )).

This generalizes our second result (above) concerning SDP representability of compact
convex semialgebraic sets. Also (just as before) we successfully weaken the hypothesis
in several directions, which covers various cases of singularity. For example, one other
sufficient condition allows fk

i to be sos-concave. When Tk has empty interior, we
prove that a condition called the positive definite Lagrange Hessian (PDLH) condition
is sufficient. See Theorems 4.4, 4.5, 4.6, 4.7 and 4.8 for details.

Let us comment on the constructions of lifted LMIs. In this paper we analyze two
different types of constructions. One is a fundamental moment type relaxation due to
Lasserre-Parrilo which builds LMIs (discussed in §4), while the other is a localization
technique introduced in this paper. The second result stated above is proved in two
different ways, one of which gives a refined result:
Given a basic closed semialgebraic set S = closure of {x ∈ Rn : g1(x) > 0, · · · , gm(x) >

0} with nonempty interior. If S is convex and its boundary ∂S is positively curved and
nonsingular, then there exists a certain set of defining polynomials for S for which a
Lasserre-Parrilo type moment relaxation gives the lifted LMI for S.
See §5 for the proof. A very different construction of lifted LMI is also given in §4

using the localization technique plus a Lasserre-Parrilo type moment construction.

Notations and Outline The following notations will be used. A polynomial p(x) is
said to be a sum of squares (SOS) if p(x) = w(x)Tw(x) for some column vector poly-
nomial w(x). A matrix polynomial H(x) is said to be SOS if H(x) = W (x)TW (x) for
some possibly nonsquare matrix polynomial W (x). N denotes the set of nonnegative
integers, Rn denotes the Euclidean space of n-dimensional space of real numbers, Rn

+

denotes the nonnegative orthant of Rn. ∆m = {λ ∈ Rm
+ : λ1 + · · · + λm = 1} is

the standard simplex. For x ∈ Rn, ‖x‖ =
√∑n

i=1 x
2
i . B(u, r) denotes the open ball

{x ∈ Rn : ‖x− u‖ < r} and B̄(u, r) denotes the closed ball {x ∈ Rn : ‖x− u‖ ≤ r}.
For a given set W , W denotes the closure of W , and ∂W denotes its topological
boundary. For a given matrix A, AT denotes its transpose. In denotes the n × n
identity matrix.

The paper is organized as follows. Section 2 discusses the SDP representation of
the convex hull of union of SDP representable sets. Section 3 discusses the SDP repre-
sentability of convex semialgebraic sets. Section 4 discusses the SDP representability
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of convex hulls of nonconvex semialgebraic sets. Section 5 presents a similar version
of Theorem 3.3 and gives a different but more geometric proof based on results of [6].
Section 6 concludes this paper and makes a conjecture.

2. The convex hull of union of SDP representable sets. It is obvious the
intersection of SDP representable sets is also SDP representable, but the union might
not be because the union may not be convex. However, the convex hull of the union
of SDP representable sets is a convex semialgebraic set. Is it also SDP representable?
This section will address this issue.

Let W1, · · · ,Wm ⊂ Rn be convex sets. Then their Minkowski sum

W1 + · · · +Wm = {x = x1 + · · · + xm : x1 ∈ W1, · · · , xm ∈ Wm}

is also a convex set. If every Wk is given by some lifted LMI, then a lifted LMI for
W1 + · · · + Wm can also be obtained immediately by definition. Usually the union
of convex sets W1, · · · ,Wm is no longer convex, but its convex hull conv(∪m

k=1Wk) is
convex again. Is conv(∪m

k=1Wk) SDP representable if every Wk is? We give a lemma
first.

Lemma 2.1. If Wk are all nonempty convex sets, then

conv(

m⋃

k=1

Wk) =
⋃

λ∈∆m

(λ1W1 + · · · + λmWm)

where ∆m = {λ ∈ Rm
+ : λ1 + · · · + λm = 1} is the standard simplex.

Proof. This is a special case of Theorem 3.3 in Rockafellar [13].

Based on Lemma 2.1, given SDP representable sets W1, · · · ,Wm, it is possible to
obtain a SDP representation for the convex hull conv(∪m

k=1Wk) directly from the lifted
LMIs of all Wk under rather weak conditions. This is summarized in the following
theorem.

theorem 2.2. Let W1, · · · ,Wm be nonempty convex sets given by SDP repre-
sentations

Wk =



x ∈ Rn : ∃ u(k), A(k) +

n∑

i=1

xiB
(k)
i +

Nk∑

j=1

u
(k)
j C

(k)
j � 0





for some symmetric matrices A(k), B
(k)
i , C

(k)
j . Define a new set

C =





m∑

k=1

x(k) : ∃λ ∈ ∆m, ∃u
(k), λkA

(k) +
n∑

i=1

x
(k)
i B

(k)
i +

Nk∑

j=1

u
(k)
j C

(k)
j � 0, 1 ≤ k ≤ m



 .

(2.1)

Then we have the inclusion

conv(

m⋃

k=1

Wk) ⊆ C (2.2)

and the equality

C = conv(

m⋃

k=1

Wk). (2.3)
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In addition, if every Wk is bounded, then

C = conv(

m⋃

k=1

Wk). (2.4)

Remark: When some Wk is unbounded, C and conv(∪m
k=1Wk) might not be equal, but

they have the same interior, which is good enough for solving optimization problems
over conv(∪m

k=1Wk).
Proof. First, by definition of C, (2.2) is implied immediately by Lemma 2.1.

Second, we prove (2.3). By (2.2), it is sufficient to prove

C ⊆ conv(

m⋃

k=1

Wk).

Let x = x(1) + · · · + x(m) ∈ C; then there exist λ ∈ ∆m and u(k) such that

λkA
(k) +

n∑

i=1

x
(k)
i B

(k)
i +

Nk∑

j=1

u
(k)
j C

(k)
j � 0, 1 ≤ k ≤ m. (2.5)

Without loss of generality, assume λ1 = · · · = λℓ = 0 and λℓ+1, · · · , λm > 0. Then
for k = ℓ+ 1, · · · ,m, we have 1

λk
x(k) ∈Wk and

x(ℓ+1) + · · · + x(m) = λℓ+1
1

λℓ+1
x(ℓ+1) + · · · + λm

1

λm

x(m) ∈ conv(

m⋃

k=1

Wk).

Since Wk 6= ∅, there exist y(k) ∈ Wk and v(k) such that

A(k) +

n∑

i=1

y
(k)
i B

(k)
i +

Nk∑

j=1

v
(k)
j C

(k)
j � 0.

For this and (2.5), for arbitrary ǫ > 0 small enough, we have

ǫA
(k) +

n∑

i=1

(x
(k)
i + ǫy

(k)
i )B

(k)
i +

Nk∑

j=1

(u
(k)
j + ǫv

(k)
j )C

(k)
j � 0, when 1 ≤ k ≤ ℓ (2.6)

1 − ℓǫ

1 + (m − ℓ)ǫ

{
(λk + ǫ)A(k) +

n∑

i=1

(x
(k)
i + ǫy

(k)
i )B

(k)
i +

Nk∑

j=1

(u
(k)
j + ǫv

(k)
j )C

(k)
j

}
� 0, ℓ + 1 ≤ k ≤ m.

(2.7)

Now we let

x(k)(ǫ) := x(k)+ǫy(k) (1 ≤ k ≤ ℓ), x(k)(ǫ) :=
1 − ℓǫ

1 + (m− ℓ)ǫ
(x(k)+ǫy(k)) (ℓ+1 ≤ k ≤ m),

λk(ǫ) = ǫ (1 ≤ k ≤ ℓ), λk(ǫ) =
1 − ℓǫ

1 + (m− ℓ)ǫ
(λk + ǫ) (ℓ+ 1 ≤ k ≤ m).
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In this notation (2.6)(2.7) become

λk(ǫ)A(k) +

n∑

i=1

x
(k)
i (ǫ)B

(k)
i +

Nk∑

j=1

ũ
(k)
j (ǫ)C

(k)
j � 0, 1 ≤ k ≤ m (2.8)

with ũ
(k)
j (ǫ) := (u

(k)
j + ǫv

(k)
j ). Obviously λ(ǫ) ∈ ∆m and 0 < λk(ǫ) < 1 for every

1 ≤ k ≤ m. From LMI (2.8) and from λk(ǫ) > 0 we get 1
λk(ǫ)x

(k)(ǫ) ∈ Wk for all k.

Let x(ǫ) := x(1)(ǫ) + · · · + x(m)(ǫ); then we have

x(ǫ) = λ1(ǫ)
1

λ1(ǫ)
x(1)(ǫ) + · · · + λm(ǫ)

1

λm(ǫ)
x(m)(ǫ) ∈ conv(

m⋃

k=1

Wk).

As ǫ→ 0, x(ǫ) → x, which implies x ∈ conv(
⋃m

k=1Wk).

Third, we prove (2.4). When every Wk is bounded, it suffices to show C ⊆
conv(∪m

k=1Wk). Suppose x = x(1) + · · · + x(m) ∈ C with some λ ∈ [0, 1] and u(k).
Without loss of generality, assume λ1 = · · · = λℓ = 0 and λℓ+1, · · · , λm > 0. Obvi-
ously, for every k = ℓ+ 1, · · · ,m, we have 1

λk
x(k) ∈Wk and

x(ℓ+1) + · · · + x(m) = λℓ+1
1

λℓ+1
x(ℓ+1) + · · · + λm

1

λm

x(m) ∈ conv(

m⋃

k=1

Wk).

Since Wk 6= ∅, there exist y(k) and v(k) such that

A(k) +

n∑

i=1

y
(k)
i B

(k)
i +

Nk∑

j=1

v
(k)
j C

(k)
j � 0.

Combining the above with (2.5) and observing λ1 = · · · = λℓ = 0, we obtain that

A(k) +

n∑

i=1

(y
(k)
i + αx

(k)
i )B

(k)
i +

Nk∑

j=1

(v
(k)
j + αu

(k)
j )C

(k)
j � 0, ∀α > 0, ∀ 1 ≤ k ≤ ℓ.

Hence, we must have x(k) = 0 for k = 1, · · · , ℓ, because otherwise

y(k) + [0,∞)x(k)

is an unbounded ray in Wk, which contradicts the boundedness of Wk. Thus

x = x(ℓ+1) + · · · + x(m) ∈ conv(

m⋃

k=1

Wk)

which completes the proof.
Example 2.3. When some Wk is unbounded, C and conv(∪m

k=1Wk) might not be
equal, and C might not be closed. Let us see some examples.

(i) Consider W1 =

{
x ∈ R2 :

[
x1 1
1 x2

]
� 0

}
,W2 = {0}. The convex hull conv(W1 ∪

W2) = {x ∈ R2
+ : x1 + x2 = 0 or x1x2 > 0}. However,

C =

{
x ∈ R2 : ∃ 0 ≤ λ1 ≤ 1,

[
x1 λ1

λ1 x2

]
� 0

}
= R2

+.
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C and conv(W1 ∪W2) are not equal.

(ii) Consider W1 =

{
x ∈ R2 :

[
x1 1 + x2

1 + x2 1 + u

]
� 0

}
and W2 = {0}. We have

conv(W1∪W2) = {x ∈ R2 : x1 > 0, or x1 = 0 and −1 ≤ x2 ≤ 0} and conv(W1 ∪W2) =
{x ∈ R2 : x1 ≥ 0}. But C = conv(W1 ∪W2) is not closed.

Example 2.4. Now we see some examples showing that the boundedness of
W1, · · · ,Wm is not necessary for (2.4) to hold.
(a) Consider the special case that each Wk is homogeneous, i.e., i.e., A(k) = 0 in the
SDP representation of Wk. Then by Lemma 2.1, we immediately have

C = conv(

m⋃

k=1

Wk).

(b) Consider W1 =

{
x ∈ R2 :

[
−x1 1
1 x2

]
� 0

}
,W2 =

{
x ∈ R2 :

[
x1 1
1 x2

]
� 0

}
. It

can be verified that conv(W1 ∪W2) is given by

C =

{
x+ y ∈ R2 : ∃λ ∈ ∆2,

[
−x1 λ1

λ1 x2

]
� 0,

[
y1 λ2

λ2 y2

]
� 0

}
= {x ∈ R2 : x2 > 0}.

3. Sufficient and necessary conditions for SDP representable sets. In
this section, we present sufficient conditions and necessary conditions for SDP repre-
sentability of a compact convex semialgebraic set S. As we will see, these sufficient
conditions and necessary conditions are very close with the main gaps being between
the boundary ∂S having positive versus nonnegative curvature and between the defin-
ing polynomials being singular or not on the part of the boundary where they vanish.
A case which bypasses the gaps is when some defining polynomials are sos-concave,
i.e., their negative Hessians are SOS.

Our approach is to start with convex sets which are basic semialgebraic, and to
give weaker sufficient conditions than those given in [6]: the defining polynomials are
either sos-concave or strictly quasi-concave on the part of the boundary ∂S where
they vanish (not necessarily on the whole set). And then we give similar sufficient
conditions for convex sets that are not basic semialgebraic. Lastly, we give necessary
conditions for SDP representability: the defining polynomials are quasi-concave on
nonsingular points on the part of the boundary of S where they vanish.

Let us begin with reviewing some background about curvature and quasi-concavity.
The key technique for proving the sufficient conditions is to localize to small balls con-
taining a piece of ∂S, use the strictly quasi-concave function results (Theorem 2 in
[6]) to represent these small sets, and then to apply Theorem 2.2 to patch all of these
representations together, thereby obtaining an SDP representation of S.

3.1. Curvature and quasi-concavity

We first review the definition of curvature. For a smooth function f(x) on Rn,
suppose the zero set Z(f) := {x ∈ Rn : f(x) = 0} is nonsingular at a point u ∈ Z(f),
i.e., ∇f(u) 6= 0. Then Z(f) is a smooth hypersurface near the point u. Z(f) is said
to have positive curvature at the nonsingular point u ∈ Z(f) if its second fundamental
form is positive definite, i.e.,

−vT∇2f(u)v > 0, ∀ 0 6= v ∈ ∇f(u)⊥ (3.1)
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where ∇f(u)⊥ := {v ∈ Rn : ∇f(u)T v = 0}. For a subset V ⊂ Z(f), we say Z(f) has
positive curvature on V if f(x) is nonsingular on V and Z(f) has positive curvature
at every u ∈ V . When > is replaced by ≥ in (3.1), we can similarly define Z(f) has
nonnegative curvature at u. We emphasize that this definition applies to any zero sets
defined by smooth functions on their nonsingular points. This is needed in §5. We
refer to Spivak [14] for more on curvature and the second fundamental form.

The sign “−” in the front of (3.1) might look confusing for some readers, since
Z(f) and Z(−f) define exactly the same zero set. Geometrically, the curvature of
a hypersurface should be independent of the sign of the defining functions. The
reason for including the minus sign in (3.1) is we are interested in the case where
the set {x : f(x) ≥ 0} is locally convex near u when Z(f) has positive curvature at
u. Now we give more geometric perspective by describing alternative formulations of
positive curvature. Geometrically, the zero set Z(f) has nonnegative (resp. positive)
curvature at a nonsingular point u ∈ Z(f) if and only if there exists an open set Ou

such that Z(f)∩Ou can be represented as the graph of a function φ which is (strictly)
convex at the origin in an appropriate coordinate system (see Ghomi [5]). Here we
define a function to be convex (resp. strictly convex) at some point if its Hessian is
positive semidefinite (resp. definite) at that point. Also note when Z(f) has positive
curvature at u, the set {x : f(x) ≥ 0} is locally convex near u if and only if (3.1) holds,
or equivalently the set {x : f(x) ≥ 0} ∩Ou is above the graph of function φ. Now we
prove the statements above and show such φ exists. When the gradient ∇f(u) 6= 0,
by the Implicit Function Theorem, in an open set near u the hypersurface Z(f) can
be represented as the graph of some smooth function in a certain coordinate system.
Suppose the origin of this coordinate system corresponds to the point u, and the set
{x : f(x) ≥ 0} is locally convex near u. Let us make the affine linear coordinate
transformation

x− u =
[
∇f(u) G(u)

]T
[
y
x′

]
(3.2)

where (y, x′) ∈ R × Rn−1 are new coordinates and G(u) is an orthogonal basis for
subspace ∇f(u)⊥. By the Implicit Function Theorem, since ∇f(u) 6= 0, in some
neighborhood Ou of u, the equation f(x) = 0 defines a smooth function y = φ(x′).
For simplicity, we reuse the letter f and write f(x′, y) = f(x′, φ(x′)) = 0. Since
∇f(u) is orthogonal to G(u), we have fy(0, 0) = ‖∇f(u)‖2 and ∇x′φ(0) = 0. Twice
differentiating f(x′, y) = 0 gives

∇x′x′f + ∇x′yf∇x′φT + ∇x′φ∇x′yf
T + fyy∇x′φ∇x′φT + fy∇x′x′φ = 0.

Evaluate the above at the origin in the new coordinates (y, x′), to get

∇x′x′φ(0) = −
1

‖∇f(u)‖2
∇x′x′f(u).

So we can see Z(f) has positive (resp. nonnegative) curvature at u if and only
if the function y = φ(x′) is strictly convex (resp. convex) at u. Since at u the
direction ∇f(u) points to the inside of the set {x : f(x) ≥ 0}, the intersection
{x : f(x) ≥ 0} ∩ Ou lies above the graph of φ.

The notion of positive curvature of a nonsingular hypersurface Z(f) does not
distinguish one side of Z(f) from the other. For example, the boundary of the unit ball
B̄(0, 1) is the unit sphere, a manifold with positive curvature by standard convention.
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However, B̄(0, 1) can be expressed as {x : f(x) ≥ 0} where f(x) = 1 − ‖x‖2, or
equivalently as {x : h(x) ≤ 0} where h(x) = ‖x‖2 − 1. Note that Z(f) = Z(h), but
−∇2f(x) ≻ 0 and +∇2h(x) ≻ 0.

However, on a nonsingular hypersurface Z(f) one can designate its sides by choos-
ing one of the two normal directions ±ν(x) at points x on Z(f). We call one such
determination at some point, say u, the outward direction, and then select, at each
x, the continuous function ν(x) to be consistent with this determination. In the ball
example, ∇f(x) = −2x and we would typically choose ν(x) = −∇f(x) to be the
outward normal direction to Z(f). In the more general case described below equation
(3.2), let us call −∇f(x) the outward normal, which near the origin points away from

the set {(x′, y) : y ≥ φ(x′)}. To see this, note that −∇f(0, 0) =

[
0

−‖∇f(u)‖2

]
.

We remark that the definition of positive curvature for some hypersurface Z
at a nonsingular point is independent of the choice of defining functions. Suppose
f and g are smooth defining functions such that Z ∩ B(u, δ) = Z(f) ∩ B(u, δ) =
Z(g) ∩B(u, δ),∇f(u) 6= 0 6= ∇g(u) for some δ > 0 and

{x ∈ B(u, δ) : f(x) ≥ 0} = {x ∈ B(u, δ) : g(x) ≥ 0}. (3.3)

Then the second fundamental form in terms of f is positive definite (resp. semidefi-
nite) at u if and only if the second fundamental form in terms of g is positive definite
(resp. semidefinite) at u. To see this, note that ∇f(u) = α∇g(u) for some scalar
α 6= 0, because ∇f(u) and ∇g(u) are perpendicular to the boundary of Z at u. Also
α > 0 because of (3.3). Then in the new coordinate system (y, x′) defined in (3.2), as
we have seen earlier, Z has nonnegative (resp. positive) curvature at u if and only if
the function y = φ(x′) is convex (resp. strictly convex) at u, which holds if and only
if either one of f and g has positive definite (resp. semidefinite) second fundamental
form. So the second fundamental form of f and g are simultaneously positive definite
or semidefinite.

The smooth function f(x) on Rn is said to be strictly quasi-concave at u if the
condition (3.1) holds. When ∇f(u) vanishes, we require −∇2f(u) ≻ 0 in order for
f(x) to be strictly quasi-concave at u. For a subset V ⊂ Rn, we say f(x) is strictly
quasi-concave on V if f(x) is strictly quasi-concave on every point on V . When > is
replaced by ≥ in (3.1), we can similarly define f(x) to be quasi-concave. We remark
that our definition of quasi-concavity here is slightly less demanding than the usual
definition of quasi-concavity in the existing literature (see Section 3.4.3 in [2]).

Recall that a polynomial g(x) is said to be sos-concave if −∇2g(x) = W (x)TW (x)
for some possibly nonsquare matrix polynomial W (x). The following theorem gives
sufficient conditions for SDP representability in terms of sos-concavity or strict quasi-
concavity.

theorem 3.1. (Theorem 2 [6]) Suppose S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥
0} is a compact convex set defined by polynomials gi(x) and has nonempty interior.
For each i, if gi(x) is either sos-concave or strictly quasi-concave on S, then S is SDP
representable.

3.2. Sufficient and necessary conditions on defining polynomials

In this subsection, we give sufficient conditions as well as necessary conditions for
SDP representability for both basic and nonbasic convex semialgebraic sets. These
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conditions are about the properties of defining polynomials on the part of the bound-
ary where they vanish, instead of the whole set. This is different from the conditions
given in [6]. Let us begin with a proposition which is often used later.

Proposition 3.2. Let S be a compact convex set. Then S is SDP representable
if and only if for every u ∈ ∂S, there exists some δ > 0 such that S ∩ B̄(u, δ) is SDP
representable.

Proof. “ ⇒ ” Suppose S has SDP representation

S =

{
x ∈ Rn : A +

n∑

i=1

xiBi +
N∑

j=1

ujCj � 0

}

for symmetric matrices A,Bi, Cj . Then S ∩ B̄(u, δ) also has SDP representation

{
x ∈ Rn : A +

n∑

i=1

xiBi +

N∑

j=1

ujCj � 0,

[
In x − u

(x − u)T δ2

]
� 0

}
.

“ ⇐ ” Suppose for every u ∈ ∂S the set S ∩ B̄(u, δu) has SDP representation for
some δu > 0. Note that {B(u, δu) : u ∈ ∂S} is an open cover for the compact set ∂S.
So there are a finite number of balls, say, B(u1, δ1), · · · , B(uL, δL), to cover ∂S. Note
that

S = conv(∂S) = conv(

L⋃

k=1

(∂S ∩ B̄(uk, δk)) ) ⊆ conv(

L⋃

k=1

(S ∩ B̄(uk, δk)) ) ⊆ S.

The sets S ∩ B̄(uk, δk) are all bounded. By Theorem 2.2, we know

S = conv(

L⋃

k=1

S ∩ B̄(uk, δk))

has SDP representation.

When the set S is basic closed semialgebraic, we have the following sufficient
condition for SDP representability, which strengthens Theorem 3.1.

theorem 3.3. Assume S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} is a compact
convex set defined by polynomials gi and has nonempty interior. If for every u ∈ ∂S
and i for which gi(u) = 0, gi is either sos-concave or strictly quasi-concave at u, then
S is SDP representable.
Remarks: (i) This result is stronger than Theorem 2 of [6] which requires each gi

is either sos-concave or strictly quasi-concave on the whole set S instead of only on
the boundary. (ii) The special case that some of the gi are linear is included in sos-
concave case. (iii) Later we will present a slightly weaker version of Theorem 3.3 by
using conditions on the curvature of the boundary and give a very different but more
geometric proof based on Theorems 3 and 4 in [6]. This is left in §5.

Proof. For any u ∈ ∂S, let I(u) = {1 ≤ i ≤ m : gi(u) = 0}. For every i ∈ I(u),
if gi(x) is not sos-concave, gi(x) is strictly quasi-concave at u. By continuity, there
exist some δ > 0 such that gi(x) is strictly quasi-concave on B̄(u, δ). Note gi(u) > 0
for i /∈ I(u). So we can choose δ > 0 small enough such that

gi(x) > 0, ∀ i /∈ I(u), ∀x ∈ B̄(u, δ).
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Therefore, the set Su := S ∩ B̄(u, δ) can be defined equivalently by only using active
gi, namely,

Su =
{
x ∈ Rn : gi(x) ≥ 0, ∀ i ∈ I(u), δ2 − ‖x− u‖2 ≥ 0

}
.

For every i ∈ I(u), the defining polynomial gi(x) is either sos-concave or strictly
quasi-concave on Su. Obviously Su is a compact convex set with nonempty interior.
By Theorem 3.1, Su is SDP representable. And hence by Proposition 3.2, S is also
SDP representable.

Now we turn to the SDP representability problem when S is not basic semialge-
braic. Assume S =

⋃m
k=1 Tk is compact convex. Here each Tk = {x ∈ Rn : gk

1 (x) ≥
0, · · · , gk

m(x) ≥ 0} is basic closed semialgebraic but not necessarily convex. Similar
sufficient conditions on Tk for the SDP representability of S can be established.

theorem 3.4 (Sufficient conditions for SDP representability). Suppose S =⋃m
k=1 Tk is a compact convex semialgebraic set with each

Tk = {x ∈ Rn : gk
1 (x) ≥ 0, · · · , gk

mk
(x) ≥ 0}

being defined by polynomials gk
i (x). If for every u ∈ ∂S, and each gk

i satisfying
gk

i (u) = 0, Tk has interior near u and gk
i (x) is either sos-concave or strictly quasi-

concave at u, then S is SDP representable.
Proof. By Proposition 3.2, it suffices to show that for each u ∈ ∂S there exists

δ > 0 such that the intersection S ∩ B̄(u, δ) is SDP representable. For each u ∈ ∂S,
let Ik(u) = {1 ≤ i ≤ mk : gk

i (u) = 0}. By assumption, for every i ∈ Ik(u), if gk
i (x) is

not sos-concave, gk
i is strictly quasi-concave at u. By continuity, gk

i is strictly quasi-
concave on B̄(u, δ) for some δ > 0. Note gk

i (u) > 0 for all i /∈ Ik(u). So δ > 0 can be
chosen sufficiently small so that

gk
i (x) > 0, ∀ i /∈ I(u), ∀x ∈ B̄(u, δ).

Then we can see

Tk ∩ B̄(u, δu) =
{
x ∈ Rn : gk

i (x) ≥ 0, ∀ i ∈ Ik(u), δ2 − ‖x− u‖2 ≥ 0
}
.

For every i ∈ Ik(u), the defining polynomial gk
i (x) is either sos-concave or strictly

quasi-concave on Tk ∩ B̄(u, δu). Hence, the intersection Tk ∩ B̄(u, δu) is a compact
convex set with nonempty interior. By Theorem 3.1, Tk ∩ B̄(u, δu) is SDP repre-
sentable. Therefore, by Theorem 2.2, we know

S∩B̄(u, δ) = conv(S∩B̄(u, δ)) = conv
( m⋃

k=1

Tk∩B̄(u, δ)
)

= conv
( m⋃

k=1

(
Tk∩B̄(u, δ)

) )

is also SDP representable.

If the defining polynomials of a compact convex set S are either sos-concave or
strictly quasi-concave on the part of the boundary of S where they vanish, Theorem 3.4
tell us S is SDP representable. If S is the convex hull of the union of such convex
sets, Theorem 2.2 tells us that S is also SDP representable. We now assert that this
is not very far from the necessary conditions for S to be SDP representable.

We now need give a short review of smoothness of the boundary of a set. Let
S =

⋃m
k=1 Tk and Tk = {x ∈ Rn : gk

1 (x) ≥ 0, · · · , gk
mk

(x) ≥ 0} with ∂S and ∂Tk
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denoting their topological boundaries. For any u ∈ ∂Tk(u), the active constraint set
Ik(u) = {1 ≤ i ≤ mk : gk

i (u) = 0} is nonempty.
We say u is a nonsingular point on ∂Tk if |Ik(u)| = 1 and ∇gk

i (u) 6= 0 for i ∈ Ik(u).
u is called a corner point on ∂Tk if |Ik(u)| > 1, and is nonsingular if ∇gk

i (u) 6= 0 for
every i ∈ Ik(u). For u ∈ ∂S and i ∈ Ik(u) 6= ∅, we say the defining function gk

i is
irredundant at u with respect to ∂S (or just irredundant at u if the set S is clear from
the context) if there exists a sequence of nonsingular points {uN} ⊂ Z(gk

i )∩ ∂S such
that uN → u; otherwise, we say gk

i is redundant at u. We say gk
i is nonsingular at u if

∇gk
i (u) 6= 0. Geometrically, when gk

i is nonsingular at u ∈ ∂S, gk
i being redundant at

u means that the constraint gk
i (x) ≥ 0 could be removed without changing S∩B(u, δ)

for δ > 0 small enough. A corner point u ∈ ∂Tk is said to be nondegenerate if gk
i is

both irredundant and nonsingular at u whenever i ∈ Ik(u) 6= ∅.

The following gives necessary conditions for SDP representability.
theorem 3.5. (Necessary conditions for SDP representability) If the convex set

S is SDP representable, then the following holds:

(a) The interior
◦

S of S is a finite union of basic open semialgebraic sets, i.e.,

◦

S =

m⋃

k=1

Tk, Tk = {x ∈ Rn : gk
1 (x) > 0, · · · , gk

mk
(x) > 0}

for some polynomials gk
i (x).

(b) The closure S of S is a finite union of basic closed semialgebraic sets, i.e.,

S =

m⋃

k=1

Tk, Tk = {x ∈ Rn : gk
1 (x) ≥ 0, · · · , gk

mk
(x) ≥ 0}

for some polynomials gk
i (x) (they might be different from those in (a) above).

(c) For each u ∈ ∂S and i ∈ Ik(u) 6= ∅, if gk
i from (b) is irredundant and

nonsingular at u, then gk
i is quasi-concave at u.

Remarks: (i) The proof of Theorem 3.5 only depends on the fact that S is a convex
semialgebraic set with nonempty interior, and does not use its SDP representation.
(ii) The polynomials gk

i (x) in item (b) might be different from the polynomials gk
i (x)

in item (a). We use the same notations for convenience.
Proof.
(a) and (b) can be seen immediately from Theorem 2.7.2 in [3].
(c) Let u ∈ ∂S ∩ ∂Tk. Note that S is a convex set and has the same boundary as

S.
First, consider the case that u is a smooth point. Since S is convex, ∂S has a

supporting hyperplane u + w⊥ = {u + x : wTx = 0}. S lies on one side of u + w⊥

and so does Tk, since Tk is contained in S. Since u is a smooth point, Ik(u) = {i} has
cardinality one. For some δ > 0 sufficiently small, we have

Tk ∩B(u, δ) = {x ∈ Rn : gk
i (x) ≥ 0, δ2 − ‖x− u‖2 > 0}.

Note u+w⊥ is also a supporting hyperplane of Tk passing through u. So, the gradient
∇gk

i (u) must be parallel to w, i.e., ∇gk
i (u) = αk

iw for some nonzero scalar αk
i 6= 0.

Thus, for all 0 6= v ∈ w⊥ and ǫ > 0 small enough, the point u + ǫ
‖v‖v is not in the

interior of Tk ∩B(u, δ), which implies

gk
i (u+

ǫ

‖v‖
v) ≤ 0, ∀ 0 6= v ∈ w⊥ = ∇gk

i (u)
⊥
.
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By the second order Taylor expansion, we have

−vT∇2gk
i (u)v ≥ 0, ∀ 0 6= v ∈ ∇gk

i (u)
⊥
,

that is, gk
i is quasi-concave at u.

Second, consider the case that u ∈ ∂S is a corner point. By assumption that
gk

i is irredundant and nonsingular at u, there exists a sequence of smooth points
{uN} ⊂ Z(gk

i ) ∩ ∂S such that uN → u and ∇gk
i (u) 6= 0.

So ∇gk
i (uN ) 6= 0 for N sufficiently large. From the above, we know that

−vT∇2gk
i (uN )v ≥ 0, ∀ 0 6= v ∈ ∇gk

i (uN)
⊥
.

Note that the subspace ∇gk
i (uN )

⊥
equals the range space of the matrix R(uN) where

R(v) := In −
1

∇
(
gk

i (v)
)T

∇gk
i (v)

∇gk
i (v)

(
∇gk

i (v)
)T
.

So the quasi-concavity of gk
i at uN is equivalent to

−R(uN)T∇2gk
i (uN)R(uN ) � 0.

Since ∇gk
i (u) 6= 0, we have R(uN ) → R(u) Therefore, letting N → ∞, we get

−R(u)T∇2gk
i (u)R(u) � 0,

which implies

−vT∇2gk
i (u)v ≥ 0, ∀ 0 6= v ∈ ∇gk

i (u)
⊥
,

that is, gk
i is quasi-concave at u.

We point out that in (c) of Theorem 3.5 the condition that gk
i is irredundant can

not be dropped. For a counterexample, consider the set

S =
{
x ∈ R2 : g1

1(x) := 1 − x2
1 − x2

2 ≥ 0, g1
2(x) := (x1 − 2)2 + x2

2 − 1 ≥ 0
}
.

Choose u = (1, 0) on the boundary. Then g1
2 is redundant at u. As we can see, g1

2 is
not quasi-concave at u.

By comparing Theorem 3.4 and Theorem 3.5, we can see the presented sufficient
conditions and necessary conditions are pretty close. The main gaps are between
the defining polynomials being positive versus nonnegative curvature and between
the defining polynomials being singular or not on the part of the boundary where
they vanish. A case which bypasses the gaps is when some defining polynomials are
sos-concave.

As is obvious, the set of defining polynomials for a semialgebraic set is not unique,
e.g., the set remains the same if each defining polynomial is replaced by its cubic
power. However, as we can imagine, if we use some set of defining polynomials, we
can prove the SDP representability of the set, but if we use some other set of defining
of polynomials, we might not be able to prove that. A simple example is that the set
{x : g(x) := (1 − ‖x‖2)3 ≥ 0} is obviously SDP representable but none of our earlier
theorems using g(x) only can show this set is SDP representable. This is because,
so far, we have discussed the SDP representability only from the view of the defining
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polynomials, instead of from the view of the geometric properties of the convex sets.
Sometimes, we are more interested in the conditions on the geometry of convex sets
which is independent of defining polynomials. This leads us to the next subsection of
giving conditions on the geometric properties.

3.3. Sufficient and necessary conditions on the geometry

In this subsection, to address the SDP representability of convex semialgebraic
sets, we give sufficient conditions and necessary conditions on the geometry of the
sets instead of on their defining polynomials.

A subset V ⊂ Rn is a variety if there exist polynomials p1(x), · · · , pm(x) such
that V = {x ∈ Rn : p1(x) = · · · = pm(x) = 0}. Given a variety V , define the ideal
I(V ) as

I(V ) = {p ∈ R[x] : p(u) = 0 whenever u ∈ V } .

Let the ideal I(V ) be generated by polynomials q1, · · · , qk. A point u ∈ V is said to be
a nonsingular point if the matrix [ ∂qi

∂xj
(u)] has full rank. V is said to be a nonsingular

variety if every point of V is a nonsingular point. Note that if two varieties V1, V2 are
both nonsingular at a certain point u, then their intersection variety V1 ∩ V2 might
be singular at u. A set Z ⊂ Rn is said to be Zariski open if its complement in Rn is
a variety. We refer to [3, 4] for more on algebraic varieties.

Lemma 3.6. Let S ⊂ Rn be a compact convex semialgebraic set with nonempty
interior. Then

(i) The interior
◦

S is the union of basic open semialgebraic sets, i.e.,

◦

S =

m⋃

k=1

Tk, Tk := {x ∈ Rn : gk
1 (x) > 0, · · · , gk

mk
(x) > 0}

where gk
i (x) are polynomials. Each Tk is bounded and its closure has boundary

∂Tk.
(ii) The Zariski closure Vk of each ∂Tk is the union Vk = Vk

1 ∪ Vk
2 ∪ · · · ∪ Vk

Lk
of

irreducible varieties of dimension n−1 such that Vk
i ∩∂Tk * (∪j 6=iVk

i )∩∂Tk.
We can write these as Vk

i = {x ∈ Rn : fk
i (x) = 0} for some irreducible poly-

nomials fk
i (x) such that the ideal I(Vk

i ) is generated by fk
i (x). Furthermore,

if every Vk
i containing u ∈ ∂Tk is nonsingular at u (i.e., ∇fk

i (u) 6= 0), then
for r > 0 sufficiently small we have

Tk ∩ B̄(u, r) =
( ⋂

1≤i≤Lk

Vk+
i

)
∩ B̄(u, r), Vk+

i := {x ∈ Rn : fk
i (x) ≥ 0}.

(3.4)
(iii) For u ∈ ∂S∩∂Tk∩Vk

i , we say Vk
i is irredundant at u if there exists a sequence

{uN} ⊂ ∂S converging to u such that S ∩B(uN , ǫN ) = Vk+
i ∩B(uN , ǫN ) for

some ǫN > 0. If Vk
i is nonsingular and irredundant at u, then the curvature

of Vi at u is nonnegative.
(iv) The nonsingular points in Vk

i form a Zariski open subset of Vk
i and their

complement has a lower dimension than Vk
i does.

In the above lemma, the irreducible varieties Vk
i are called the intrinsic varieties

of ∂S, and the corresponding polynomials fk
i are called the intrinsic polynomials of
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S. Note that every Vk
i is a hypersurface. The intrinsic Vk

i is called irredundant if it is
irredundant at every u ∈ ∂S ∩ ∂Tk ∩Vk

i . Vk
i is called redundant at u ∈ ∂S ∩ ∂Tk ∩Vk

i

if it is not irredundant at u. The set B = {Vk
i : 1 ≤ k ≤ m, 1 ≤ i ≤ Lk} of irreducible

varieties in (ii) above is called a boundary sheet of S. We remark that the boundary
sheet B of S is not unique.

Example 3.7. Consider the compact convex set S = {x ∈ B̄(0, 1) : x2 ≥
x2

1 or x ∈ R2
+}. Define irreducible varieties Vk

i as follows

V1
1 =

{
x ∈ Rn : 1 − ‖x‖2 = 0

}
, V1

2 =
{
x ∈ Rn : x2 − x

2
1 = 0

}

V2
1 = V1

1 , V2
2 = {x ∈ Rn : x2 = 0} , V2

3 (a) =
{
x ∈ Rn : x1 − ax

2
2 = 0

}
(0 ≤ a ≤ 1).

They are the intrinsic varieties of ∂S. For any 0 ≤ a ≤ 1, B(a) =
{
V1

1 ,V
1
2 ,V

2
1 ,V

2
2 ,V

2
3 (a)

}

is a boundary sheet of S. It is not unique. V1
1 ,V

1
2 ,V

2
1 ,V

2
2 are all irredundant, while

V2
3 (a) is redundant at the origin.

Proof of Lemma 3.6 Note that S is the closure of its interior. Pick any point
u ∈ ∂S and pick an interior point o to S. The interior points of the interval joining o
to u must lie in the interior of S and can approach its vertex u.

(i) This is the claim (a) of Theorem 3.5.

(ii) Tk is a component of

Ťk := {x : gk(x) > 0}

where gk := gk
1g

k
2 · · · g

k
mk

and is what [8] calls an algebraic interior. In other words,
any bounded basic open semialgebraic set is an algebraic interior. Lemma 2.1 of [8]
now tells us that a minimum degree defining polynomial g̃k for Tk is unique up to
a multiplicative constant. Also it says that any other defining polynomial h for Tk

equals pg̃k for some polynomial p. Thus g̃k(v) = 0 and ∇g̃k(v) = 0 implies ∇h(v) = 0.
So the singular points of h on ∂Tk contain the singular points of ∂Tk. Lemma 2.1 of
[8] characterizes the boundary of algebraic interiors. The third and fourth paragraphs
in the proof of Lemma 2.1 of [8] show that the Zariski closure of ∂Tk is a union of
irreducible varieties Vk

i each of dimension n− 1 which satisfy all requirements of (ii)
except equation (3.4). Without loss of generality, the sign of fk

i can be chosen such
that fk

i (x) is nonnegative on Tk. When every Vk
i is nonsingular at u ∈ ∂Tk∩Vk

i , there
exists r > 0 small enough such that every Vk

i is a smooth hypersurface on B̄(u, r). So
on B̄(u, r), a point v is on the boundary of Tk if and only if all fk

i (v) ≥ 0 and at least
one fk

i (v) = 0; on the other hand, v is in the interior of Tk if and only if all fk
i (v) > 0.

Therefore equation (3.4) holds.

(iii) This is implied by item (c) of Theorem 3.5.

(iv) The Vi above are irreducible algebraic varieties. Thus by Proposition 3.3.14
of [3] the desired conclusions on the nonsingular points follows. �

In terms of intrinsic varieties, our main result about SDP representability is
theorem 3.8. Let S be a compact convex semialgebraic set with nonempty inte-

rior, and B = {Vk
i : 1 ≤ k ≤ m, 1 ≤ i ≤ Lk} be a boundary sheet of S as guaranteed

by Lemma 3.6. Assume every hypersurface Vk
i in B is nonsingular on Vk

i ∩ ∂S, and
has positive curvature at u ∈ Vk

i ∩∂S whenever Vk
i is redundant at u. Then S is SDP

representable if (resp. only if) for each u ∈ ∂S ∩ Vk
i the hypersurface Vk

i has positive
(resp. nonnegative) curvature at u.

Proof. The necessary side is (iii) of Lemma 3.6. Let us prove the sufficient side.
By Proposition 3.2, it suffices to show that for every u ∈ ∂S there exists δ > 0 such
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that S ∩ B̄(u, δ) is SDP representable. Let Vk
i and fk

i be given by Lemma 3.6. Fix
an arbitrary point u ∈ ∂S and let Ik(u) = {1 ≤ i ≤ Lk : u ∈ Vk

i }. By the assumption
of nonsingularity of Vk

i on Vk
i ∩ ∂S and equation (3.4) in Lemma 3.6, there is some

δ > 0 small enough such that

S ∩ B̄(u, δ) =

m⋃

k=1

Tk ∩ B̄(u, δ)

Tk ∩ B̄(u, δ) =
{
x ∈ Rn : fk

i (x) ≥ 0, ∀i ∈ Ik(u), δ2 − ‖x− u‖2 ≥ 0
}
.

Note that fk
i are irreducible polynomials and nonsingular (their gradients do not

vanish) on Vk
i ∩ ∂S. So the positive curvature hypothesis implies that each fk

i (x) is
strictly quasi-concave on B̄(u, δ) (we can choose δ > 0 small enough to make this
true). Obviously Tk ∩ B̄(u, δ) is a bounded set. By Theorem 3.1 and Theorem 2.2,
we know S ∩ B̄(u, δ) is SDP representable.

In terms of intrinsic polynomials, the above theorem can be reformulated as
theorem 3.9. Let S be a compact convex semialgebraic set with nonempty inte-

rior, and fk
i (1 ≤ k ≤ m, 1 ≤ i ≤ Lk) be intrinsic polynomials of S as guaranteed by

Lemma 3.6. Assume every fk
i is nonsingular on Z(fk

i )∩∂S, and strict quasi-concave
at u ∈ Z(fk

i ) ∩ ∂S whenever fk
i is redundant at u. Then S is SDP representable if

(resp. only if) for each u ∈ ∂S and fk
i satisfying fk

i (u) = 0 the intrinsic polynomial
fk

i is strictly quasi-concave (resp. non-strictly quasi-concave ) at u.

Remarks: (i) In the above two theorems, we assume intrinsic varieties (resp. intrin-
sic polynomials) are positively curved (resp. strictly quasi-concave) on the part of
the boundary where they are redundant. This assumption is reasonable, because re-
dundant intrinsic varieties (resp. intrinsic polynomials) are usually not unique and
there is a freedom of choosing them. (ii) As mentioned in the introduction, under the
nonsingularity assumption, the gap between sufficient and necessary conditions is the
intrinsic varieties being positively curved versus nonnegatively curved or the intrin-
sic polynomials being strictly quasi-concave versus nonstrictly quasi-concave. A case
bypassing the gap is the intrinsic polynomials being sos-concave, as shown in Theo-
rem 3.4. Thus, in Example 3.7, we know the compact set there is SDP representable.
(iii) In Theorems 3.8 and 3.9, to prove the necessary conditions, we have only used
the convexity of S and its nonempty interior, instead of the SDP representability of
S. Thus the necessary conditions in Theorems 3.8 and 3.9 are still true when S is a
convex semialgebraic set with nonempty interior.

4. Convex hulls of nonconvex semialgebraic sets. In this section, we con-
sider the problem of finding the convex hull of a nonconvex semialgebraic set T . The
convex hull conv(T ) must be convex and semialgebraic (Theorem 2.2.1 in [3]). By
Theorem 2.7.2 in [3], the closure of conv(T ) is a union of basic closed semialgebraic
sets. A fundamental problem in convex geometry and semidefinite programming is to
find the SDP representation of conv(T ). This section will address this problem and
prove the sufficient conditions and necessary conditions for the SDP representability
of conv(T ) summarized in the Introduction.

Let T be a compact nonconvex set with boundary ∂T . Obviously conv(T ) is the
convex hull of the boundary ∂T . Some part of ∂T might be in the interior of conv(T )
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and will not contribute to conv(T ). So we are motivated to define the convex boundary
∂cT of T as

∂cT =

{
u ∈ T : ℓTu = min

x∈T
ℓTx for some ℓ ∈ Rn with ‖ℓ‖ = 1

}
⊆ ∂T. (4.1)

Geometrically, ∂cT is the maximum subset of ∂T contained in ∂conv(T ), and the
convex hull of ∂cT is still conv(T ).

Proposition 4.1. If T is compact, then conv(∂cT ) = conv(T ) and ∂cT is also
compact.

Proof. Obviously conv(∂c(T )) ⊆ conv(T ). We need to prove conv(∂c(T )) ⊇
conv(T ). It suffices to show that if u /∈ conv(∂cT ) then u /∈ conv(T ). For any
u /∈ conv(∂cT ), by the Convex Set Separation Theorem, there is a vector ℓ of unit
length and a positive number δ > 0 such that

ℓTu < ℓTx− δ, ∀x ∈ conv(∂cT ).

Let v ∈ T minimize ℓTx over T , which must exist due to the compactness of T . Then
v ∈ ∂cT and hence

ℓTu < ℓT v − δ = min
x∈T

ℓTx− δ.

Therefore, u /∈ conv(T ).
Clearly ∂cT is bounded and closed by its definition. So ∂cT is compact.

Remark: If T is not compact, then Proposition 4.1 might not be true. For instance,
for set T = {x ∈ R2 : ‖x‖2 ≥ 1}, the convex boundary ∂cT = ∅, but conv(T ) is the
whole space. When T is not compact, even if conv(∂T ) = conv(T ), it is still possible
that conv(∂cT ) 6= conv(T ). As a counterexample, consider the set

W = {(0, 0)} ∪ {x ∈ R2
+ : x1x2 ≥ 1}.

It can be verified that conv(W ) = conv(∂W ), ∂cW = {(0, 0)} and conv(∂cW ) 6=
conv(W ).

Note that every semialgebraic set is a finite union of basic semialgebraic sets
(Proposition 2.1.8 in [3]). To find the convex hull of a semialgebraic set T , by The-
orem 2.2, it suffices to find the SDP representation of the convex hull of each basic
semialgebraic subset of T .

theorem 4.2. Let T1, · · · , Tm be bounded semialgebraic sets. If each conv(Tk) is
SDP representable, then the convex hull of ∪m

k=1Tk is also SDP representable.
Proof. By Theorem 2.2, it suffices to prove that

conv(
m⋃

k=1

Tk) = conv(
m⋃

k=1

conv(Tk)).

Obviously, the left hand side is contained in the right hand side. We only prove the
converse. For every j = 1, . . . ,m, we have

conv(Tj) ⊆ conv(
m⋃

k=1

Tk).
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Now taking the union of left hand side for j = 1, . . . ,m, we get

m⋃

j=1

conv(Tj) ⊆ conv(
m⋃

k=1

Tk).

Taking the convex hull of the above on both sides results in

conv(
m⋃

j=1

conv(Tj)) ⊆ conv(
m⋃

k=1

Tk),

which implies the equality at the beginning of this proof.
Proposition 4.3. Let T be a compact semialgebraic set. Then conv(T ) is SDP

representable if for every u ∈ ∂cT , there exists δ > 0 such that conv(T ∩ B̄(u, δ)) is
SDP representable.

Proof. Suppose for every u ∈ ∂cT the set conv(T ∩ B̄(u, δu)) has SDP representa-
tion for some δu > 0. Note that {B(u, δu) : u ∈ ∂cT } is an open cover of the compact
set ∂cT . So there are a finite number of balls, say, B(u1, δ1), · · · , B(uL, δL), to cover
∂cT . Noting

conv(∂cT ) ⊆ conv(

L⋃

k=1

∂cT ∩ B̄(uk, δk)) ⊆ conv(

L⋃

k=1

conv(T ∩ B̄(uk, δk))) ⊆ conv(T ),

by Proposition 4.1, we have

conv(T ) = conv(
L⋃

k=1

conv(T ∩ B̄(uk, δk))).

The sets conv(T ∩ B̄(uk, δk)) are all bounded. By Theorem 2.2, we know conv(T ) is
SDP representable.
Remark: By Proposition 4.3, to find the SDP representation of the convex hull of
a compact set T , it is sufficient to find the SDP representations of convex hulls of
the intersections of T and small balls near the convex boundary ∂cT . This gives the
bridge between the global and local SDP representations of convex hulls.

In the following two subsections, we prove some sufficient conditions and nec-
essary conditions for the SDP representability of convex hulls. They are essentially
generalizations of Section 3 and the results in [6].

4.1. Sos-concavity or quasi-concavity conditions

In Section 3, we have proven some sufficient conditions and necessary conditions
for the SDP representability of compact convex sets. In this subsection, we prove
similar conditions for the convex hulls of nonconvex sets. Throughout this subsec-
tion, consider the semialgebraic sets which have nonempty interior (then there are
no equality defining polynomials). We begin with basic semialgebraic sets, and then
consider more general semialgebraic sets.

theorem 4.4. Assume T = {x ∈ Rn : f1(x) ≥ 0, · · · , fm(x) ≥ 0} is a compact
set defined by polynomials fi(x) and has nonempty interior near ∂cT , i.e., for every
u ∈ ∂cT and δ > 0 small enough, there exists v ∈ B(u, δ) such that fi(v) > 0 for all
i = 1, . . . ,m. If for each u ∈ ∂cT and i for which fi(u) = 0, fi(x) is either sos-concave
or strictly quasi-concave at u, then conv(T ) is SDP representable.
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Proof. By Proposition 4.3, we only need prove for every u ∈ ∂cT the set conv(T ∩
B̄(u, δ)) is SDP representable for some δ > 0. For an arbitrary u ∈ ∂cT , and let
I(u) = {1 ≤ i ≤ m : fi(u) = 0}. For any i ∈ I(u), if fi(x) is not sos-concave, fi is
strictly quasi-concave at u. By continuity, fi is strictly quasi-concave on B̄(u, δ) for
some δ > 0. Note fi(u) > 0 for all i /∈ I(u). Therefore, by continuity, the number
δ > 0 can be chosen small enough that fi(x) > 0 for all x ∈ B̄(u, δ) and i /∈ I(u).
Then we can see

Tu := T ∩ B̄(u, δ) = {x ∈ Rn : fi(x) ≥ 0, ∀ i ∈ I(u), δ2 − ‖x− u‖2 ≥ 0}.

For every i ∈ I(u), the polynomial fi(x) is either sos-concave or strictly quasi-concave
on Tu. Clearly, Tu is a compact convex set with nonempty interior. By Theorem 3.1,
we know conv(Tu) = Tu is SDP representable, since Tu is convex.

Now we consider nonbasic semialgebraic sets and give similar sufficient conditions.
theorem 4.5 (Sufficient conditions for SDP representability of convex hulls).

Assume T =
⋃L

k=1 Tk is a compact semialgebraic set with

Tk = {x ∈ Rn : fk
1 (x) ≥ 0, · · · , fk

mk
(x) ≥ 0}

being defined by polynomials fk
i (x). If for each u ∈ ∂cT and fk

i for which fk
i (u) = 0,

Tk has interior near u and fk
i is either sos-concave or strictly quasi-concave at u,

then conv(T ) is SDP representable.
Proof. By Proposition 4.3, it suffices to prove for each u ∈ ∂cT , there exists δ > 0

such that conv(T ∩ B̄(u, δ)) is SDP representable. Fix an arbitrary u ∈ ∂cT , and let
Ik(u) = {1 ≤ i ≤ mk : fk

i (u) = 0}. By assumption, if i ∈ Ik(u) and fk
i (x) is not

sos-concave, fk
i is strictly quasi-concave at u. Thus, by continuity, there exists δ > 0

so that fk
i is strictly quasi-concave on B̄(u, δ). Note that fk

i (u) > 0 for all i /∈ Ik(u).
So δ > 0 can be chosen small enough such that fk

i (x) > 0 for all x ∈ B̄(u, δ) and
i /∈ Ik(u). Then we can see that

Tk ∩ B̄(u, δu) =
{
x ∈ Rn : fk

i (x) ≥ 0, ∀ i ∈ Ik(u), δ2u − ‖x− u‖2 ≥ 0
}

is a compact convex set with nonempty interior. And, for every i ∈ Ik(u), fk
i (x)

is either sos-concave or strictly quasi-concave on B̄(u, δ). By Theorem 3.1, the set
Tk ∩ B̄(u, δu) is SDP representable. By Theorem 2.2,

conv(T ∩ B̄(u, δ)) = conv(
L⋃

k=1

Tk ∩ B̄(u, δ))

is also SDP representable.
As in Theorem 3.5, we can get similar necessary conditions on the defining poly-

nomials of the nonconvex sets.
theorem 4.6 (Necessary conditions for SDP representability of convex hulls).

Assume T =
⋃L

k=1 Tk is a compact semialgebraic set with

Tk = {x ∈ Rn : fk
1 (x) ≥ 0, · · · , fk

mk
(x) ≥ 0}

being defined by polynomials fk
i (x), and assume its convex hull conv(T ) is SDP rep-

resentable. For each u ∈ ∂cT and i ∈ Ik(u) 6= ∅, if fk
i is nonsingular and irredundant

at u with respect to ∂conv(T ), then fk
i is quasi-concave at u.
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Proof. Note that the convex hull conv(T ) is compact and T ⊂ conv(T ). By
Theorem 2.7.2 of [3], there exist basic closed semialgebraic sets TL+1, . . . , TM such
that

conv(T ) =

M⋃

k=1

Tk.

Every Tk for k = L+ 1, . . . ,M can also be defined in the form

Tk = {x ∈ Rn : fk
1 (x) ≥ 0, · · · , fk

mk
(x) ≥ 0}

for certain polynomials fk
i (x). The sets T1, . . . , TL are basic closed semialgebraic sub-

sets of conv(T ) and ∂cT ⊆ ∂conv(T ). Consider conv(T ) as the set S in Theorem 3.5.
Then the conclusion of this theorem is a direct application of item (c) of Theorem 3.5.

4.2. The PDLH condition

In the previous subsection, the nonconvex semialgebraic sets are assumed to have
nonempty interior near the convex boundary ∂cT , and so there can be no equality
defining polynomials. Now, in this subsection, we consider the more general nonconvex
semialgebraic sets which might have empty interior and equality defining polynomi-
als. Then the sufficient conditions in the preceding subsection do not hold anymore.
We need another kind of sufficient condition: the positive definite Lagrange Hessian
(PDLH) condition. As in earlier sections, begin with basic semialgebraic sets.

Assume T is a compact basic semialgebraic set of the form

T = {x ∈ Rn : f1(x) = · · · = fm1
(x) = 0, h1(x) ≥ 0, · · · , hm2

(x) ≥ 0} .

Let ∂T be the boundary of T . For u ∈ ∂T , we say T satisfies the positive definite
Lagrange Hessian (PDLH) condition at u if there exists δu > 0 such that, for every
unit length vector ℓ ∈ Rn and every 0 < δ ≤ δu, the first order optimality condition
holds at any global minimizer for the optimization problem

min
x∈Rn

ℓTx

s.t. f1(x) = · · · = fm1
(x) = 0

h1(x) ≥ 0, · · · , hm2
(x) ≥ 0

δ2 − ‖x− u‖2 ≥ 0

(4.2)

and the Hessian of the associated Lagrange function is positive definite on the ball
B̄(u, δ). To be more precise, let m = m2 + 1 and hm(x) = δ2 − ‖x − u‖2. The
associated Lagrange function of (4.2) is

L(x) = ℓTx−
m1∑

i=1

λifi(x) −
m∑

j=1

µjhj(x)

where µ1 ≥ 0, · · · , µm ≥ 0. Let v be a global minimizer of problem (4.2). Then the
PDLH condition requires

ℓ =

m1∑

i=1

λi∇fi(v) +

m∑

j=1

µj∇hj(v)
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for some λi and µj ≥ 0, and the Hessian of the Lagrange function satisfies

∇2L(x) = −
m1∑

i=1

λi∇
2fi(x) −

m∑

j=1

µj∇
2hj(x) ≻ 0, ∀x ∈ B̄(u, δ).

Remark: The defined PDLH condition here is stronger than the PDLH condition
defined in [6]. This is because the PDLH condition in [6] is defined for convex sets
described by concave functions. However, in this paper, the set T here is nonconvex.
We need stronger assumptions.

The next theorem is an extension of Theorem 1.1 in [6] to give sufficient conditions
assuring the SDP representability of conv(T ).

theorem 4.7. Let T = {x ∈ Rn : f1(x) = · · · = fm1
(x) = 0, h1(x) ≥

0, · · · , hm2
(x) ≥ 0} be a compact set defined by polynomials. If the PDLH condi-

tion holds at every u ∈ ∂cT , then conv(T ) is SDP representable.
Proof. By Proposition 4.3, we only need prove for every u ∈ ∂cT , there exists

δ > 0 such that conv(T ∩ B̄(u, δ)) is SDP representable. Let δ = δu > 0 be given by
the PDLH condition and define Tu = T ∩ B̄(u, δ). We now prove conv(Tu) is SDP
representable.

First, we construct the lifted LMI for Tu. Let m = m2 +1 and hm(x) = δ2−‖x−
u‖2. For integer N , define the monomial vector

[xN ] =
[
1 x1 · · · xn x2

1 x1x2 · · · xN
n

]T
.

Define new polynomials hν(x) = hν1

1 (x) · · · hνm
m (x), where ν = (ν1, · · · , νm) ∈ Zm

+ .
Let dν = ⌈deg(hν1

1 · · ·hνm
r )/2⌉ and dk = ⌈deg(fk)/2⌉. For a fixed integer N ≥ dν , dk,

define

MN−dν (hν
y) =

∫

Rn

h
ν(x)[xN−dν ][xN−dν ]T dµ(x) =

∑

0≤|α|≤2N

A
ν
αyα

f
T
k y =

∫

Rn

fk(x) dµ(x) =
∑

0≤|α|≤2dk

f
k
αyα.

Here µ(·) can be any nonnegative measure such that µ(Rn) = 1, yα =
∫

Rn x
αdµ(x)

are the moments, Aν
α are symmetric matrices, and fk

α are scalars such that

h
ν(x)[xN−dν ][xN−dν ]T =

∑

0≤|α|≤2N

A
ν
αx

α

fk(x) =
∑

0≤|α|≤2dk

f
k
αx

α
.

If supp(µ) ⊆ T , then we have y0 = 1 and

∀ ν ∈ {0, 1}m, MN−dν
(hνy) � 0

∀ 1 ≤ k ≤ m, fT
k y = 0

}
.

Let ei denote the standard i-th unit vector in Rn. If we set y0 = 1 and yei
= xi in

the above LMI, then it becomes the LMI

∀ ν ∈ {0, 1}m, Aν
0 +

∑
1≤i≤n

Aν
ei
xi +

∑
1<|α|≤2N

Aν
αyα � 0

∀ 1 ≤ k ≤ m, fk
0 +

∑
1≤i≤n

fk
ei
xi +

∑
1<|α|≤2dk

fk
αyα = 0




. (4.3)
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Obviously, the projection of LMI (4.3) to x-space contains conv(Tu).

Second, we prove that every linear polynomial nonnegative on Tu has an SOS
representation with uniform degree bound. Given any ℓ ∈ Rn with ‖ℓ‖ = 1, let ℓ∗ be
the minimum value of ℓTx over Tu and v ∈ Tu be a global minimizer. By the PDLH
condition, there exist Lagrange multipliers λ1, · · · , λm1

and µ1 ≥ 0, · · · , µm ≥ 0 such
that

ℓ =

m1∑

i=1

λi∇fi(v) +

m∑

j=1

µj∇hj(v)

and the Hessian of the Lagrange function satisfies

∇2L(x) = −
m1∑

i=1

λi∇
2fi(x) −

m∑

j=1

µj∇
2hj(x) ≻ 0, ∀x ∈ B̄(u, δ).

Since the Lagrange multipliers λi and µj are continuous functions of ℓ on the unit
sphere, there must exist constants M > ǫ > 0 such that for all x ∈ B(u, δ)

MIn �

∫ 1

0

∫ t

0

∇2L(v + s(x− v))ds dt � ǫIn.

By Theorem 27 in [6], there exist SOS matrix polynomials Gν(x) such that

∫ 1

0

∫ t

0

∇2L(v + s(x− v))ds dt =
∑

ν∈{0,1}m

hν1

1 (x) · · · hνm

m (x)Gν (x)

and the degrees of summand polynomials are bounded by

deg(hν1

1 (x) · · · hνm

m (x)Gν (x)) ≤ Ω(
M

ǫ
).

Here Ω(·) is a function depending on Tu. Let fℓ(x) = L(x) − ℓ∗. Then fℓ(v) = 0 and
∇fℓ(v) = 0. By Taylor expansion, we have

fℓ(x) = (x − v)T

(∫ 1

0

∫ t

0

∇2L(v + s(x− v))ds dt

)
(x− v)

=
∑

ν∈{0,1}m

φν(x)hν1

1 (x) · · ·hνm

m (x)

where φν(x) = (x− v)TGν(x)(x − v) are SOS scalar polynomials. Since µj ≥ 0, let

σν(x) = φν(x) +

{
µj if ν = ej

0 otherwise

be new SOS polynomials. Then we have

ℓTx− ℓ∗ =

m1∑

k=1

λkfk(x) +
∑

ν∈{0,1}m

σν(x)hν1

1 (x) · · · hνm

m (x).

There is a uniform bound N independent of ℓ such that

deg(fk(x)), deg(hν1

1 (x) · · · hνm

m (x)σν (x)) ≤ 2N. (4.4)
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Third, we will show that (4.3) is an SDP representation for conv(Tu) when N
is given by (4.4). In the above, we have actually shown that a property called
Schmüdgen’s Bounded Degree Nonnegative Representation (S-BDNR) (see Helton and
Nie [6]) holds, i.e., every affine polynomials ℓTx− ℓ∗ nonnegative on T belongs to the
preordering generated by the f ′

is and h′js with uniform degree bounds. This implies
a weaker property called the Schmüdgen’s Bounded Degree Representation (S-BDR)
(see Lasserre [9]) holds, i.e., almost every affine polynomials ℓTx − ℓ∗ positive on T
belongs to the preordering generated by the f ′

is and h′js with uniform degree bounds.
So Theorem 2 in [9] can be applied to show that the LMI (4.3) is a SDP representation
of conv(T ). For the convenience of readers, we give the direct proof here. Since the
projection of (4.3) to x-space contains conv(Tu), it is sufficient to prove the converse.
In pursuit of a contradiction, suppose there exists a vector (x̂, ŷ) satisfying (4.3) such
that x̂ /∈ conv(Tu). By the Hahn-Banach Separation Theorem, there must exist a unit
length vector ℓ such that

ℓT x̂ < ℓ∗ = min ℓTx
s.t. f1(x) = · · · fm1

(x) = 0
h1(x) ≥ 0, · · · , hm(x) ≥ 0.

(4.5)

Let v be the minimizer of ℓTx on Tu; of course v ∈ ∂Tu. By the PDLH condition,
there exist Lagrange multipliers λ1, · · · , λm1

and µ1, · · · , µm ≥ 0 such that

ℓ =

m1∑

i=1

λi∇fi(v) +
m∑

j=1

µj∇hi(v), µjhj(v) = 0, ∀ j = 1, · · · ,m.

As we have proved earlier, the identity

ℓTx− ℓ∗ =

m1∑

k=1

λkfk(x) +
∑

ν∈{0,1}m

σν(x)hν1

1 (x) · · ·hνm

m (x)

holds for some SOS polynomials σν(x) with uniform degree bound

deg(σν(x)hν1

1 (x) · · ·hνm
m (x)) ≤ 2N.

Thus we can write σν(x) = [xN−dν ]TWν [xN−dν ] for some symmetric positive semidef-
inite matrix Wν � 0. In the above identity, replace each monomial xα with |α| > 1
by ŷα, then we get, for ŷ0 = 1 and every ŷei

= x̂i, . . . ,

ℓT x̂− ℓ∗ =

m1∑

k=1

λk




∑

0≤|α|≤2dk

fk
αŷα



 +
∑

ν∈{0,1}m

Trace



Wν ·
( ∑

0≤|α|≤2N

Ai
αŷα

)


 ≥ 0,

which contradicts (4.5).

theorem 4.8. Let T =
⋃L

k=1 Tk be a compact semialgebraic set where

Tk = {x ∈ Rn : fk,1(x) = · · · = fk,mk,1
(x) = 0, hk,1(x) ≥ 0, · · · , hk,mk,2

(x) ≥ 0}.

If for each Tk, the PDLH condition holds at every u ∈ ∂cT ∩ ∂Tk, then conv(T ) is
SDP representable.

Proof. By Proposition 4.3, it suffices to prove for each u ∈ ∂cT , conv(T ∩ B̄(u, δ))
is SDP representable for some δ > 0. Fix an arbitrary u ∈ ∂cT . Let I(u) = {1 ≤ k ≤
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L : u ∈ ∂Tk}. Then, by assumption, the PDLH condition holds at u for every Tk with
k ∈ I(u), and thus the radius δ > 0 required in the PDLH condition can be chosen
uniformly for all k ∈ I(u) since I(u) is finite. Hence we have

conv(T ∩ B̄(u, δ)) = conv(
⋃

k∈I(u)

Tk ∩ B̄(u, δ)) = conv(
⋃

k∈I(u)

conv(Tk ∩ B̄(u, δ))).

By the proof of Theorem 4.7, the set conv(Tk ∩ B̄(u, δ)) is SDP representable. There-
fore, by Theorem 2.2, conv(T ∩ B̄(u, δ)) is also SDP representable.
Remark: It should be mentioned that the PDLH condition is a very strong condition.
It requires that, when every linear functional is minimized over the nonconvex set T ∩
B̄(u, δ), the first order KKT condition holds and that the Hessian of the Lagrangian is
positive definite at the minimizer. This might restrict the applications of Theorem 4.8
in some cases.

5. A more geometric proof of Theorem 3.3. For which set S does there exist
a set of defining polynomials for which the Lasserre-Parrilo type moment relaxations
produce an SDP representation of S? The major challenge is that while S may be
presented to us by polynomials for which the Lasserre-Parrilo type constructions fail,
there might exist another set of defining polynomials for which such a construction
succeeds. This requires us to be able to find a set of defining polynomials such that
the Lasserre-Parrilo type constructions work.

This section presents a very different approach to proving a similar version of
Theorem 3.3, since what we did there used the localization technique heavily. We
shall show here that the Lasserre-Parrilo type moment construction gives an SDP
representation by using a certain set of defining polynomials. The proof we shall give,
based on Theorems 3 and 4 of Helton and Nie [6] and on the proof of a proposition
of Ghomi [5] (on smoothing boundaries of convex sets), is also very geometrical.

For the convex set S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}, define Si = {x ∈
Rn : gi(x) ≥ 0} and Zi = {x ∈ Rn : gi(x) = 0}. The zero set Zi is a hypersurface.
Suppose Zi does not intersect the interior of S. Then Zi ∩ S = Zi ∩ ∂S and so is
contained in the boundary of S.

In addition to the definition of positive curvature, we need a hypothesis about the
shape of Zi ∩ ∂S. We say Zi ∩ ∂S has strictly convex shape with respect to S if there
exists a relative open subset Yi ⊂ Zi containing Zi ∩ ∂S such that for every p ∈ Y i

the set S ∪ Y i lies in one side of the tangent plane Tp(Zi) of Zi at p, and does not
touch Tp(Zi) except p, that is, Tp(Zi)∩ (S ∪Y i) ⊆ {p}. The notion of strictly convex
shape follows the notion of strictly convex hypersurface introduced in Ghomi [5].

theorem 5.1. Let S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} be a compact
convex set defined by polynomials gi and assume S has nonempty interior. Assume
gi(x) > 0 whenever x is in the interior of S, ∇gi(u) 6= 0 whenever u ∈ Zi ∩ S, and
Zi ∩ ∂S has strictly convex shape with respect to S when gi(x) is not sos-concave. If
for each u ∈ ∂S and every i such that gi(u) = 0 we have either gi is sos-concave or Zi

has positive curvature at u, then S is SDP representable. Moreover, there is a certain
set of defining polynomials for S for which the Lasserre-Parrilo moment construction
(5.4) and (5.6) given in [6] gives an SDP representation.

5.1. Background from [6]

First we review some results of [6] with slight modification of notation used in
the original version. For a smooth function f(x), the set {x ∈ Rn : f(x) ≥ 0} is
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called poscurv-convex if it is compact convex, and its boundary ∂T equals Z(f) =
{x ∈ Rn : f(x) = 0} which is smooth (∇f(x) does not vanish on ∂T ) and positively
curved at every point u ∈ Z(f). When f(x) is restricted to be a polynomial, the set
{x ∈ Rn : f(x) ≥ 0} is said to be sos-convex if f(x) is sos-concave.

theorem 5.2. (Theorem 3 [6]) Given polynomials gi, suppose S = {x ∈ Rn :
g1(x) ≥ 0, · · · , gm(x) ≥ 0} is compact convex and has nonempty interior. If each
Si := {x ∈ Rn : gi(x) ≥ 0} is either sos-convex or poscurv-convex, then S is SDP
representable.

We now turn to more general cases. Recall that Zi = {x ∈ Rn : gi(x) = 0}.
We say Si = {x ∈ Rn : gi(x) ≥ 0} is extendable poscurv-convex with respect to S if
gi(x) > 0 whenever x lies in the interior of Si and there exists a poscurv-convex set
Ti = {x : fi(x) ≥ 0} ⊇ S such that ∂Ti ∩S = ∂Si ∩S. In other words, Zi ∩∂S can be
extended to become the boundary of a poscurv-convex set. Note that the condition
of extendable poscurv-convexity of Si requires Zi does not intersect the interior of S.

theorem 5.3. (Theorem 4 [6]) Given polynomials gi, suppose S = {x ∈ Rn :
g1(x) ≥ 0, · · · , gm(x) ≥ 0} is compact convex and has nonempty interior. If each Si

is either sos-convex or extendable poscurv-convex with respect to S, then S is SDP
representable.

We re-emphasize that the proofs of these theorems in [6] provide a new set of defin-
ing polynomials for S (possibly bigger than the original set) for which the Lasserre-
Parrilo type moment constructions (5.4) and (5.6) given in [6] also produce SDP
representations of S.

Comparing Theorems 5.3 and 5.1, we can see that Theorem 5.3 implies Theo-
rem 5.1 if we can show Si is extendable poscurv-convex with respect to S provided Zi

has positive curvature on S. The main task of this section is to prove this point and
what is new to the proof is mostly in the facts about convex sets which we now turn
to.

5.2. Smoothing boundaries of convex sets

We begin with some notations. Let Tp(M) denote the tangent plane at p to a
smooth hypersurface M without boundary. Sometimes we need the tangent plane on
a hypersurface M with boundary, but this will not be a problem for us, because M
encountered in this section will be always contained in another smooth hypersurface
M̃ without boundary. In this case, we still use the notation Tp(M) rather than Tp(M̃).
For a point p ∈ Rn and a set B ⊂ Rn, define the distance

dist(p,B) = inf{‖p− b‖2 : b ∈ B}.

For convex set S, the set Zi = {x ∈ Rn : gi(x) = 0} is a hypersurface in Rn and is
smooth in a relatively open subset containing Zi∩∂S = Zi∩S by the nonsingularity of
Zi∩∂S. Suppose U ⊂ Zi is relatively open and Zi∩∂S ⊂ U . Let ν : U → Sn−1 be the
Gauss map, the map given by the unit outward normal. We determine the outward
normal direction as follows. The smooth positively curved hypersurface Zi ∩ ∂S has
at each point p a unique direction ±ν(p) perpendicular to its tangent plane. The
convex set S lies in one side of the tangent planes of ∂S ∩ Zi. We select the +ν(p)
for p ∈ ∂S ∩ Zi to be pointed away from S and call this the outward direction. The
outward direction is uniquely determined by the continuity of ν(p) on U . Under
this determination of outward normal direction, for any p ∈ U , we say a set G lies
to the inside (resp. outside) of the tangent plane Tp(U) if 〈q − p, ν(p)〉 ≤ 0 (resp.
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〈q − p, ν(p)〉 ≥ 0) for all q ∈ G. Here 〈·, ·〉 denotes the standard inner product in
Euclidean spaces.

The next lemma insures the extendability property of “pieces” of the boundary
of a convex set.

Lemma 5.4. Suppose S is convex compact. Fix an index i. Assume ∇gi(u) is
nonzero for every u ∈ Zi ∩ ∂S, the curvature of Zi is positive at all u there, and Zi

does not intersect the interior of S. If Zi ∩ ∂S has strictly convex shape with respect
to S, then Si is extendable poscurv-convex with respect to S, i.e., there exists a convex
set T such that

(i) The boundary ∂T is nonsingular (so is smooth) and has positive curvature
everywhere.

(ii) T is compact, S ⊂ T and Zi ∩ ∂S = ∂T ∩ ∂S = ∂T ∩ S.
Proof of Lemma 5.4: The proof we shall give is very similar to the proof of Propo-
sition 3.3 in Ghomi [5]. We need construct a set T satisfying the conclusions of
Lemma 5.4. But our construction of T is slightly different from the one given in [5].
We proceed the proof by showing Claims A,B,C,D and E.

Claim A There exists a relatively open subset U ⊂ Zi satisfying
(1) Zi ∩ ∂S ⊂ U ;
(2) the closure U is compact;
(3) U is smooth and U has positive curvature everywhere;
(4) S ∩ U = ∂S ∩ U = Zi ∩ ∂S;
(5) the relative boundary ∂U := U r U satisfies ∂U ∩ S = ∅;
(6) for any p ∈ U , the set S ∪U lies strictly to the inside of Tp(U), that is, it lies

to the inside of Tp(U) and (S ∪ U) ∩
(
Tp(U)\{p}

)
= ∅.

Proof. We show that the set U = {x ∈ Zi : dist(x, Zi ∩ ∂S) < ǫ} satisfies all the
conditions of Claim A when ǫ > 0 is sufficiently small. Items (1), (2) are obvious.
Since ∇gi(x) does not vanish on ∂S ∩ Zi, it also does not vanish on in U when ǫ > 0
is sufficiently small. From the algebraic definition of positive curvature in (3.1), we
also know U has positive curvature when ǫ > 0 is small. So item (3) is also true.

For item (4), we know that (1) implies

Zi ∩ ∂S ⊂ ∂S ∩ U ⊂ S ∩ U.

To prove they are all equal to each other, it suffices to show S ∩ U ⊂ Zi ∩ ∂S. For
any a ∈ S ∩ U , the point a must belong to Zi ∩ ∂S, because otherwise Zi intersects
the interior of S, which contradicts an assumption of Lemma 5.4. So S ∩U ⊂ Zi ∩∂S
and then (4) holds.

Item (5) can be proved by noting that S ∩ Zi ⊂ U and

∂U ∩ S ⊆ ∂U ∩ (S ∩ Zi) ⊆ ∂U ∩ U = ∅.

Item (6) is just from the condition that Zi ∩ S has strictly convex shape with
respect to S.

Fix a relatively open set U satisfying Claim A. For any small t, define

Ut := {pt := p− tν(p)|p ∈ U}.

By continuity, its closure U t is
{
pt | p ∈ U

}
. Note that U0 = U and U0 = U . Let ∂U t

be the relative boundary of U t, that is, ∂U t = U t\Ut. Then for t small it holds that

∂U t = {pt | p ∈ ∂U}.
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By ∂U ∩ S = ∅ (condition (5) of Claim A), we have

dist(∂U, S) := min
p∈∂U

dist(p, S) > 0

as both S and ∂U are compact. By continuity of ∂U t, we have

∂U t ∩ S = ∅ ∀ t ∈ (−r, r) (5.1)

for all r > 0 small enough.

Now we give some elementary geometric facts about U and U t.

Claim B For |r| > 0 sufficiently small, we have
(i) Ur is smooth and U r has positive curvature everywhere;
(ii) U r globally lies to the inside of the tangent plane Tpr

(U r) at any pr ∈ Ur;
(iii) ν(pr) = ν(p) for all p ∈ U ;
(iv) for every p ∈ U , dist(p, U r) = dist(p, Tpr

(U r)) = r.
Proof. Items (i)-(ii) are the conclusions of paragraph 1 in the proof of Proposition

3.3 [5]. So we refer to [5] for the proof.
(iii) This is a basic fact in differential geometry, but we include a proof here since

it is brief. The hypersurface Zi has a relatively open smooth subset Ũ ⊃ U . Similarly
as before, we define

Ũt := {pt := p− tν(p)|p ∈ Ũ}.

Fix an arbitrary point p ∈ U ⊂ Ũ . Let {φ(t) : t ∈ R} ⊂ Ũ be an arbitrary smooth

curve passing through p, say, φ(0) = p. Since ν(p) is the normal to Ũ at p, we have

〈ν(p), φ′(0)〉 = 0. Then {φ(t) − rν(φ(t)) : t ∈ R} ⊂ Ũr is a smooth curve passing
through pr. The unit length condition ‖ν(φ(t))‖2

2 = 1 of normals implies

〈ν(φ(t)),∇φν(φ(t))φ′(t)〉 = 0, ∀ t.

In particular, 〈ν(φ(0)),∇φν(φ(0))φ′(0)〉 = 0. Thus we have

〈
ν(p),

d(φ(t) − rν(φ(t)))

dt

∣∣∣
t=0

〉
= 〈ν(p), φ′(0)〉 − r〈ν(φ(0)),∇φν(φ(0))φ′(0)〉 = 0.

So the curve {φ(t) − rν(φ(t)) : t ∈ R} in Ũr is also perpendicular to ν(p). By
uniqueness of unit normals of smooth hypersurfaces, we have ν(pr) = ν(p).

(iv) For every p ∈ U , (iii) says ν(pr) = ν(p). So the point p lies to the outside
of the tangent plane Tpr

(U r). Since p = pr + rν(pr) and ν(pr) is perpendicular to
Tpr

(U r) at pr, we have r = dist(p, Tpr
(U r)). From (ii), we know that U r lies to the

inside of the tangent plane Tpr
(U r). So

dist(p, Ur) ≥ dist(p, Tpr
(U r)) = r.

Since pr = p−rν(p) ∈ Ur, we obtain dist(p, Ur) ≤ r. Therefore, we have dist(p, Ur) =
dist(p, Tpr

(U r)) = r.

Claim C For any q ∈ U , the set Sr (∪0≤t<rUt) globally lies to the inside of Tqr
(Ûr)

when r is sufficiently small.
Proof. We prove this claim in three steps.
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Step 1 From item (ii) of Claim B we know the set Us lies to the inside of all the
tangent planes of Us when s > 0 is small enough. For every qt ∈ U t, the tangent
plane Tqt

(U t) always lies to the inside of the tangent plane Tqs
(Us) when 0 ≤ s ≤ t

are both small. This is because qs = qt + (t − s)ν(qt), since ν(qs) = ν(qt) from item
(iii) of Claim B. Hence for δ > 0 small enough, the set U t lies to the inside of all the
tangent planes of Us whenever 0 ≤ s ≤ t ≤ δ.

Step 2 Fix a δ > 0 sufficiently small as required in Step 1. Define the set

Wδ = S r (∪0≤t<δUt).

For η > 0 sufficiently small, it holds that

Wδ = S r (∪−η<t<δUt). (5.2)

This is because Ut for t ∈ (−η, 0) lies outside of S, due to item (6) of Claim A and
item (iii) of Claim B.

Next, we show that the set U(−η,δ) := ∪−η<t<δUt is open. For this purpose, define
function

ψ(p, t, z) :=

[
p− tν(p) − z

−gi(p)

]
, ∀ (p, t, z) ∈ Rn × (−η, δ) × Rn.

Note that its partial Jacobian is

∇(p,t)ψ(p, t, z) =

[
In − t∇pν(p) −ν(p)
−∇gi(p)

T 0

]
.

From the choice of outward normal direction, we know ν(p) = − ∇gi(p)
‖∇gi(p)‖ . So

det(∇(p,t)ψ(p, t, z)) = ‖∇gi(p)‖
(
ν(p)T (In − t∇pν(p))

−1
ν(p)

)
det (In − t∇pν(p)) .

Fix an arbitrary point pt = p− tν(p) ∈ U(−η,δ). Then ψ(p, t, pt) = 0 and ‖∇gi(p)‖ > 0
(since U is smooth). If η and δ are sufficiently small, it holds that det(∇(p,t)ψ(p, t, pt)) >
0 and hence ∇(p,t)ψ(p, t, pt)) is nonsingular. By the Implicit Function Theorem, there
exist a small open neighborhood Opt

of pt in Rn and a small open neighborhood Op,t

of (p, t) in Rn×(−η, δ) such that ψ(w, s, q) = 0 defines a smooth function (w, s) = ζ(q)
with domain Opt

and range Op,t. That is, for every q ∈ Opt
, we can find a unique

(w, s) in Op,t such that q = w − sν(w) and gi(w) = 0. If we choose the open neigh-
borhoods Opt

and Op,t sufficiently small, w must be sufficiently close to p enough so
that w ∈ U and s ∈ (−η, δ). So q ∈ U(−η,δ). This says U(−η,δ) is an open set in Rn.

Now we show that Wδ also lies to the inside of the tangent planes of Ur for all
r > 0 small enough, by generalizing the argument in the proof in Proposition 3.3 in
[5]. From the openness of ∪−η<t<δUt and compactness of S, we know Wδ is compact
from (5.2). For this purpose, define function fr : U0 ×Wδ → R as

fr(p, a) = 〈a− pr, ν(pr)〉, ∀ (p, a) ∈ U0 ×Wδ,

which is the signed distance between a and Tpr
(U r) (See [5]). By item (6) of Claim A,

for every point p ∈ U0 = U , the convex set S lies to the inside of the tangent plane
Tp(U0) and S ∩

(
Tp(U0)\{p}

)
= ∅. Since Wδ ⊂ S and Wδ ∩ U0 = ∅, we know Wδ

lies strictly to the inside of the tangent plane Tp(U0), meaning that it does not touch



30 J. William Helton and Jiawang Nie

Tp(U0). Thus f0 < 0 on the compact set U0 ×Wδ. By continuity, we know fr < 0 on
U0 ×Wδ for r > 0 small enough. This means the set Wδ lies strictly to the inside of
all the tangent planes of U r for 0 ≤ r ≤ δ sufficiently small.

Step 3 For all r ∈ (0, δ), one has

S r (∪0≤t<rUt) ⊂Wδ ∪ (∪r≤t<δUt).

From Step 1, we know ∪r≤t<δUt lies to the inside of all the tangent planes of U r.
From Step 2, we know Wδ lies to the inside of all the tangent planes of U r. So we
immediately conclude that S r (∪0≤t<rUt) lies to the inside of all the tangent planes
of Ur.

For r > 0, define two new sets

W = conv
(
U r ∪ S r (∪0≤t<rUt)

)
, K = W + B̄(0, r).

Claim D For r > 0 small enough, the set K is compact convex and

∂K ∩ ∂S = Zi ∩ ∂S.

Proof. Convexity and compactness are obvious. Note that

∂K = {b : dist(b,W ) = r}. (5.3)

First, we prove the inclusion Zi ∩ ∂S ⊂ ∂K ∩ ∂S. Suppose p ∈ Zi ∩ ∂S ⊂ U , then

dist(p, Ur) ≥ dist(p,W ),

because Ur ⊂ W . From item (ii) of Claim B we know the set U r lies to the inside
of the tangent plane Tpr

(U r), and from Claim C we know S r (∪0≤t<rUt) lies to the
inside of Tpr

(U r). Thus, by the definition of W , the set W also lies to the inside of
Tpr

(U r). Since p lies to the outside of Tpr
(U r), we have

dist(p, Tpr
(U r)) ≤ dist(p,W ).

Then from item (iv) of Claim B we can see that

r = dist(p, Ur) = dist(p, Tpr
(U r)) = dist(p,W ).

So dist(p,W ) = r and hence p ∈ ∂K∩∂S from (5.3). Hence it holds Zi∩∂S ⊂ ∂K∩∂S.
Second, we prove the reverse inclusion ∂K ∩ ∂S ⊂ Zi ∩ ∂S. Start by noting that

∂S = (Zi ∩ ∂S) ∪
(
∂S r (Zi ∩ ∂S)

)
.

We set about to prove ∂S r (Zi ∩ ∂S) lies in the interior of K. Consider a ∈ ∂S r
(Zi ∩ ∂S). If a ∈ S r (∪0≤t<rUt), then a ∈ W and hence a + B(0, r/2) ⊂ K which
implies a is in the interior of K. If a /∈ S r (∪0≤t<rUt), then a ∈ Us for some
s ∈ (0, r) because a /∈ U0. By definition of Us and Ur, there exists b ∈ Ur such
that a = b + (r − s)ν(q) for some q ∈ U0. Since b ∈ W and ‖a − b‖ = r − s, we
know a+ B(0, s/2) ⊂ b+B(0, r − s/2) ⊂ K and hence a is also in the interior of K.
Combining the above, we know ∂S r (Zi ∩ ∂S) lies in the interior of K and hence
does not intersect ∂K. Thus ∂K ∩ ∂S = ∂K ∩ (Zi ∩ ∂S) ⊂ Zi ∩ ∂S, which completes
the proof.
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The proof from here on is essentially the same as in Proposition 3.3 [5], so we
could refer to that but include here a slightly annotated version for convenience.
The next step is to define a set Kǫ which is a small perturbation of K and which
we shall prove has the properties our lemma requires. Let V ⊂ U be an open set
with Zi ∩ ∂S ⊂ V ⊂ U . Set U ′ = ν(U), and V ′ = ν(V ). Then U ′ and V ′ are
open in Sn−1, because (since the second fundamental form of U is nondegenerate)
ν is a local diffeomorphism. Let φ̄ : Sn−1 → R be a smooth function with support
supp(φ̄) ⊂ U ′, and φ̄|

V
′ ≡ 1. Let φ be the extension of φ̄ to Rn given by φ(0) = 0

and φ(p) := φ̄(p/‖p‖), when p 6= 0. Define h̄ : Rn → R by

h̄ǫ(p) := h̃ǫ(p) + φ(p)(h(p) − h̃ǫ(p)),

where h is the support function of K, that is,

h(p) := sup
x∈K

〈p, x〉

and h̃ǫ is the Schneider transform of h

h̃ǫ(p) :=

∫

Rn

h(p+ ‖p‖x)θǫ(‖x‖)dx.

Note that h̃ǫ is a convex function (see Ghomi [5]). Here θǫ : [0,∞) → [0,∞) is a
smooth function with supp(θǫ) ⊂ [ǫ/2, ǫ] and

∫
Rn θǫ(‖x‖)dx = 1. h̄ǫ supports the

convex set

Kǫ := {x ∈ Rn : 〈x, p〉 ≤ h̄ǫ(p), ∀p ∈ Rn}.

Claim E The set T = Kǫ satisfies the conclusions of Lemma 5.4 when ǫ > 0 is
sufficiently small.

Proof. (i) We show Kǫ is a convex body with support function h̄ǫ. To see this,
it suffices to check that h̄ǫ is positively homogeneous and convex. By definition, h̄ǫ

is obviously homogeneous. Thus to see convexity, it suffices to show that ∇2h̄ǫ(p) is
nonnegative semidefinite for all p ∈ Sn−1. Since h̄ǫ|Sn−1rU ′ = h̃ǫ, and h̃ǫ is convex,
we need to check this only for p ∈ U ′. To this end, note that, for each p ∈ U ′ ,
∇2(h|TpSn−1) ≻ 0. Here Tp denotes the tangent plane at p. Further, by construction,

‖h− h̄ǫ‖
C2(U

′

) → 0.

So, for every p ∈ U
′
, there exists an ǫ(p) > 0 such that h̄ǫ|TpSn−1 has strictly positive

Hessian. Since U
′
is compact and ǫ(p) depends on the size of the eigenvalues of the

Hessian matrix of h̄ǫ|TpSn−1 , which in turn depend continuously on p, it follows that

there is an ǫ > 0 such that ∇2(h̄ǫ|TpSn−1) ≻ 0 for all p ∈ U
′
.

(ii) We show that ∂Kǫ is nonsingular (hence smooth) and positively curved. By
Lemma 3.1 in Ghomi [5], we only need check ∇2(h̄ǫ|TpSn−1) ≻ 0 for all p ∈ Sn−1. For

p ∈ U ′, this was verified above. For p ∈ Sn−1 r U ′, note that h̄ǫ = h̃ǫ on the cone
spanned by Sn−1 r U ′. So it is enough to check that ∇2(h̃ǫ|TpSn−1) ≻ 0. By Lemmas
3.2 and 3.1 of Ghomi [5], this follows from the boundedness of the radii of curvature
from below.
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(iii) Obviously Kǫ is compact. We show that Zi∩∂S ⊂ ∂Kǫ. The proof is almost
the same as the one of Proposition 3.3 in [5]. Since Zi ∩ ∂S ⊂ U , which is smooth in
∂K, we have h(p) = 〈ν−1(p), p〉, for all p ∈ U ′. Apply the fact ∇h(p) = ν−1(p) to get

ν−1(p) = ∇h(p) = ∇h̄ǫ(p) = ν̄−1(p)

for all p ∈ V ′, where ν̄ is the Gauss map of ∂Kǫ (see the proof of Proposition 3.3 in
[5]). So Zi ∩ ∂S ⊂ ν̄−1(V ′) ⊂ ∂Kǫ.

(iv) We show that S ∩ ∂Kǫ = ∂S ∩ ∂Kǫ = Zi ∩ ∂S. Let A := ν̄−1(V ′). Then
A ⊂ ∂Kǫ, as shown in (iii) above. Since the Gauss map is continuous, A is a relatively
open subset of V . Obviously A ⊂ U . The proof of the inclusion “⊃” in Claim D shows
that U ⊂ ∂K. So the sets ∂Kǫ\A, ∂K\A are all compact. The set S\(∂S ∩ Zi) is
contained in the interior of K (this has been proved in the proof of Claim D), so
S ∩ ∂K = (∂S ∩ Zi) ∩ ∂K. From (iii) above, we know Zi ∩ ∂S ⊂ A and hence
S ∩ (∂K\A) = ∅. So it holds

∂S ∩ Zi ⊂ A ⊂ ∂Kǫ. (5.4)

Since Kǫ → K as ǫ → 0, it must hold that ∂Kǫ\A → ∂K\A as ǫ → 0. Thus, for
ǫ > 0 small enough, we have S ∩ (∂Kǫ\A) = ∅, which implies (by using (5.4))

S ∩ ∂Kǫ = (S ∩ (∂Kǫ\A)) ∪ (S ∩A) = S ∩A.

Then we can see

∂S ∩ Zi ⊂ ∂S ∩ ∂Kǫ ⊂ S ∩ ∂Kǫ = S ∩A ⊂ S ∩ U = ∂S ∩ Zi,

where the last equality is by item (4) of Claim A. So all the intersections above are
the same and hence we get S ∩ ∂Kǫ = ∂S ∩ ∂Kǫ = Zi ∩ ∂S.

(v) We show that S ⊂ Kǫ. Let A be the relatively open subset of V defined above.
Fix an interior point v ∈W ⊂ S ∩Kǫ. We proceed by contradiction. If S 6⊂ Kǫ, then
the interior of S is not contained in the interior of Kǫ since they are both compact.
So we can find an interior point u ∈ S but u /∈ Kǫ. Since S and Kǫ are convex, the
line segment L connecting u and v must be contained in S and intersect ∂Kǫ, say,
b ∈ L∩ ∂Kǫ. Since u, v are both in the interior of S, b must also be an interior point
of S. Thus b 6∈ ∂S ∩ Zi. We also must have b /∈ A, because S ∩ A = ∂S ∩ Zi. So
b ∈ ∂Kǫ\A. Since b ∈ L ⊂ S, we get b ∈ S ∩ (∂Kǫ\A), which is a contradiction since
S ∩ (∂Kǫ\A) = ∅, as shown in (iv) above. Therefore S must be contained in Kǫ for
ǫ > 0 sufficiently small.

Now that Claim E is proved, the proof of Lemma 5.4 is finished. �

5.3. Proof of Theorem 5.1

Given u ∈ ∂S, pick a gi for which gi(u) = 0. By assumption, if gi is not sos-
concave, then each Zi has positive curvature at all u in Zi ∩ ∂S and ∇gi(u) 6= 0. By
Lemma 5.4, Si is extendable poscurve-convex with respect to S. Apply Theorem 5.3,
noting that they produce the desired Lasserre-Parrilo type moment construction, to
finish the proof. �
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6. Conclusions. For compact convex semialgebraic sets, this paper proves the
sufficient condition for semidefinite representability: each component of the boundary
is nonsingular and has positive curvature, and the necessary condition: the boundary
components have nonnegative curvature when nonsingular. We can see that the only
gaps between them are the boundary has singular points or has zero curvature some-
where. Compactness is required in the proof for the sufficient condition, but it is not
clear whether the compactness is necessary in the general case. So far, there is no evi-
dence that SDP representable sets require more than being convex and semialgebraic.
In fact, we conjecture that

Every convex semialgebraic set in Rn is semidefinite representable.

The results of this paper are mostly on the theoretical existence of semidefintie
representations. One important and interesting future work is to find concrete con-
ditions guaranteeing efficient and practical constructions of lifted LMIs for convex
semialgebraic sets and convex hulls of nonconvex semialgebraic sets. We refer to [7]
for recent work in this area.
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