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Consider a convex set S = {x ∈ D : G(x) º 0} where G(x) is a symmetric matrix whose every entry is a
polynomial or rational function, D ⊆ Rn is a domain on which G(x) is defined, and G(x) º 0 means G(x)
is positive semidefinite. The set S is called semidefinite representable if it equals the projection of a higher
dimensional set which is defined by a linear matrix inequality (LMI). This paper studies sufficient conditions
guaranteeing semidefinite representability of S. We prove that S is semidefinite representable in the following
cases: (i) D = Rn, G(x) is a matrix polynomial and matrix sos-concave; (ii) D is compact convex, G(x) is a
matrix polynomial and strictly matrix concave on D; (iii) G(x) is a matrix rational function and q-module matrix
concave on D. Explicit constructions of semidefinite representations are given. Some examples are illustrated.
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1. Introduction Suppose S is a convex set in Rn given in the form

S = {x ∈ D : G(x) º 0}. (1.1)

Here D ⊆ Rn is a domain, and G(x) is a m × m symmetric matrix polynomial, that is, every entry of
G(x) is a polynomial in x. The notation A º 0 (resp. A Â 0) means the matrix A is positive semidefinite
(resp. definite). Suppose G(x) has total degree 2d and

G(x) =
∑

α∈Nn:α1+···+αn≤2d

Gαx
α1
1 · · ·xαn

n . (1.2)

The Gα are constant symmetric matrices. The G(x) º 0 is called a polynomial matrix inequality (PMI).
When G(x) is linear, optimizing a linear functional over S becomes a standard semidefinite programming
(SDP) problem. SDP is a very nice convex optimization problem, has many attractive properties, and
can be solved efficiently by numerical methods. We refer to [16, 23, 24]. It would be a big advantage if
an optimization problem can be formulated in SDP form. So, we are very interested in knowing when
and how the set S is representable by an SDP.

An elementary approach for this representation problem is to find symmetric matrices A0, A1, . . . , An

such that
S = {x ∈ Rn : A0 +A1x1 + · · ·+Anxn º 0}.

If such Ai’s exist, we say S has a linear matrix inequality (LMI) representation and S is LMI representable.
Unfortunately, not every convex set in Rn is LMI representable. For instance, the convex set {x ∈ R2 :
1−x4

1−x4
2 ≥ 0} is not LMI representable, as proved by Helton and Vinnikov [8]. Therefore, we are more

interested in finding a lifted LMI representation, that is, in addition to Ai, finding symmetric matrices
B1, . . . , BN such that

S =



x ∈ Rn : ∃ y ∈ RN , A0 +

n∑

i=1

Aixi +

N∑

j=1

Bjyj º 0



 . (1.3)

If such matrices Ai and Bj exist, we say S is semidefinite programming (SDP) representable or just
semidefinite representable, and (1.3) is called a lifted LMI or semidefinite representation for S. The
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variables yj are called lifting variables. Nesterov and Nemirovski [16], Ben-Tal and Nemirovski [2], and
Nemirovski [17] gave collections of convex sets that are SDP representable. Obviously, to have a lifted
LMI, a set must be convex and semialgebraic, i.e., it can be defined by a boolean combination of scalar
polynomial equalities and inequalities. However, it is unclear whether every convex semialgebraic set has
a lifted LMI or not.

When G(x) is diagonal, i.e., S is defined by scalar polynomial inequalities, there is some work on
the semidefinite representability of S. Parrilo [20] constructed lifted LMIs for planar convex sets whose
boundaries are rational planar curves of genus zero. Lasserre [11, 12] constructed lifted LMIs for convex
semialgebraic sets satisfying certain conditions like bounded degree representation (BDR). Their construc-
tions use moments and sum of squares techniques. In [5], Helton and Nie proved sufficient conditions like
sos-convexity and strict convexity, which justify lifted LMIs from moment type constructions. Later, in
[6] they further proved every compact convex semialgebraic set is SDP representable if its boundary is
nonsingular and positively curved. Recent work in this area can be found in [1, 7, 10, 13, 18, 19].

One might consider to apply the existing results for the case of scalar polynomial inequalities like in
[5, 6, 11, 12, 18] to the case of matrix polynomial inequalities. Note

S =
{
x ∈ D : pI(x) ≥ 0 ∀ I ⊂ {1, 2, . . . ,m}

}
.

Here pI(x) are principal minors of G(x) with row (or column) index I. Thus, one could think of studying
the semidefinite representability of S by using principal minors pI(x). If every pI(x) is sos-concave or
strictly concave over D, then S is SDP representable and an explicit lifted LMI would be constructed,
as shown in [5]. Unfortunately, this is generally not the case in practice. The basic reason is that the
determinants of 2×2 or bigger matrices are typically neither concave nor convex, and hence the principle
minors pI(x) would generally be neither concave nor convex. For instance, when G(x) is linear in x, the
minors pI(x) with |I| > 1 are typically not concave, while the set S is clearly LMI and SDP representable.
When G(x) has degree bigger than one, the minors pI(x) are also generally not concave, as will be shown
by examples later. Furthermore, G(x) has exponentially many principle minors, and they have much
higher degrees. This is also a big disadvantage for using them in practice. So, it is usually impractical
to study SDP representation through using principle minors. Therefore, the conditions directly on G(x)
are preferable in applications. The motivation of this paper is to construct explicit SDP representations
for S and prove sufficient conditions directly on G(x) justifying them.

In some applications, G(x) might be given as a matrix rational function, i.e., its every entry is rational.
This is often the case in control theory. When G(x) is a scalar rational function, the author in [18] studied
SDP representability of S. In [18], explicit constructions of lifted LMIs are given, and sufficient conditions
justifying them are proved. One also might consider to describe S by using polynomials only, e.g., by
multiplying denominators. However, this kind of processing might destroy matrix concavity, and usually
makes the problem more difficult. In this paper, we will construct explicit lifted LMIs for S directly
based on G(x), and prove sufficient conditions justifying them.

This paper is organized as follows. Section 2 discusses the semidefinite representation of S when D =
Rn, and G(x) is polynomial and matrix sos-concave. Section 3 discusses the semidefinite representation
of S when D is a compact convex domain, and G(x) is polynomial and strictly matrix concave on D. The
case that G(x) is rational and q-module matrix concave over D will be discussed in Section 4.

Notations. The symbol N (resp., R) denotes the set of nonnegative integers (resp., real numbers). For
any t ∈ R, dte denotes the smallest integer not smaller than t. The Rn

+ denotes the nonnegative orthant.
For x ∈ Rn, xi denotes the i-th component of x, that is, x = (x1, . . . , xn). When y is a vector indexed
by integer vectors in Nn and α ∈ Nn, yα denotes the entry of y whose index is α. For α ∈ Nn, denote
|α| = α1 + · · · + αn. For x ∈ Rn and α ∈ Nn, xα denotes xα1

1 · · ·xαn
n . For α, β ∈ Nn, denote α ≤ β if

every αi ≤ βi. The symbol N≤k denotes the multi-index set {α ∈ Nn : |α| ≤ k}. For every integer i ≥ 0,
ei denotes the i-th standard unit vector. The [x]d denotes the vector of all monomials having degrees at
most d with respect to graded lexicographical ordering, that is,

[x]Td = [ 1 x1 · · · xn x2
1 x1x2 · · ·x2

n · · · xd
1 xd−1

1 x2 · · · xd
n ].

A polynomial p(x) is said to be a sum of squares (sos) if there exist finitely many polynomials qi(x)
such that p(x) =

∑
qi(x)

2. A matrix polynomial H(x) is called sos if there is a matrix polynomial F (x)
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such that H(x) = F (x)TF (x). A polynomial f(x) is called sos-convex if its Hessian is sos, and f(x) is
sos-concave if −f(x) is sos-convex. For a set S, int(S) denotes its interior, and ∂S denotes its boundary.
For u ∈ RN , ‖u‖2 denotes the standard Euclidean norm. For a matrix X, XT denotes its transpose,
‖X‖F denotes the Frobenius norm of X, i.e., ‖X‖F =

√
Trace(XTX), and ‖X‖2 denotes the standard

operator 2-norm of X. The symbol • denotes the standard Frobenius inner product of matrix spaces,
and IN denotes the N ×N identity matrix. For a function f(x), Z(f) = {x ∈ Rn : f(x) = 0}, ∇xf(x)
denotes its gradient with respect to x, and ∇xxf(x) denotes its Hessian with respect to x.

2. Matrix sos-concavity This section assumes the domain D = Rn is the whole space and G(x)
is an m×m symmetric matrix polynomial of degree 2d. We will first construct an SDP relaxation for S
using moments, and then prove it is a correct lifted LMI when G(x) satisfies certain conditions.

A natural SDP relaxation of S can be obtained through using moments. Define linear matrix pencils
G(y) and Ad(y) as

G(y) =
∑

α∈N≤2d

yαGα, Ad(y) =
∑

α∈N≤2d

yαA
(d)
α ,

where Gα are from (1.2) and A
(d)
α are such that

[x]d[x]
T
d =

∑

α∈N≤2d

xαA(d)
α . (2.1)

Since S =
{
x ∈ Rn : G(x) º 0, [x]d[x]

T
d º 0

}
, we know

S = {(ye1 , . . . , yen) ∈ Rn : ∃x ∈ Rn, yα = xα ∀α ∈ N≤2d, G(y) º 0, Ad(y) º 0} .
Here, each ei denotes the i-th standard unit vector whose only nonzero entry is one at index i. If the
condition yα = xα is removed in the above, then S is a subset of

L =

{
x ∈ Rn

∣∣∣∣∣
∃ y ∈ R(n+2d

2d ), G(y) º 0, Ad(y) º 0,
y0 = 1, x1 = ye1 , . . . , xn = yen

}
. (2.2)

So, S ⊆ L. Does S = L? What conditions make S = L? We look for sufficient conditions guaranteeing
S = L.

The matrix-valued function G(x) is called matrix concave over a convex domain D if for all u, v ∈ D
and 0 ≤ θ ≤ 1 it holds that

G(θu+ (1− θ)v) º θG(u) + (1− θ)G(v).

In the above, when D = Rn, we just say G(x) is matrix concave. The matrix concavity of G(x) over D
is equivalent to

−∇xx(ξ
TG(x)ξ) º 0 ∀ ξ ∈ Rm, ∀x ∈ D.

We would like to point out that G(x) might not be matrix concave while S is still convex. For instance,
the quadratic polynomial matrix inequality

Q(x) :=



x1x2 + 2 x1x2 0
x1x2 x1x2 − 1 0
0 0 x1 + x2


 º 0

defines the convex set {x ∈ R2
+ : x1x2 ≥ 2}, but Q(x) is not matrix concave on R2

+.

Generally, it is difficult to check matrix concavity. Even for the simple case of quadratic matrix
polynomials, the problem is already NP-hard, as shown below.

Proposition 2.1 It is NP-hard to check the matrix concavity of quadratic matrix polynomials.

Proof. Let m = 1
2m(m + 1). For any symmetric matrices A1, . . . , Am ∈ Rm×m and B1, . . . , Bm ∈

Rn×n, define the matrix polynomial

G(x) = −1

2

m∑

i=1

(xTBix)Ai.
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Then we have

−∇xx(ξ
TG(x)ξ) =

m∑

i=1

(ξTAiξ)Bi.

So, G(x) is matrix concave if and only if the following bi-quadratic form in (ξ, z)

m∑

i=1

(ξTAiξ)(z
TBiz)

is nonnegative everywhere. It has been proven in [14] that it is NP-hard to check the nonnegativity of
bi-quadratic forms. Therefore, it must also be NP-hard to check the matrix concavity of quadratic G(x).
¤

A stronger but easier checkable condition than matrix concavity is the so called matrix sos-concavity.
We say G(x) is matrix sos-concave if for every ξ ∈ Rm there exists a matrix polynomial Fξ(x) in x such
that

−∇xx(ξ
TG(x)ξ) = Fξ(x)

TFξ(x). (2.3)

The above Fξ(x) has n columns but its number of rows might be different from n, and its coefficients of
xα depend on ξ. Note that when G(x) is quadratic, G(x) is matrix concave if and only if it is matrix
sos-concave. This is because −∇xx(ξ

TG(x)ξ) is independent of x, and for fixed ξ it is positive semidefinite
if and only if it is sos (Cholesky factorization).

Theorem 2.2 Suppose G(x̃) Â 0 for some x̃. If G(x) is matrix sos-concave, then S = L.

Proof. We have already seen S ⊆ L, so it suffices to prove the reverse containment. Suppose
otherwise L 6= S, then there must exist a point x̂ ∈ L/S. Since S is closed and convex, by Hahn-Banach
Theorem, there exists a supporting hyperplane H = {x ∈ Rn : aTx ≥ b} ⊇ S such that aTu = b for some
u ∈ S and aT x̂ < b. Consider the linear optimization problem

min
x∈Rn

aTx subject to G(x) º 0. (2.4)

Clearly u is a minimizer and b is the optimal value. The optimization problem (2.4) is convex. The
existence of x̃ with G(x̃) Â 0, i.e., the Slater’s condition holds, implies there exists a matrix Lagrange
multiplier Λ º 0 such that

Λ •G(u) = 0, a = ∇x(Λ •G(x))
∣∣∣
x=u

.

The value and gradient of aTx− Λ •G(x)− b vanish at u. Then, by the Taylor expansion at u, we have

aTx− Λ •G(x)− b = (x− u)T
(∫ 1

0

∫ t

0

−∇xx(Λ •G(u+ s(x− u)) ds dt

)
(x− u).

Since Λ º 0, there exist vectors λ(k) such that Λ =
∑K

k=1 λ
(k)(λ(k))T . So, we have

aTx− Λ •G(x)− b =

K∑

k=1

(x− u)T
(∫ 1

0

∫ t

0

−∇xx((λ
(k))TG(u+ s(x− u))λ(k) ds dt

)
(x− u).

Since G(x) is matrix sos-concave, by Lemma 7 in [5], we know each summand in the above must be sos.
Thus aTx−Λ•G(x)−b must also be an sos polynomial of degree 2d. So, there exists a symmetric matrix
W º 0 such that the identity

aTx− Λ •G(x)− b = [x]Td W [x]d = W • ([x]d[x]Td
)

holds. By definition of matrices A
(d)
α in (2.1), we have

aTx− Λ •G(x)− b = W •

 ∑

α∈N≤2d

xαA(d)
α


 .
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Figure 1: The drawn body is the convex set in Example 2.3.

Since x̂ ∈ L, there exists ŷ such that x̂ = (ŷe1 , . . . , ŷen), G(ŷ) º 0 and Ad(ŷ) º 0. So, if we replace x̂α by
ŷα in the above identity, then

aT x̂− Λ • G(ŷ)− b = W •

 ∑

|α|≤2d

ŷαA
(d)
α


 = W • Ad(ŷ),

or equivalently
aT x̂− b = Λ • G(ŷ) +W • Ad(ŷ).

Since Λ,G(ŷ),W,Ad(ŷ) º 0, we must have aT x̂ − b ≥ 0, which contradicts the previous assertion that
aT x̂− b < 0. So, S = L. ¤

Example 2.3 Consider the set S =
{
x ∈ R3 : G(x) º 0

}
where

G(x) =



2− x2

1 − 2x2
3 1 + x1x2 x1x3

1 + x1x2 2− x2
2 − 2x2

1 1 + x2x3

x1x3 1 + x2x3 2− x2
3 − 2x2

2


 .

The Hessian −∇xx(ξ
TG(x)ξ) is positive semidefinite for all ξ ∈ R3. This is because

−1

2
∇xx(ξ

TG(x)ξ) =



ξ21 + 2ξ22 −ξ1ξ2 −ξ1ξ3
−ξ1ξ2 ξ22 + 2ξ23 −ξ2ξ3
−ξ1ξ3 −ξ2ξ3 ξ23 + 2ξ21


 º 0 ∀ ξ ∈ R3,

which is due to the fact that the bi-quadratic form zT
(− 1

2∇xx(ξ
TG(x)ξ)

)
z in (z, ξ)

z21ξ
2
1 + z22ξ

2
2 + z23ξ

2
3 + 2(z21ξ

2
2 + z22ξ

2
3 + z23ξ

2
1)− 2(z1z2ξ1ξ2 + z1z3ξ1ξ3 + z2z3ξ2ξ3)

is nonnegative everywhere, as shown by Choi [3]. So, this G(x) is matrix sos-concave, because for every
fixed ξ the Hessian −∇xx(ξ

TG(x)ξ) is a constant matrix which is positive semidefinite and must be sos.
Thus, we know S is convex and by Theorem 2.2 a lifted LMI for it is





x ∈ R3 : ∃ yα (α ∈ N≤2) such that

2− y200 − 2y002 1 + y110 y101

1 + y110 2− y020 − 2y200 1 + y011
y101 1 + y011 2− y002 − 2y020


 º 0,




1 x1 x2 x3

x1 y200 y110 y101
x2 y110 y020 y011
x3 y101 y011 y002


 º 0





. (2.5)

A picture of the set S is in Figure 1. It would be drawn by finding its boundary points in various directions
sampled on the unit sphere, e.g., by making a fine enough grid. ¤
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Figure 2: The shaded area is the convex set in Example 2.5, and the curve is detG(x) = 0.

The matrix sos-concavity condition requires checking the Hessian

−∇xx(ξ
TG(x)ξ)

is sos for every ξ ∈ Rm. This is almost impossible in applications. However, a stronger condition called
uniformly matrix sos-concave is

−∇xx(ξ
TG(x)ξ) = F (ξ, x)TF (ξ, x),

where F (ξ, x) is now a matrix polynomial in joint variables (ξ, x). It is easier to check. The uniform
matrix sos-concavity can be verified by solving a single SDP feasibility problem (see Section 3 of [5]).
Clearly, the following is a consequence of Theorem 2.2.

Corollary 2.4 Suppose G(x̃) Â 0 for some x̃ . If G(x) is uniformly matrix sos-concave, then S = L.

It should be pointed out that when G(x) is matrix sos-concave, it is not necessarily that G(x) is
uniformly matrix sos-concave. For a counterexample, consider the G(x) of Example 2.3. For any fixed
ξ ∈ Rm, the Hessian −∇xx(ξ

TG(x)ξ) there is independent of x (since G(x) is quadratic), and it is sos if
and only if it is positive semidefinite. But if we think of ξ as an indeterminant vector, then−∇xx(ξ

TG(x)ξ)
is not sos in ξ, as shown by Choi [3]. Now let us see an example of uniformly matrix sos-concave G(x).

Example 2.5 Consider the set S =
{
x ∈ R2 : G(x) º 0

}
where

G(x) =

[
2− 2x4

1 − 4x2
1x

2
2 − 2x4

2 3− x3
1x2 − x1x

3
2

3− x3
1x2 − x1x

3
2 5− x4

1 − 4x2
1x

2
2 − x4

2

]
.

The above G(x) is uniformly matrix sos-concave because

−∇xx(ξ
TG(x)ξ) = H1 +H2 +H3 +H4,

H1 = 2

[
2ξ1x1 + ξ2x2

2ξ1x2 + ξ2x1

] [
2ξ1x1 + ξ2x2

2ξ1x2 + ξ2x1

]T
, H2 = 8(ξ21 + ξ22)

[
x2
1 x1x2

x1x2 x2
2

]
,

H3 = 2

[
ξ1x1 ξ2x2 ξ2x1

ξ2x1 ξ1x2 ξ2x2

] [
ξ1x1 ξ2x2 ξ2x1

ξ2x1 ξ1x2 ξ2x2

]T
,

H4 = 2

((
(ξTx)2 + ξ22x

2
1

) [1 0
0 1

]
+ ξ21

[
2x2

1 + 4x2
2 0

0 3x2
1 + 3x2

2

])
.
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So, this set S is convex, and by Corollary 2.4 a lifted LMI for it is



x ∈ R2 : ∃ yij (0 ≤ i, j ≤ 4) such that

[
2− 2(y40 + 2y22 + y04) 3− (y31 + y13)

3− (y31 + y13) 5− (y40 + 3y22 + y04)

]
º 0,




1 x1 x2 y20 y11 y02
x1 y20 y11 y30 y21 y12
x2 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04



º 0





.

Let F be the above LMI. The region of x satisfying F would be plotted by function plot provided in
software YALMIP [15], which is drawn in the shaded area of Figure 2. Clearly, the boundary of S lies on
the curve detG(x) = 0, which is also drawn in Figure 2. It has two connected components. The inner
one surrounds S and is its boundary ∂S. The outer one does not touch S, because G(x) º 0 fails there.
So, Figure 2 confirms F in the above represents S. In this example, the determinant detG(x) is neither
concave nor convex. ¤

In the following, we list some classes of G(x) that is (uniformly) matrix sos-concave.

(i) Suppose G(x) is of the form

G(x) = A0(x) + f1(x)A1 + · · ·+ fk(x)Ak

where A0(x) is linear in x, every fi(x) is an sos-concave scalar polynomial, and A1, . . . , Ak º 0.
Then G(x) is uniformly matrix sos-concave because

−∇xx (ξ
TG(x)ξ) = (−∇xxf1(x))(ξ

TA1ξ) + · · ·+ (−∇xxfk(x))(ξ
TAkξ)

is sos in (x, ξ). Such an example is[
1 0
0 1

]
− x4

1

[
1 1
1 1

]
− x4

2

[
1 −1
−1 1

]
.

The determinant of the above is not concave in R2 (also not sos-concave).

(ii) Suppose G(x) is of the form

G(x) = F (x) + diag(f1(x), . . . , fm(x))

where F (x) is linear in x and each fi(x) is a scalar polynomial. For every ξ, we have

∇xx (ξ
TG(x)ξ) =

m∑

i=1

ξ2i∇xxfi(x).

Clearly, G(x) is matrix concave if and only if every fi(x) is concave, and G(x) is matrix sos-
concave if and only if every fi(x) is sos-concave, which is also equivalent to that G(x) is uniformly
matrix sos-concave. Such an example is[

x1 x2

x2 x1

]
−
[
x4
1 0
0 x4

2

]
.

Its determinant is not concave in R2 (also not sos-concave).

(iii) Suppose G(x) is of the form
G(x) = A(x)−Q(x)

where A(x) is linear in x and Q(x) is quadratic and positive semidefinite everywhere. This G(x)
must be matrix sos-concave. For every ξ, we have

−∇xx ξTG(x)ξ = ∇xx ξTQ(x)ξ.

Since Q(x) º 0 for all x, the quadratic polynomial ξTQ(x)ξ is nonnegative everywhere, and there
exists a symmetric matrix W = W (ξ) º 0 such that

ξTQ(x)ξ = xTWx, ∇xx ξTQ(x)ξ = 2W.

Thus, the G(x) is matrix sos-concave, and L in (2.2) is a lifted LMI for the set defined by

A(x)−Q(x) º 0.

This generalizes the following result: if q(x) is a nonnegative quadratic scalar polynomial, then
for any linear a(x) the set defined by

a(x)− q(x) ≥ 0

is convex and SDP representable. Such a G(x) is given in Example 2.3.
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(iv) Suppose n = 2 and G(x) is of the form

G(x) = Q1(x)−Q2(x)−Q2d(x)

where Q1(x) is linear in x, Q2(x) is quadratic in x, and Q2d(x) is homogeneous of degree 2d.
Then, for any given ξ ∈ Rm the Hessian

−∇xx (ξ
TG(x)ξ) = ∇xx (ξ

TQ2(x)ξ) +∇xx (ξ
TQ2d(x)ξ) º 0 ∀x ∈ Rn

if and only if both ∇xx (ξ
TQ2(x)ξ) and ∇xx (ξ

TQ2d(x)ξ) are positive semidefinite for every x.
The Hessian ∇xx(ξ

TQ2(x)ξ) is independent of x. Note that every bivariate homogeneous positive
semidefinite matrix polynomial is sos (see [4, Theorem 7.1]). In this case, G(x) is matrix concave
if and only if it is matrix sos-concave.

(v) Suppose n = 1, then G(x) is matrix concave if and only if

P (x) :=
(
−G′′

ij(x)
)
1≤i,j≤m

º 0 ∀x ∈ R,

which is equivalent to that P (x) is sos. This is because every univariate positive semidefinite
matrix polynomial is sos [4, Theorem 7.1]. In this case, the matrix concavity coincides with
uniform matrix sos-concavity, and G(x) º 0 defines an interval like [a, b]. Typically, the end
points a, b are algebraic (but not rational) functions of the coefficients of G. However, the
parameters of L are rational in the coefficients of G. This is interesting when a rational SDP
representation is preferable.

3. Strict matrix concavity This section assumes S = {x ∈ D : G(x) º 0} and

D = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}
is a domain defined by polynomials g1, . . . , gr. When D is compact convex and G(x) is strictly matrix
concave on D, we will show that S is semidefinite representable, and a lifted LMI for it is explicitly
constructible.

Like in the previous section, a natural SDP relaxation of S is constructible by using moments. Let
g0 ≡ 1 and

d = max {deg(G(x))/2, ddeg(gk)/2e, k = 0, 1, . . . , r} .
For every integer N ≥ d and k = 0, . . . , r, define symmetric matrices B

(N)
k,β such that

gk(x)[x]N−dk
[x]TN−dk

=
∑

β∈N≤2N

xβB
(N)
k,β , dk = ddeg(gk)/2e. (3.1)

This determines B
(N)
k,β uniquely. Then, define the linear matrix pencils B

(N)
k (y) as

B
(N)
k (y) =

∑

β∈N≤2N

yβB
(N)
k,β , k = 0, 1, . . . , r.

Clearly, S can be equivalently described as

S =

{
(ye1 , . . . , yen)

∣∣∣∣
∃x ∈ Rn, yα = xα ∀α ∈ N≤2N ,

G(y) º 0, B
(N)
k (y) º 0, k = 0, . . . , r

}
.

If the conditions yα = xα are removed in the above, then S is contained in the set

LN =

{
x ∈ Rn

∣∣∣∣∣
∃y ∈ R(n+2N

n ), y0 = 1, x1 = ye1 , . . . , xn = yen ,

G(y) º 0, B
(N)
k (y) º 0, k = 0, . . . , r

}
. (3.2)

So, we have S ⊆ LN for every N ≥ d. It is clear that LN+1 ⊆ LN , because LN+1 is a restriction of LN .
Thus, it holds the nesting containment relation:

Ld ⊇ · · · ⊇ LN ⊇ LN+1 ⊇ · · · ⊇ S.

Does there exist a finite N such that LN = S? What conditions on S make it true? In the following, we
look for sufficient conditions guaranteeing LN = S.
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Semidefinite representation of S is closely related to linear functionals nonnegative on S. For a given
0 6= ` ∈ Rn, consider the linear optimization problem

min
x∈int(D)

`Tx subject to G(x) º 0. (3.3)

When S ⊆ int(D) is compact, (3.3) always has a minimizer u ∈ ∂S ∩ int(D). If further there exists
x̃ ∈ D such that G(x̃) Â 0 (Slater’s condition holds) and G(x) is matrix concave in D, then there exists
0 ¹ Λ ∈ Rm×m such that (see [22, p. 306])

Λ •G(u) = 0, ` = ∇x(Λ •G(x))
∣∣
x=u

. (3.4)

Thus, by its Taylor expansion at u, we know `T (x− u)− Λ •G(x) equals

(x− u)T ·
(∫ 1

0

∫ t

0

−∇xx(Λ •G(u+ s(x− u)) ) ds dt

)

︸ ︷︷ ︸
H(u,x)

·(x− u).
(3.5)

If the above matrix polynomial H(u, x) has a weighted sos representation in terms of G(x) and gi(x),
then we can also get a similar one for `T (x− u). For this purpose, we need some assumptions on D and
G(x).

Assumption 3.1 (i) G(x) is matrix concave on D, and G(x) satisfies

−∇xx(Λ •G(u)) Â 0 ∀u ∈ ∂S, ∀ 0 6= Λ º 0.

(ii) The archimedean condition (AC) holds for D, i.e., there exist M > 0 and sos polynomials s0, s1, . . . , sr
satisfying

M − ‖x‖22 = s0 + g1s1 + · · ·+ grsr.

Note that the item (i) of Assumption 3.1 is equivalent to −∇xx(ξ
TG(u)ξ) Â 0 for every u ∈ ∂S and

every 0 6= ξ ∈ Rm. Clearly, AC in Assumption 3.1 implies the domain D is compact, since M −‖x‖22 ≥ 0
for all x ∈ D.

Theorem 3.2 Suppose S ⊆ int(D), D is convex, and G(x̃) Â 0 for some x̃ ∈ D. If Assumption 3.1
holds, then S = LN for all N big enough.

Proof. For a matrix polynomial G(x) given in (1.2), we define its norm ‖G(x)‖ as

‖G(x)‖ = max
α∈N≤2d

α1! · · ·αn!

|α|! ‖Gα‖2.

The AC of Assumption 3.1 implies D is compact. So, there exists ∆ > 0 such that

‖Λ‖−1
F · ‖H(u, x)‖ ≤ ∆ ∀ 0 6= Λ ∈ Rn×n, ∀u ∈ ∂S, ∀x ∈ D.

Here H(u, x) is defined in (3.5). Assumption 3.1 implies H(u, x) Â 0 for all u ∈ ∂S and x ∈ D. This is
because otherwise if H(u, x) is not positive definite, we can find 0 6= v ∈ Rn such that vTH(u, x)v = 0,
i.e., ∫ 1

0

∫ t

0

vT
(
−∇xx

(
Λ •G(u+ s(x− u)

) )
v ds dt = 0.

Since G(x) is matrix concave on the convex domain D, we must have

vT
(
−∇xx

(
Λ •G(u+ s(x− u)

))
v = 0 ∀ 0 ≤ s ≤ t ≤ 1.

In particular, we get vT
(
−∇xx

(
Λ •G(u)

))
v = 0, which contradicts Assumption 3.1. Therefore, by the

compactness of ∂S and D, there exists δ > 0 satisfying

‖Λ‖−1
F ·H(u, x) º δIn ∀u ∈ ∂S, ∀x ∈ D, ∀ 0 6= Λ º 0.

By Theorem 29 in [5] and the AC for D, there exists an integer N∗ such that for every 0 6= Λ º 0 and
u ∈ ∂S, there exist sos matrices F0(x), F1(x), . . . , Fr(x) satisfying

‖Λ‖−1
F ·H(u, x) =

r∑

k=0

gk(x)Fk(x), (3.6)
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deg(Fk) + 2dk ≤ 2(N∗ − 1), k = 0, , . . . , r.

Now we claim S = LN∗ . Since S ⊆ LN∗ , we need to show LN∗ ⊆ S. Suppose otherwise there exists
x̂ ∈ LN∗/S. Since D is compact convex and G(x) is matrix concave on D, S is closed and convex. By
Hahn-Banach Theorem, there exist 0 6= ` ∈ Rn and u ∈ ∂S satisfying

`T (x− u) ≥ 0 ∀x ∈ S, `T (x̂− u) < 0.

Consider the linear optimization problem (3.3) with this `. The point u ∈ ∂S is a minimizer of (3.3), and
it is also a local minimizer of

min
x∈Rn

`Tx subject to G(x) º 0. (3.7)

Since G(x̃) Â 0 and G(x) is matrix concave, it holds that

G(u) +

n∑

i=1

(x̃i − ui)
∂G(x)

∂xi

∣∣
x=u

º G(x̃) Â 0.

This means the Mangasarian-Fromovitz (MF) condition holds at u for optimization problem (3.7), and
thus the first order necessary condition holds at u (see [22, p. 306]). So, there exists Λ º 0 satisfying
(3.4). From (3.5) and (3.6), we know there exist sos polynomials p0, p1, . . . , pr satisfying

`T (x− u) = Λ •G(x) +

r∑

k=0

pk(x)gk(x),

deg(pk) + 2dk ≤ 2N∗, k = 0, 1, . . . , r.

So, there are symmetric matrices W0,W1, . . . ,Wr º 0 such that

`T (x− u) = Λ •G(x) +

r∑

k=0

gk(x)[x]
T
N∗−dk

Wk[x]N∗−dk
.

By definition of matrices B
(N∗)
k,β in (3.1), it holds the identity

`T (x− u) = Λ •G(x) +

r∑

k=0

Wk •

 ∑

β∈N≤2d

xβB
(N∗)
k,β


 .

By the choice of x̂, there exists ŷ such that x̂ = (ŷe1 , . . . , ŷen), G(ŷ) º 0, and every BN∗
k (ŷ) º 0. So, if

each x̂α is replaced by ŷα in the above, then

`T (x̂− u) = Λ • G(ŷ) +
r∑

k=0

Wk •BN∗
k (ŷ) ≥ 0,

which contradicts `T (x̂− u) < 0. Hence, we must have S = LN∗ .

For every N ≥ N∗, the relation S ⊆ LN ⊆ LN∗ implies S = LN . ¤
Assumption 3.1 requires to check −∇xx(Λ • G(u)) Â 0 for every nonzero Λ º 0 and u ∈ ∂S, which

is sometimes very inconvenient. However, Assumption 3.1 is true if G(x) is strictly matrix concave on
D, that is, for every 0 6= ξ ∈ Rm the Hessian −∇xx(ξ

TG(x)ξ) Â 0 for all x ∈ D. So, the following is a
consequence of Theorem 3.2.

Corollary 3.3 Suppose S ⊆ int(D), D is convex, and G(x̃) Â 0 for some x̃ ∈ D. If G(x) is strictly
matrix concave on D and the archimedean condition holds, then S = LN for all N big enough.

We now give an example of how to apply Theorem 3.2 and Corollary 3.3.

Example 3.4 Consider D = [−1, 1]2 is the square, g1(x) = 1− x2
1, g2(x) = 1− x2

2 and

G(x) =

[
1− x2

1 − 1
2x

2
2

1
6 (x

3
1 + x3

2)
1
6 (x

3
1 + x3

2) 1− 1
2x

2
1 − x2

2

]
.
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Figure 3: The shaded area is the convex set in Example 3.4, and the curve is detG(x) = 0.

The matrix G(x) is strictly concave over D, because for every 0 6= ξ ∈ R2 the Hessian

−∇xx(ξ
TG(x)ξ) =

[
2ξ21 + ξ22 − 2ξ1ξ2x1 0

0 ξ21 + 2ξ22 − 2ξ1ξ2x2

]

is positive definite for all x ∈ [−1, 1]2. So, the set S = {x ∈ [−1, 1]2 : G(x) º 0} is convex. Its boundary
lies on the curve detG(x) = 0, which is drawn of Figure 3. The convex region surrounded by detG(x) = 0
is the set S, which is drawn in the shaded area in Figure 3. Some part of the curve detG(x) = 0 does
not lie on the boundary ∂S, because G(x) is not positive semidefinite there. The determinant detG(x) is
not concave (also not convex) over [−1, 1]2, e.g., its Hessian at (0, 3/4) is indefinite.

By Corollary 3.3, the LN in (3.2) represents S for N big enough. Actually, we have L2 = S in
this example. This justification would be obtained by investigating the degree bound N∗ in (3.6). When
Λ = ξξT has rank one, the matrix H(u, x) defined in (3.5) is

[
1
2 (2ξ

2
1 + ξ22)− 1

3ξ1ξ2(2u1 + x1) 0
0 1

2 (ξ
2
1 + 2ξ22)− 1

3ξ1ξ2(2u2 + x2)

]
.

Note the identities

1

2
(2ξ21 + ξ22)−

1

3
ξ1ξ2(2u1 + x1) =

1

3
(ξ1u1 − ξ2)

2
+

1

6
(ξ1x1 − ξ2)

2

+
ξ21
2

+
ξ21
3
(1− u2

1) +
ξ21
6
(1− x2

1),

1

2
(ξ21 + 2ξ22)−

1

3
ξ1ξ2(2u2 + x2) =

1

3
(ξ2u2 − ξ1)

2
+

1

6
(ξ2x2 − ξ1)

2

+
ξ22
2

+
ξ22
3
(1− u2

2) +
ξ22
6
(1− x2

2).

So, the representation of H(u, x) in (3.6) is true for N∗ = 2 when Λ = ξξT has rank one. Every Λ º 0
is a sum of rank one matrices like ξξT . Thus, the representation of H(u, x) in (3.6) is also true for
N∗ = 2 when Λ º 0 is general. From the proof of Theorem 3.2, we can conclude that L2 is a correct SDP
representation of S. ¤

The construction of LN in (3.2) is simply based on gi(x) and G(x). Theorem 3.2 and Corollary 3.3
tell us that LN is a correct SDP representation for S for N big enough, when G(x) is strictly concave
over D. On the other hand, the degree bound N is not given explicitly there, which is not favorable
in applications. But the situation is not that bad in many cases. As we have seen in Example 3.4, the
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degree bound N would possibly be obtained by investigating the representation of H(u, x) in (3.6). We
can assume Λ is a rank one matrix, and then use the strict matrix concavity of G(x) to determine the
degree bound N∗ in (3.6). This approach would work when S is special like in Example 3.4. For general
case, the degree bound N∗ in (3.6) is usually very difficult to get, as one would imagine. But we have the
same difficulty even when G(x) is scalar. In [5], when S is defined by strictly concave polynomials, it is
only shown that the Lasserre type constructions would give a correct lifted LMI when N is big enough,
but no explicit degree bounds are given there. An interesting future work is to estimate good degree
bounds.

We list some classes of G(x) such that the N∗ in (3.6) is relatively easy to estimate.

(i) Suppose G(x) is of the form

G(x) = A0(x) + f1(x)A1 + · · ·+ fk(x)Ak

where A0(x) is linear, every fi(x) is scalar and A1, . . . , Ak º 0. Let

Hfi(u, x) =

∫ 1

0

∫ t

0

−∇xxfi(u+ s(x− u))dsdt.

Then, the H(u, x) in (3.5) has the expression

H(u, x) =

k∑

i=1

Hfi(u, x)Λ •Ai.

Note that Λ • Ai ≥ 0 whenever Λ º 0. Clearly, if every fi(x) is strictly concave over D, then
G(x) is also strictly matrix concave over D. Therefore, the N∗ in (3.6) would be investigated
through studying the degree bound of the representation

Hfi(u, x) = σ0(x) + g1(x)σ1(x) + · · ·+ gr(x)σr(x)

where each σi(x) is sos. This is relatively easier to do, because the above Hfi(u, x) is independent
of ξ.

(ii) Suppose G(x) is of the form

G(x) = A(x) + diag(f1(x), . . . , fm(x))

where A(x) is linear in x. When Λ = ξξT has rank one, we have the expression

H(u, x) =

m∑

i=1

ξ2iHfi(u, x).

The G(x) is strictly matrix concave over D if and only if every fi(x) is so. Thus, the N∗ in (3.6)
would possibly be obtained from estimating the degree bound for the representation of Hfi(u, x)
as in the above.

We would like to remark that the smallest Ld in (3.2) is a lifted LMI for S if G(x) satisfies the q-module
matrix concavity given in the next section. This is a consequence of Theorem 4.2 and Corollary 4.3 that
consider the more general case of G(x) being rational. This leads to our next section.

4. Rational matrix inequality This section assumes S = {x ∈ D : G(x) º 0} is defined by a
matrix rational function G(x), i.e., every entry of G(x) is rational. Suppose G(x) is matrix-concave on
D. As before, the domain D = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} is still defined by polynomials. The
case of G(x) being a scalar rational function is discussed in [18]. This section discusses the more general
case of G(x) being a matrix. We first construct an SDP relaxation for S, and then prove it represents S
when G(x) satisfies certain conditions.

Suppose the matrix rational function G(x) is given in the form

G(x) =
1

den(G(x))

∑

α∈Nn: |α|≤deg(G)

xαFα, (4.1)

where Fα ∈ Rm×m are symmetric matrices, den(G(x)) is the denominator of G(x), and deg(G) is the
degree of G(x), which equals the maximum of degrees of the denominator and numerator. Assume
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den(G(x)) is nonnegative on D. We say G(x) is q-module matrix concave over D if for every ξ ∈ Rm

there exist sos polynomials σi,j(x, u) such that

den(G(x))den(G(u))2 ·
(
ξTG(u)ξ + (∇xξ

TG(x)ξ)T
∣∣∣
x=u

(x− u)− ξTG(x)ξ
)
=

m∑
i=0

gi(x)

(
m∑
j=0

gj(u)σij(x, u)

)
(4.2)

is an identity in (x, u). The above g0 ≡ 1. The condition (4.2) is based on Putinar’s Positivstellensatz
[21]. Clearly, if G(x) is q-module matrix concave over D, then it must also be matrix concave over D. We
would like to remark that the S considered in Section 3 is a special case here (the denominator den(G)
is 1).

Now we turn to the construction of a lifted LMI for S. Assume G(x) is q-module matrix concave over
D and (4.2) holds. Let

d = max

{
max

0≤i,j≤r
d 1
2 degx(giσij)e, 1

2 deg(G)

}
. (4.3)

For i = 0, . . . , r, define matrices P
(i)
β , Q

(i)
α such that

gi(x)
den(G(x)) [x]d−di

[x]Td−di
=

∑
α∈Nn:|α|+|LE(den(G))|≤2d

Q
(i)
α xα +

∑
β∈N≤2d:β<LE(den(G))

P
(i)
β

xβ

den(G(x)) . (4.4)

Here LE(p) denotes the exponent of the leading monomial of p(x) in the lexicographical ordering (x1 >
x2 > · · · > xn), that is, xα > xβ if the first nonzero entry of α − β is bigger than 0. Let y be a
vector indexed by α ∈ Nn with |α| + |LE(den(G))| ≤ 2d, and z be a vector indexed by β ∈ N≤2d with
β < LE(den(G)). Define linear matrix pencils

Qi(y, z) =
∑

α∈Nn:|α|+|LE(den(G))|≤2d

Q
(i)
α yα +

∑
β∈N≤2d:β<LE(den(G))

P
(i)
β zβ , i = 0, 1, . . . , r. (4.5)

Here P
(i)
α , Q

(i)
α are defined in (4.4). Suppose G(x) can be written as

G(x) =
∑

α∈Nn:|α|+|LE(den(G))|≤2d

F (1)
α xα +

∑

β∈N≤2d:β<LE(den(G))

F
(2)
β

xβ

den(G(x))
,

then define the linear matrix pencil

F (y, z) =
∑

α∈Nn:|α|+|LE(den(G))|≤2d

F (1)
α yα +

∑

β∈N≤2d:β<LE(den(G))

F
(2)
β zβ .

Clearly, S can be equivalently described as

S =

{
(ye1 , . . . , yen)

∣∣∣∣∣
∃x ∈ Rn, yα = xα, zβ = xβ

den(G(x)) ∀α, β
F (y, z) º 0, Qi(y, z) º 0, i = 0, . . . , r

}
.

If we remove yα = xα, zβ = xβ

den(G(x)) in the above, then S is a subset of

Lqmod =

{
x ∈ Rn

∣∣∣∣
∃ y, z, y0 = 1, x1 = ye1 , . . . , xn = yen ,
F (y, z) º 0, Qi(y, z) º 0, i = 0, . . . , r

}
. (4.6)

So, S ⊆ Lqmod. We are interested in conditions guaranteeing S = Lqmod.

Lemma 4.1 Assume S ⊂ int(D) and G(x̃) Â 0 for some x̃ ∈ D. Suppose G(x) is q-module matrix
concave over D. If v ∈ ∂S, den(G(v)) > 0, and aT (x− v) ≥ 0 for all x ∈ S, then

den(G(x)) · (aT (x− v)− Λ •G(x)) =

r∑

i=0

gi(x)σi(x)

for some Λ º 0 and sos polynomials σi with deg(giσi) ≤ 2d.
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Proof. Consider the linear optimization problem

min
x∈int(D)

aTx subject to G(x) º 0.

The point v ∈ ∂S is an optimizer. Since den(G(v)) > 0, G(x) is differentiable at v. Since S ⊂ int(D), v
is in the interior of D. Because G(x̃) Â 0 (the Slater’s condition holds) and G(x) is matrix concave on
D, there exists Λ º 0 such that (see [22, p. 306])

a = ∇x(Λ •G(v)), Λ •G(v) = 0.

Hence, we get the identity

aT (x− v)− Λ •G(x) = Λ •G(v) +∇x(Λ •G(v))T (x− v)− Λ •G(x).

Since Λ º 0, we have a decomposition Λ =
∑K

i=1 λ
(i)(λ(i))T . Then, it holds that

aT (x− v)− Λ •G(x) =

K∑

i=1

{
(λ(i))TG(v)λ(i)+∇x((λ

(i))TG(v)λ(i))T (x− v)− (λ(i))TG(x)λ(i)
}
.

So, the lemma readily follows the q-module matrix concavity of G(x). ¤
For a function f(x), denote by Z(f) its real zero set, i.e., Z(f) = {x ∈ Rn : f(x) = 0}.

Theorem 4.2 Assume S is closed and convex, S ⊂ int(D), G(x̃) Â 0 for some x̃ ∈ D, and

dim
(Z(den(G)) ∩ ∂S

)
< n− 1.

If G(x) is q-module matrix concave over D, then S = Lqmod.

Proof. Since S ⊆ Lqmod, it is sufficient for us to prove the reverse containment. By a contradiction
proof, suppose otherwise there exists x̂ ∈ Lqmod/S and (ŷ, ẑ) such that

x̂ = (ŷe1 , . . . , ŷen), F (ŷ, ẑ) º 0, Qi(ŷ, ẑ) º 0, i = 0, . . . , r.

Since S is convex and closed, by Hahn-Banach Theorem, there exists a supporting hyperplane {aTx = b}
of S such that aTx ≥ b for all x ∈ S and aT x̂ < b. Let v ∈ ∂S be a minimizer of aTx on S. Since
dim

(Z(den(G)) ∩ ∂S
)
< n − 1, by continuity, the supporting hyperplane {aTx = b} can be chosen to

satisfy den(G(v)) > 0. By Lemma 4.1, we have

aT (x− v) = Λ •G(x) +

r∑

i=0

gi(x)

den(G(x))
σi(x) (4.7)

for some sos polynomials σi such that every deg(giσi) ≤ 2d. If we write σi as

σi(x) = [x]Td−di
Wi[x]d−di

for symmetric Wi º 0 (i = 0, 1, . . . , r), then the identity (4.7) becomes

aT (x− v) = Λ •G(x) +

r∑

i=0

(
gi(x)

den(G(x))
[x]d−di [x]

T
d−di

)
•Wi = Λ •G(x)+

r∑

i=0


 ∑

α∈Nn:|α|+|LE(den(G))|≤2d

Q(i)
α xα +

∑

β∈Nn:β<LE(den(G))

P (i)
α

xβ

den(G(x))


 •Wi.

In the above identity, if we replace every xα by ŷα and xβ

den(G(x)) by ẑβ , then

aT x̂− b = Λ • F (ŷ, ẑ) +

r∑

i=0

Qi(ŷ, ẑ) •Wi ≥ 0,

because all Λ, F (ŷ, ẑ), Qi(ŷ, ẑ),Wi º 0. This contradicts aT x̂ < b. So, S = Lqmod. ¤
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Figure 4: The shaded area is the convex set in Example 4.4, and the curve is detG(x) = 0.

The condition of q-module matrix concavity requires checking (4.2) for every ξ ∈ Rm. In many
situations this is almost impossible. However, if we consider ξ as an indeterminant, then a sufficient
condition guaranteeing (4.2) is

den(G(x))den(G(u))2 ·
(
ξTG(u)ξ + (∇xξ

TG(x)ξ)T
∣∣∣
x=u

(x− u)− ξTG(x)ξ
)
=

m∑
i=0

gi(x)

(
m∑
j=0

gj(u)σij(x, u, ξ)

)
,

(4.8)

where every σij(x, u, ξ) is now an sos polynomial in (x, u, ξ). If G(x) satisfies (4.8), we say G(x) is
uniformly q-module matrix concave over D. Clearly, the corollary below follows Theorem 4.2.

Corollary 4.3 Assume S is closed and convex, S ⊂ int(D), G(x̃) Â 0 for some x̃ ∈ D, and

dim
(Z(den(G)) ∩ ∂S

)
< n− 1.

If G(x) is uniformly q-module matrix concave over D, then S = Lqmod.

We would like to remark that the Lqmod in (4.6) is equivalent to the LN in (3.2) for N = d when
G(x) is a matrix polynomial (its denominator is 1). Therefore, Theorem 4.2 and Corollary 4.3 imply
that Ld defined in (3.2) is also a correct SDP representation for S under the (uniform) q-module matrix
concavity.

Now we give some examples on how to apply Theorem 4.2 and Corollary 4.3.

Example 4.4 Consider the set S =
{
x ∈ R2

+ : G(x) º 0
}
where

G(x) =

[
7− x1 + 2x2 5

5 11− x2

]
− 1

x1x2

[
x1 + x3

2 x2
2

x2
2 x2

]
.

Its domain D = R2
+. The determinant of G(x) is

1

x1x2
(x2

1x
2
2 − 11x2

1x2 − 2x1x
3
2 + 15x1x

2
2 + 54x1x2 − 11x1 + x4

2 − 11x3
2 + 8x2

2 − 7x2 + 1).

Clearly, the boundary ∂S lies on the curve det(G(x)) = 0. It is a planar curve of degree 4, and is drawn
in Figure 4. The G(x) here is uniformly q-module matrix concave over R2

+, because

x1x2u
2
1u

2
2 ·

(
ξTG(u)ξ + (∇xξ

TG(x)ξ)T
∣∣∣
x=u

(x− u)− ξTG(x)ξ
)
=

x2u
2
2(u1ξ2 − x1ξ2 + u1x2ξ1 − u2x1ξ1)

2 + x1u
2
1ξ

2
1(u2 − x2)

2.
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Figure 5: The shaded area is the convex set in Example 4.5, and the curve is detG(x) = 0.

Hence, the set S here is convex, and by Corollary 4.3 it has the following lifted LMI

[
7− x1 + 2x2 5

5 11− x2

]
−
[
z10 + z03 z02

z02 z01

]
º 0,




0 0 0 0 1 0
0 0 1 0 x1 x2

0 1 0 x1 x2 0
0 0 x1 0 y20 y11
1 x1 x2 y20 y11 y02
0 x2 0 y11 y02 0



+




z00 z10 z01 z20 0 z02
z10 z20 0 z30 0 0
z01 0 z02 0 0 z03
z20 z30 0 z40 0 0
0 0 0 0 0 0
z02 0 z03 0 0 z04



º 0,



0 0 1
0 0 x1

1 x1 x2


+



z10 z20 0
z20 z30 0
0 0 0


 º 0,



0 1 0
1 x1 x2

0 x2 0


+



z01 0 z02
0 0 0
z02 0 z03


 º 0.

The set of x satisfying the above LMIs is drawn in the shaded area of Figure 4. The convex region there
surrounded by detG(x) = 0 is the set S, which is precisely the shaded area. Some components of the
curve detG(x) = 0 do not lie on the boundary ∂S, because G(x) º 0 fails there. This confirms the above
lifted LMI is correct. ¤

Example 4.5 Consider the set S =
{
x ∈ R2 : G(x) º 0

}
where

G(x) =

[
1− 2x2

1 − 2x1x2 − x2
2 x2

1

x2
1 1− x2

1

]
+

x4
2

x2
1 + x2

2

[−1 1
1 −1

]T
.

Clearly, the boundary of S lies on the curve detG(x) = 0, which is drawn in Figure 5. It has three
connected components. The domain D = R2, and the above G(x) is uniformly q-module matrix concave
over R2, because

‖x‖22 · ‖u‖42 ·
(
ξTG(u)ξ + (∇xξ

TG(x)ξ)T
∣∣∣
x=u

(x− u)− ξTG(x)ξ
)
=(

9∑
i=1

f2
i

)
· (ξ1 − ξ2)

2 + 1
2‖x‖22 · ‖u‖42 · ‖x− u‖22 · ξ21
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where the polynomials fi are given as below

f1 = −u1u2x
2
2 − u1u2x

2
1 + u1u

2
2x2 + u2

1u2x1, f6 = 1√
2
(−u2

2x
2
2 + u3

2x2 − u2
1x

2
1 + u3

1x1),

f2 = −u1u2x
2
2 + u1u2x

2
1 + u1u

2
2x2 − u2

1u2x1, f7 = −2u1u2x1x2 + u1u
2
2x1 + u2

1u2x2,
f3 = 1√

2
(−u2

2x1x2 + u3
2x1 − u2

1x1x2 + u3
1x2), f8 = u2

2x
2
1 − u2

1x
2
2,

f4 = 1√
2
(u2

2x1x2 − u3
2x1 − u2

1x1x2 + u3
1x2), f9 = −u1u

2
2x1 + u2

1u2x2.

f5 = 1√
2
(u2

2x
2
2 − u3

2x2 − u2
1x

2
1 + u3

1x1),

So, the set S is convex, and by Corollary 4.3 a lifted LMI for it is
[
1− 2y20 − 2y11 − y02 − z04 y20 + z04

y20 + z04 1− y20 − z04

]
º 0,




0 0 0 1 0 0
0 1 0 x1 x2 0
0 0 0 x2 0 0
1 x1 x2 y20 − y02 y11 y02
0 x2 0 y11 y02 0
0 0 0 y02 0 0



+




z00 z10 z01 −z02 z11 z02
z10 −z02 z11 −z12 −z03 z12
z01 z11 z02 −z03 z12 z03
−z02 −z12 −z03 z04 −z13 −z04
z11 −z03 z12 −z13 −z04 z13
z02 z12 z03 −z04 z13 z04



º 0.

The feasible points x satisfying the above are drawn in the shaded area of Figure 5. Only one component
of the curve detG(x) = 0 lies on the boundary ∂S. The other two do not touch S since G(x) º 0 fails
there. This confirms that the above LMI represents S.

Now we make some remarks about the condition of (uniform) q-module matrix concavity. When the
denominator den(G(x)) is nonnegative on D, G(x) º 0 is inequivalent to den(G(x)) · G(x) º 0, and
the latter is a polynomial matrix inequality. Thus, one would reduce a rational matrix inequality to a
polynomial matrix inequality and then apply the results of Sections 2 and 3. However, we would like to
point out that multiplying den(G(x)) usually destroys the matrix concavity of G(x), and the resulting
den(G(x)) ·G(x) typically is not matrix concave or (uniform) matrix sos-concave. In Examples 4.4 and
4.5, it would be easily verified that the den(G(x)) ·G(x)’s there are not matrix concave.

We now list some classes of rational G(x) that are (uniformly) q-module matrix concave.

(i) Suppose G(x) is of the form

G(x) = A0(x) + f1(x)A1 + · · ·+ fk(x)Ak

where A0(x) is linear, f1(x), . . . , fk(x) are q-module concave rational functions over D, and
A1, . . . , Ak º 0. Then G(x) is clearly q-module concave over D.

(ii) Suppose G(x) is of the form

G(x) = F (x) + diag(f1(x), . . . , fm(x))

where F (x) is linear and each fi(x) is a scalar rational function. Clearly, G(x) is matrix concave
over D if and only if every gi(x) is so, and G(x) is (uniformly) q-module matrix concave if and
only if every gi(x) is so.

5. Conclusions This paper gives explicit constructions of SDP representations for the set S = {x ∈
D : G(x) º 0} when G(x) is a matrix polynomial or rational function, and proves sufficient conditions
justifying them. These conditions are based on the matrix concavity of G(x).

We would like to remark that the SDP relaxations (2.2) and (3.2) would be tightened if we replace
G(y) º 0 by a bigger LMI. This follows an construction introduced by Henrion and Lasserre [9, II.D.].
Note that G(x) º 0 is equivalent to the PMI (use ⊗ to denote Kronecker product of matrices)

G(x)⊗ [x]k[x]
T
k º 0.

The basic idea of their construction is that replacing every monomial xα in the expansion ofG(x)⊗[x]k[x]
T
k

by a linear moment yα. Then, one would get a bigger LMI, say, K(y) º 0. Since G(x) is the first block of
G(x) ⊗ [x]k[x]

T
k , G(y) is a leading principle submatrix of K(y). Thus, the LMI K(y) º 0 is tighter than

G(y) º 0 in relaxing the set S. Therefore, if the constructions (2.2) and (3.2) use K(y) º 0 instead of
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G(y) º 0, we can get similar semidefinite representability results like Theorems 2.2 and 3.2. On the other
hand, the LMI G(y) º 0 is simpler than K(y) º 0, and hence might be preferable in applications. Under
the archimedean condition, Henrion and Lasserre [9] proved the asymptotic convergence of the hierarchy
of SDP relaxations for minimizing a polynomial function subject to G(x) º 0.

The matrix concavity is a strong condition for S to be convex. Generally it is very difficult to check. A
stronger but relatively easier checkable one is matrix sos-concavity. This condition would also be difficult
to check, e.g., for the quadratic case it is already NP-hard. A further stronger but much easier checkable
condition is the uniform matrix sos-concavity, which would be done by solving a single SDP. When
G(x) is rational, similar conditions are (uniform) q-module matrix concavity. Under these conditions, we
justified some explicit SDP representations for S. These conditions are certainly very strong. However,
to the author’s best knowledge, there are no more general conditions than them for justifying the lifted
LMIs constructed in this paper. An interesting future work is to seek weaker conditions justifying some
efficiently constructible SDP representations.
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