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Abstract. Suppose f(x), g1(x), . . . , gm(x) are multivariate polynomials in
x ∈ Rn and their degrees are at most 2d. Consider the optimization prob-
lem

min f(x) s.t. x ∈ S = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
Let fmin (resp., fmax) be the minimum (resp., maximum) of f(x) on S, and
fsos be the lower bound of fmin given by Lasserre’s relaxation of order d.
This paper studies its approximation bound. Under a suitable condition on
g1, . . . , gm, we prove that

fmax − fsos ≤ Q · (fmax − fmin).

Here Q is a constant depending only on g1, . . . , gm but not on f . In particular,
if S is the unit ball, Q = O(nd); if S = [−1, 1]n, Q = O(n2d); if S = {±1}n
or {0, 1}n, Q = O(nd). In these special cases, assume canonical defining
polynomials gi for S are used.

1. Introduction

Consider the polynomial optimization problem

(1.1)

{
min
x∈Rn

f(x)

s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0.

Here f, g1, . . . , gm are all multivariate polynomials in x := (x1, . . . , xn). Generally
it is quite difficult to solve (1.1). For instance, when f(x) is a nonconvex quadratic
function and every gi(x) is linear, (1.1) becomes a nonconvex quadratic program-
ming (QP) which is NP-hard [6]. So problem (1.1) is NP-hard. Lasserre’s relaxation
[2] is a typical approach for solving (1.1) approximately by using semidefinite pro-
gramming and sum of squares techniques. We refer to [2, 3, 4, 5, 7, 8].

When f, g1, . . . , gm have degrees no greater than 2d, Lasserre [2] proposed the
following sum of squares (SOS) program to find a lower bound for the minimum
fmin of (1.1):

(1.2)





max γ
s.t. f − γ = σ0 + σ1g1 + · · ·+ σmgm,

deg(σ0), deg(σ1g1), . . . , deg(σmgm) ≤ 2d,
σ0, σ1, . . . , σm are SOS.
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Here a polynomial is said to be SOS if it is a sum of squares of polynomials. If a
polynomial is SOS, then it must be nonnegative everywhere, but the reverse might
not be true. We refer to [10] for a survey on SOS and nonnegative polynomials.
While it is quite difficult to check nonnegativity, checking SOS is much easier be-
cause it is equivalent to a semidefinite programming problem (cf. [7, 8]), which can
be solved efficiently. Thus, the SOS program (1.2) would be solved by SDP solvers.
The integer d in (1.2) is called the relaxation order.

Here we briefly review the convergence of Lasserre’s relaxation (1.2) as d increases
for a fixed f . For convenience, denote g = (g1, · · · , gm) and

S = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
For each γ feasible in (1.2), we have

f(x)− γ = σ0(x) + σ1(x)g1(x) + · · ·+ σm(x)gm(x) ≥ 0 ∀x ∈ S.

Thus, every γ feasible in (1.2) satisfies f(x) ≥ γ for all x ∈ S. If we denote by fsos,d
the optimal value of (1.2), then fmin ≥ fsos,d for all d. As d increases, the lower
bound fsos,d is monotonically increasing. Based on Putinar’s Positivstellensatz [9],
Lasserre [2] proved fsos,d → fmin as d → ∞ under a so-called archimedean condition
(AC), that is, there exist M > 0 and SOS polynomials s0, s1, . . . , sm such that

M − ‖x‖22 = s0 + s1g1 + . . .+ smgm.

For AC to hold, S must be compact, but the reverse might not be true. However,
AC is not a very strong condition, because otherwise we can always add a redundant
constraint like M − ‖x‖22 ≥ 0 if S is compact. Nie and Schweighofer [5] analyzed
the convergence rate of (1.2). Under AC, they proved

(1.3) 0 ≤ fmin − fsos,d ≤ K · (log d)−c as d → ∞,

where c > 0 depends only on g and the constant K = K(f, g) depends on both
f and g. The above estimate is a kind of absolute error analysis, and is only
in asymptotic sense. Typically, the constants K and c are quite complicated to
estimate in practice.

Due to the computational cost of (1.2), people tend to choose small d in practical
applications. This is because (1.2) is very expensive to solve for big d (the size of
the resulting SDP grows exponentially in d). So, it is interesting to know how good
(1.2) approximates (1.1) for a fixed relaxation order d. Suppose deg(f) ≤ 2d and
deg(g) ≤ 2d. For convenience, just denote by fsos the optimal value of (1.2) for
a given f . We have seen that fsos ≤ fmin, but do not know how far away fsos is
from fmin. Denote by fmax the maximum of f(x) on S, which always exists when
S is compact. For fixed g, a constant Q = Q(g) is called an approximation bound
of (1.2) if for every f with deg(f) ≤ 2d it holds that

fmax − fsos ≤ Q · (fmax − fmin).

Does the above Q exist? What conditions make Q exist? How big is Q? These
questions are the main topics of this paper.

Contributions First, we analyze the approximation bound of Lasserre’s relax-
ation (1.2) when S is compact. Let fmin (resp., fmax) be the minimum (resp.,
maximum) value of f on S. Under a suitable condition on g1, . . . , gm, we show that
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there exists a constant Q = Q(g1, . . . , gm) such that for every f with deg(f) ≤ 2d
it holds that

(1.4) 1 ≤ (fmax − fsos)/(fmax − fmin) ≤ Q.

The constantQ only depends on g1, . . . , gm, n, d but not on f . This will be presented
in Section 3.

Second, we give explicit estimates for Q in (1.4) for special cases of S: when S is
a unit ball, Q = O(nd); when S is a hypercube [−1, 1]n, Q = O(n2d); when S is the
boolean set {±1}n or {0, 1}n, Q = O(nd); when S is a multi-unit ball, Q = O(nd).
(Here, we assume canonical defining polynomials gi for S are used.) This will be
shown in Section 4.

The proofs of these approximation bounds are based on estimating norms of
polynomials and using semidefinite programming properties. So, we will first in-
troduce some basics about semidefinite programming, sum of squares, norms of
polynomials and their relations. This will be presented in Section 2.

Here we make some remarks on the difference between the estimates (1.3) and
(1.4). The estimates for Q given in this paper depend on g. As d → ∞, the ob-
tained bound Q typically goes to infinity, which does not imply the convergence
of (1.2). This is because the approximation bound and convergence are different
aspects of Lasserre’s relaxation. The bound Q estimates fsos in the worst case that
(1.2) would behave when the relaxation order d is fixed. The estimate (1.4) holds
for arbitrary polynomial f of degree 2d, and can be thought of as a relative error
analysis. The smaller Q is, the tighter (1.2) approximates (1.1); the bigger Q is,
the looser (1.2) approximates (1.1). This is the reason why we call Q an approxi-
mation bound. On the other hand, the convergence of (1.2) is the different issue of
whether fsos,d approaches fmin as d → ∞ for a fixed polynomial f . The estimate
(1.3) holds for a fixed f , and can be thought of as an absolute error analysis. In
convergence analysis, the polynomial f in (1.1) is fixed, but the relaxation order d
goes to infinity. This issue is important when we want to minimize a fixed f over
S as accurate as possible. In summary, the convergence concerns the behavior of
a sequence of Lasserre’s relaxations (d = 1, 2, . . .) for solving a fixed single polyno-
mial optimization (1.1), while the approximation bound Q concerns the behavior
of a single Lasserre’s relaxation (the order d is fixed) for solving a class of polyno-
mial optimization(1.1) (f is arbitrary with degree 2d). So, (1.3) and (1.4) address
different aspects of Lasserre’s relaxation.

Notations. The symbol N (resp., R) denotes the set of nonnegative integers
(resp., real numbers). For any t ∈ R, dte (resp., btc) denotes the smallest integer not
smaller (resp., the largest integer not bigger) than t. For 0 < k ∈ N, [k] = {1, . . . , k}.
For x ∈ Rn, xi denotes the i-th component of x, that is, x = (x1, . . . , xn). The
symbol Sn−1 denotes the unit sphere {x ∈ Rn : x2

1 + · · · + x2
n = 1}. For α ∈ Nn,

denote |α| = α1 + · · · + αn, and supp(α) = {1 ≤ i ≤ n : αi 6= 0}. The symbol
Nn

k denotes the multi-index set {α ∈ Nn : |α| ≤ k}. For x ∈ Rn and α ∈ Nn, xα

denotes xα1
1 · · ·xαn

n . The symbol [x]d denotes the following vector of monomials

[x]Td = [ 1 x1 · · · xn x2
1 x1x2 · · · · · · xd

1 xd−1
1 x2 · · · · · · xd

n ],

and [xd] denotes the d-th homogeneous part of [x]d, that is,

[xd]T = [xd
1 xd−1

1 x2 · · · · · · xd
n ].
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The symbol R[x] denotes the ring of real polynomials in (x1, . . . , xn); R[x]k denotes
the subspace of polynomials of degrees at most k; Sfr[x]k denotes the subspace of
square free polynomials of degrees at most k. For a polynomial p, supp(p) denotes
the support of p, i.e., the set of α ∈ Nn such that xα appears in p. For a finite
set S, |S| denotes its cardinality; for a general set S, int(S) denotes its interior.
For a matrix A, AT denotes its transpose. The symbol IN denotes the N -by-N
identity matrix. For a symmetric matrix X, λmax(X) and λmin(X) denote the
maximum and minimum eigenvalues of X respectively, and X º 0 (resp., X Â 0)

means λmin(X) ≥ 0 (resp. λmin(X) > 0). For u ∈ RN , ‖u‖2 =
√
uTu denotes the

standard Euclidean norm. For any matrix A, recall the definition of ‖A‖2 being
the standard operator 2-norm of A and ‖A‖F being the Frobenius norm of A, i.e.,

‖A‖F =
√
Trace(ATA). Note that ‖A‖2 and ‖A‖2 ≤ ‖A‖F . In matrix spaces, the

bullet • denotes the standard Frobenius inner product, i.e., A •B = Trace(ATB).

2. Sum of squares and norms of polynomials

This section presents some basics in sum of squares, semidefinite programming,
norms of polynomials and their relations.

2.1. Sum of squares and semidefinite programming. For a polynomial f of
degree 2d, there exists a symmetric matrix F such that

f(x) = [x]Td F [x]d.

The length of the monomial vector [x]d is
(
n+d
d

)
, and the dimension of F is

(
n+d
d

)×(
n+d
d

)
. The matrix F is called a Gram matrix of f and is not unique if d > 1. For

convenience, we index the columns and rows of F by monomials of degrees ≤ d, or
equivalently by vectors in Nn

d .
A polynomial f is said to be a sum of squares (SOS) if there exist polynomials

f1, . . . , fk such that f = f2
1 + · · · + f2

k . As shown in [7, 8], f is SOS if and only if
it has a Gram matrix F which is positive semidefinite, that is,

f is SOS ⇐⇒ f(x) = [x]Td F [x]d, for some matrix F º 0.

Define constant symmetric matrices Aα satisfying

(2.1) [x]d[x]
T
d =

∑

α∈Nn
2d

Aαx
α.

If f(x) =
∑

α∈Nn
2d
fαx

α, then f is SOS if and only if

Aα •X = fα ∀α ∈ Nn
2d, for some matrix X º 0.

So, checking whether f is SOS can be done by solving a semidefinite programming
problem.

The standard form of a semidefinite programming is

(2.2)





min C •X
s.t. Ai •X = bi, i = 1, . . . ,m,

X º 0.

Here C and A1, . . . , Am are constant symmetric matrices. Lasserre [2] showed
that the SOS program (1.2) is equivalent to an SDP problem like (2.2). So (1.2)
can be solved efficiently. SDP is a very nice convex optimization and has many
attractive properties. There is a large amount of work on the theory, algorithms
and applications of semidefinite programming. We refer to [11].
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2.2. Norms of polynomials. For a polynomial f(x) =
∑

α∈Nn
2d
fαx

α of degree

2d, define its 2-norm and G-norm as

(2.3) ‖f‖2 =


 ∑

α∈Nn
2d

f2
α




1/2

, ‖f‖G =


 ∑

α∈Nn
2d

p(α)−1f2
α




1/2

.

Here p(α) denotes the partition number of α, that is,

(2.4) p(α) =
∣∣∣
{
(β, ν) ∈ Nn

d × Nn
d : β + ν = α

}∣∣∣ .
Let J be the matrix of all ones, then

p(α) = Aα • J ≤
(|supp(α)|+ d

d

)
≤

(|3d
d

)
.

Clearly, the norms ‖ · ‖2 and ‖ · ‖G are equivalent and satisfy the relation

(2.5)

(
3d

d

)−1/2

‖f‖2 ≤ ‖f‖G ≤ ‖f‖2.

In view of (2.3), for convenience we denote the coefficient vectors

(2.6) f =
(
fα : α ∈ Nn

2d

)
, fG =

(
p(α)−1/2fα : α ∈ Nn

2d

)
,

and denote by [x]G,2d the column vector of scaled monomials

(2.7) [x]G,2d =
(
p(α)1/2xα : α ∈ Nn

2d

)
.

The entries of f, fG and [x]G,2d are in graded alphabetical ordering by their indices.
Thus, f(x) = fT [x]2d = fT

G [x]G,2d and ‖f‖G = ‖fG‖2. The G-norm ‖f‖G is closely
related to Gram matrices of f .

Lemma 2.1. If f ∈ R[x]2d, there exists a symmetric matrix W such that

f(x) = [x]Td W [x]d, ‖W‖F = ‖f‖G.
Proof. For any matrix W satisfying f(x) = [x]Td W [x]d, it must hold that

fα =
∑

(β,ν)∈Nn
d×Nn

d : β+ν=α

Wβ,ν ∀α ∈ Nn
2d.

Choose a particular W satisfying the above as follows

Wβ,ν = p(α)−1fα ∀ (β, ν) ∈ Nn
d × Nn

d : β + ν = α.

Then W is symmetric and satisfies

‖W‖2F =
∑

α∈Nn
2d

∑

(β,ν)∈Nn
d×Nn

d
β+ν=α

(p(α)−1fα)
2 =

∑

α∈Nn
2d

(p(α)−1fα)
2p(α) = ‖f‖2G.

This completes the proof. ¤

Another useful norm of polynomials is the L2-norm. Assume S is compact.
Define

(2.8) ‖f‖L2(S) :=

(∫

S

f(x)2dµ(x)

)1/2

.
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Here µ is the uniform probability measure on S. The ‖f‖L2(S) defined in (2.8) is a
norm in R[x] when S has nonempty interior. This is because if ‖f‖L2(S) = 0 then
f(x) vanishes in an open set, and it must be identically zero.

When n ≥ 2d, we can also define the following notion of marginal L2-norm.
Given a subset ∆ ⊂ {1, . . . , n} with |∆| = 2d, x∆ denotes the subvector

x∆ = (xi1 , . . . , xi2d) if ∆ = {i1, . . . , i2d}.
The restriction f∆(x∆) of f(x) to x∆ is defined as

(2.9) f∆(x∆) = f(x̃), where x̃i =

{
xi if i ∈ ∆,

0 otherwise.

So f∆(x∆) is a polynomial in x∆. Denote the set

(2.10) Ω2d =
{
∆ ⊂ [n] : |∆| = 2d

}
.

Clearly, the cardinality |Ω2d| =
(
n
2d

)
. We also denote by gi,∆(x∆) the restriction of

gi,∆(x) to x∆. Define S∆ similarly as

(2.11) S∆ = {x∆ : g1,∆(x∆) ≥ 0, . . . , gm,∆(x∆) ≥ 0}.
Observe that

S∆ = {x∆ : (0, . . . , 0, xi1 , 0, . . . , 0, xi2d , 0, . . .) ∈ S} if ∆ = {i1, . . . , i2d}.
If 0 ∈ int(S), then every S∆ has nonempty interior and 0 ∈ int(S∆). If int(S∆) 6= ∅,
the L2(S∆)-norm of f∆(x∆) can be similarly defined as

‖f∆‖L2(S∆) =

(∫

S∆

f∆(x∆)
2dµ∆(x∆)

)1/2

,

where µ∆(·) is the uniform probability measure on S∆. When every int
(
S∆

) 6= ∅,
the marginal L2(S)-norm of f is defined as

‖f‖L2(S),mg :=

( ∑

∆∈Ω2d

‖f∆‖2L2(S∆)

)1/2

.

Define two matrices

Θ∆,2d(S) =

∫

S∆

[x∆]G,2d[x∆]
T
G,2ddµ∆(x∆),(2.12)

Θ2d(S) =

∫

S

[x]G,2d[x]
T
G,2ddµ(x),(2.13)

and two constants associated to S

κ2d(S) = min
p∈R[x]2d

{‖p‖L2(S) : ‖p‖G = 1
}
.(2.14)

η2d(S) =
√

min
∆∈Ω2d

λmin(Θ∆,2d(S)).(2.15)

If we write p(x) = pTG[x]G,2d, then

(2.16) ‖p‖2L2(S) = pTGΘ2d(S)pG.

So, κ2d(S) =
√
λmin(Θ2d(S)). These constants depend only on S, and there are

explicit formulae for them when S is special, like a ball or hypercube.
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Lemma 2.2. If int
(
S∆

) 6= ∅ for every ∆ ∈ Ω2d, then η2d(S) > 0. In particular, if
0 ∈ int(S), then η2d(S) > 0 and κ2d(S) > 0.

Proof. It suffices to prove that every Θ∆,2d(S) is positive definite. Otherwise sup-
pose there exists u 6= 0 such that uTΘ∆,2d(S)u = 0 for some ∆ ∈ Ω2d. Then

uTΘ∆,2d(S)u =

∫

S∆

(uT [x∆]G,2d)
2dµ∆(x∆) = 0

implies uT [x∆]G,2d = 0 for every x ∈ S∆. Since int(S∆) 6= ∅, uT [x∆]G,2d must be
identically zero and u = 0, which is a contradiction.

If 0 ∈ int(S), then 0 ∈ int(S∆) for every ∆. Thus η2d(S) > 0 follows the above.
The proof of κ2d(S) > 0 is also the same. ¤

The norms ‖ · ‖L2(S),mg and ‖ · ‖G are related by the following lemma.

Lemma 2.3. Suppose n ≥ 2d. If f ∈ R[x]2d, then
‖f‖L2(S),mg ≥ η2d(S)‖f‖G.

Proof. By definitions of L2(S∆)-norm and η2d(S), we know

‖f∆‖2L2(S∆) = fT
∆,GΘ∆,2d(S)f∆,G ≥ η2d(S)

2‖f∆‖2G.
Here, f∆,G denotes the vector of scaled coefficients of f∆ (see (2.6)). So

‖f‖2L2(S),mg =
∑

∆∈Ω2d

‖f∆‖2L2(S∆) ≥ η2d(S)
2

∑

∆∈Ω2d

‖f∆‖2G ≥ η2d(S)
2‖f‖2G.

Thus the lemma follows. ¤

3. Some general bounds for Lasserre’s relaxation

This section estimates the approximation bound of Lasserre’s relaxation (1.2).
As mentioned in Introduction, to make Lasserre’s relaxations converge, one needs
to assume the archimedean condition (AC). However, even if AC holds, it is still
possible that (1.2) is infeasible (i.e., fsos = −∞) for a given d, though an arbi-
trarily good lower bound could be obtained if we increase the relaxation order. To
guarantee the feasibility of (1.2), we need the following assumption.

Assumption 3.1. There exist a symmetric positive definite matrix E and SOS
polynomials σ1, . . . , σm such that deg(σigi) ≤ 2d for every i and

σ1g1 + · · ·+ σmgm = 1− [x]Td E[x]d.

Note that Assumption 3.1 is equivalent to that the constant polynomial 1 lies in
the interior of the truncated quadratic module defined as

M2d(g1, . . . , gm) =



σ0 +

m∑

j=1

σjgj : each gj is SOS and deg(σjgj) ≤ 2d



 .

Assumption 3.1 is sufficient and necessary for (1.2) to have a finite optimal value
for every f ∈ R[x]2d.
Proposition 3.2. Suppose S is nonempty. Then the following statements are
equivalent:

(i) Assumption 3.1 holds;
(ii) The relaxation (1.2) is feasible for every f ∈ R[x]2d;
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(iii) The relaxation (1.2) is feasible for f = −[x]Td [x]d.

Proof. First we prove (i) ⇒ (ii). Every f ∈ R[x]2d can be written as f(x) =
[x]Td F [x]d for some symmetric matrix F . By Assumption 3.1, the matrix E is
positive definite, so we can choose λ > 0 big enough such that the polynomial

σ0(x) := f(x) + λ[x]Td E[x]d = [x]Td (F + λE)[x]d

is SOS. Then choose γ = −λ, and we get the identity

f − γ = σ0 + λσ1g1 + · · ·+ λσmgm.

Therefore, (1.2) is feasible and its optimal value fsos ≥ γ.
The direction (ii) ⇒ (iii) is obvious. Now we prove (iii) ⇒ (i). Let f(x) =

−[x]Td [x]d. Since (1.2) is feasible for this f , there exist γ̂ and SOS polynomials
σ̂0, σ̂1, . . . , σ̂m such that deg(σ̂igi) ≤ 2d for every i and

−[x]Td [x]d − γ̂ = σ̂0 + σ̂1g1 + · · ·+ σ̂mgm.

Evaluating at u ∈ S, we obtain that −γ̂ ≥ [u]Td [u]d ≥ 1 and

1

−γ̂

(
σ̂1g1 + · · ·+ σ̂mgm

)
= 1− 1

−γ̂

(
[x]Td [x]d + σ̂0

)
.

Hence, Assumption 3.1 holds. ¤

In Assumption 3.1, the choice of SOS polynomials σ1, . . . , σm and positive defi-
nite matrix E might not be unique. In our bound analysis, the bigger λmin(E) is,
the better the obtained bound would be. So we want λmin(E) to be as large as
possible. Interestingly, the best one could be found by solving the SOS program:

(3.1)





max
σ1,...,σm,E

λmin(E)

s.t. σ1g1 + · · ·+ σmgm = 1− [x]Td E[x]d,
σ1, . . . , σm are SOS,
deg(σ1g1), . . . , deg(σmgm) ≤ 2d.

Assume (σ∗
1 , . . . , σ

∗
m, E∗) is optimal for (3.1). Assumption 3.1 holds if and only if

λmin(E
∗) > 0, so it is checkable by solving the SOS program (3.1).

Let d = max{ddeg(f)/2e, ddeg(g)/2e}, and F be a subspace of R[x]2d containing
f . Define a constant associated with F and S as

(3.2) χ(F , S) := max
p∈F

{
‖p‖G : |p(x)| ≤ 1 ∀x ∈ S

}
.

When int(S) 6= ∅, χ(F , S) < ∞ because κ2d(S) > 0 (cf. Lemma 2.2) and

‖p‖L2(S) ≥ κ2d(S) · ‖pG‖2.
When int(S) = ∅, χ(F , S) might be infinite for some F . For instance, if S is the
unit sphere Sn−1, then χ(R[x]2d, Sn−1) = ∞ because for pk = k(1− ‖x‖22) it holds
that

‖pk‖G → ∞ as k → ∞ while |pk(x)| ≤ 1 ∀x ∈ Sn−1.

When S has empty interior, in order to ensure χ(F , S) < ∞, it suffices to choose
F lying in the orthogonal complement of the subspace space

V(S) =
{
p ∈ R[x]2d : p(x) = 0 ∀x ∈ S

}
.

Obviously, if int(S) 6= ∅, V(S) = {0} is a singleton.
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Theorem 3.3. Suppose F is a subspace of R[x]2d containing 1, χ(F , S) < ∞,
and the tuple (σ1, . . . , σm, E) satisfies Assumption 3.1. Let f ∈ F , and fmin (resp.
fmax) be its minimum (resp. maximum) on S. If fsos is the optimal value of (1.2),
then

1 ≤ fmax − fsos
fmax − fmin

≤ χ(F , S)

λmin(E)
.

The above bound is best if the optimal solution (σ∗
1 , . . . , σ

∗
m, E∗) of (3.1) is used.

Proof. Let med(f) = 1
2 (fmin + fmax) ∈ [fmin, fmax]. First, we consider the case

that fmin < med(f) < fmax. Let

f̃(x) :=
f(x)−med(f)

med(f)− fmin
∈ F .

Then |f̃(x)| ≤ 1 for all x ∈ S and
∥∥∥f̃

∥∥∥
G
≤ χ(F , S) by definition (3.2). Now set

(3.3) θ∗ :=
χ(F , S)

λmin(E)
> 0, γ∗ := med(f)− θ∗

(
med(f)− fmin

)
.

Then, we have ∥∥∥∥
1

θ∗
f̃

∥∥∥∥
G

≤ λmin(E).

By Lemma 2.1, there exists a symmetric matrix W satisfying

1

θ∗
f̃(x) = [x]Td W [x]d, ‖W‖F ≤ λmin(E),

1

θ∗
f̃(x) + [x]Td E[x]d = [x]Td (W + E)[x]d.

Since ‖W‖2 ≤ ‖W‖F ≤ λmin(E), we know W + E º 0. Hence, the polynomial

σ̂0(x) := (med(f)− fmin)θ
∗
( 1

θ∗
f̃(x) + [x]Td E[x]d

)

must be SOS. Let σ̂i = (med(f) − fmin)θ
∗σi for every i, which are all SOS. Then

we can verify that

σ̂1g1 + · · ·+ σ̂mgm = (med(f)− fmin)θ
∗(1− [x]Td E[x]d),

f − γ∗ = σ̂0 + σ̂1g1 + · · ·+ σ̂mgm.

So, (σ̂0, σ̂1, . . . , σ̂m, γ∗) is feasible for (1.2) and its optimal value fsos ≥ γ∗. By the
choice of γ∗ in (3.3), it holds that

med(f)− fsos
med(f)− fmin

≤ χ(F , S)

λmin(E)
.

Since med(f) ∈ [fmin, fmax] and fsos ≤ fmin, the theorem is true.
Second, we consider the case that fmin = fmax, then f − fmin is constantly zero

on S. Since χ(F , S) < ∞, f − fmin must be the identically zero polynomial, i.e., f
is the constant fmin. So, fsos = fmin and the theorem is clearly true. ¤

To get a concrete bound by applying Theorem 3.3, we need estimate χ(F , S)
and λmin(E).

Theorem 3.4. Suppose 0 ∈ int
(
S
)
and (σ1, . . . , σm, E) satisfies Assumption 3.1.

Let f ∈ R[x]2d, fmin (resp. fmax) be its minimum (resp. maximum) on S, and
fsos be the optimal value of Lasserre’s relaxation (1.2).
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(i) It holds that

1 ≤ fmax − fsos
fmax − fmin

≤ 1

κ2d(S)λmin(E)
.

(ii) If n ≥ 2d, then

1 ≤ fmax − fsos
fmax − fmin

≤ 1

η2d(S)λmin(E)

√(
n

2d

)
.

The above bounds are best if the optimal solution (σ∗
1 , . . . , σ

∗
m, E∗) of (3.1) is used.

Proof. (i) Since int
(
S
) 6= ∅, Lemma 2.2 implies κ2d(S) > 0. Let F = R[x]2d. If

p ∈ F satisfies |p(x)| ≤ 1 for all x ∈ S, then ‖p‖L2(S) ≤ 1 and (2.14) implies

1 ≥ κ2d(S)‖p‖G and χ(F , S) ≤ 1
κ2d(S) . Then, Theorem 3.3 implies the result.

(ii) Since 0 ∈ int
(
S
)
, every S∆ has nonempty interior, and Lemma 2.2 implies

η2d(S) > 0. If p ∈ R[x]2d and |p(x)| ≤ 1 for all x ∈ S, the restriction p∆(x∆) of
p(x) must also satisfy |p∆(x∆)| ≤ 1 for every x∆ ∈ S∆. Thus we have

(3.4) ‖p‖2L2(S),mg =
∑

∆∈Ω2d

∫

S∆

p∆(x∆)
2dµ∆(x∆) ≤

∑

∆∈Ω2d

1 =

(
n

2d

)
.

Therefore, Lemma 2.3 and the above imply

‖p‖G ≤ 1

η2d(S)

√(
n

2d

)
and χ(R[x]2d, S) ≤ 1

η2d(S)

√(
n

2d

)
.

The result is then implied by Theorem 3.3. ¤

Generally, it is hard to tell which one of 1
κ2d(S) and 1

η2d(S)

√(
n
2d

)
is superior in

Theorem 3.4, depending on S. However, typically η2d(S) is relatively easier to
estimate than κ2d(S) does. For instance, when S is a unit ball or hypercube, the
constant η2d(S) is independent of n and easy to estimate, while κ2d(S) is quite
difficult to estimate in terms of n, d. This will be shown in Section 4.

Remark 3.5. The optimal value λmin(E
∗) of (3.1) is closely related to the “radius”

of S. Let R = maxx∈S ‖x‖2. Observe that

‖x‖2k2 = (x2
1 + · · ·+ x2

n)
k =

∑

α∈Nn
=k

x2α k!

α1! · · ·αn!
≤ k!

∑

α∈Nn
=k

x2α = k!‖[xk]‖22,

‖[x]d‖22 = 1 + ‖[x1]‖22 + ‖[x2]‖22 + · · ·+ ‖[xd]‖22 ≥
d∑

k=0

‖x‖2k2
k!

.

Since 1 ≥ [x]Td E
∗[x]d ≥ λmin(E

∗)‖[x]d‖22 for all x ∈ S, the above implies

1

λmin(E∗)
≥

d∑

k=0

R2k

k!
.

On the other hand, from

‖[xk]‖22 =
∑

α∈Nn
=k

x2α ≤
∑

α∈Nn
=k

x2α k!

α1! · · ·αn!
= (x2

1 + · · ·+ x2
n)

k = ‖x‖2k2 ,
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we know the polynomial r(x) := 1− (
1 +R2 + · · ·+R2d

)−1
[x]Td [x]d is nonnegative

on S. If there exist SOS polynomials s0, s1, . . . , sm such that every deg(sigi) ≤ 2d
and

(3.5) r = s0 + s1g1 + · · ·+ smgm,

then we can find a positive definite matrix Ê satisfying

[x]Td Ê[x]d = 1− (s1g1 + · · ·+ smgm) = s0 +
(
1 +R2 + · · ·+R2d

)−1
[x]Td [x]d.

Since s0 is SOS, we know

1

λmin(E∗)
≤ 1

λmin(Ê)
≤

d∑

k=0

R2k ≤ d!

d∑

k=0

R2k

k!
.

So, if (3.5) holds, then

d∑

k=0

R2k

k!
≤ 1

λmin(E∗)
≤ d!

d∑

k=0

R2k

k!
.

If (3.5) fails but R is known in advance, we can add to (1.1) the redundant constraint

r(x) ≥ 0. Hence, 1
λmin(E∗) can be estimated by

∑d
k=0

R2k

k! , which is tight within a

factor of d!. ¤

4. Bounds for some special optimization problems

Theorems 3.3 and 3.4 give some general bounds for Lasserre’s relaxation (1.2)
in terms of some constants related to the feasible set S. For special S like a unit
ball or hypercube, estimating η2d(S) is typically easy, while estimating κ2d(S) in
terms of n, d is typically quite difficult. So, generally we apply Theorem 3.4 (ii) by
estimating η2d(S). In this section, we assume deg(f) = 2d and deg(gi) = 2.

4.1. Optimizing polynomials over a unit ball. Consider the case that S is the
unit ball B := {x ∈ Rn : ‖x‖2 ≤ 1}. Then m = 1 and g1(x) = 1 − ‖x‖22. To get a
bound, we estimate η2d

(
B
)
and λmin(E

∗) in (3.1).

By definition (2.15), we have η2d
(
B
)
=

√
λmin

(
Θ∆,2d

(
B
))

for every ∆ ∈ Ω2d

because of the symmetry of B. Let ∆ = {1, . . . , 2d}, then

Θ∆,2d

(
B
)
=

∫

‖x∆‖2≤1

[x∆]G,2d[x∆]
T
G,2ddµ∆(x∆)

=
1

V ol(‖x∆‖2 ≤ 1)

∫

‖x∆‖2≤1

[x∆]G,2d[x∆]
T
G,2ddx∆,

where dx∆ is the standard Lebesgue measure. Observe that
∫

‖x∆‖2≤1

xα
∆dx∆ = Area(S2d−1) ·

∫

‖x∆‖2=1

xα
∆dν∆(x∆) ·

∫ 1

0

r|α|+2d−1dr.

In the above, Area(S2d−1) is area of the unit sphere S2d−1, and ν∆(·) is the uniform
probability measure on S2d−1. Note the formulae

Area(S2d−1) =
2πd

Γ(d)
, V ol(‖x∆‖2 ≤ 1) =

πd

Γ(1 + d)
.
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When α = 2β = 2(β1, . . . , β2d) is an even vector, it holds that (cf. Lemma 8 of [1])

∫

‖x∆‖2=1

xα
∆dν∆(x∆) =

Γ(d)
∏2d

i=1 Γ(βi + 1/2)

πdΓ(|β|+ d)
,

∫

‖x∆‖2≤1

xα
∆dµ∆(x∆) =

Γ(1 + d)
∏2d

i=1 Γ(βi + 1/2)

πd(|β|+ d)Γ(|β|+ d)
.

Here, Γ(·) is the standard Gamma function. If at least one entry of α is odd, the
integral

∫
‖x∆‖2=1

xα
∆dν∆(x∆) = 0. A list of typical values of η2d

(
B
)
is in Table 1.

2d 2 4 6 8

η2d
(
B
)

0.19204 0.01670 0.00161 0.00004

Table 1. A list of η2d
(
B
)
for 2d = 2, 4, 6, 8.

Lemma 4.1. When S is the unit ball B, we have η2d
(
B
)
is independent of n,

Assumption 3.1 holds, and the optimal E∗ of (3.1) satisfies λmin(E
∗) ≥ 1

d+1 .

Proof. In the above we have already seen that η2d
(
B
)
is independent of n. Now

we estimate λmin(E
∗) in (3.1). For any integer k ≥ 1, it holds that

(1 + t+ · · ·+ tk−1)(1− t) = 1− tk.

Let sd(t) :=
1

d+1

∑d
k=1

∑k−1
j=0 t

j , then

(4.1) sd(t)(1− t) = 1− 1

d+ 1

(
1 + t+ · · ·+ td

)
.

Plugging t by ‖x‖22, we get

sd(‖x‖22)(1− ‖x‖22) = 1− 1

d+ 1

(
1 + ‖x‖22 + · · ·+ ‖x‖2d2

)
.

Since sd(‖x‖22) is SOS and has degree 2d− 2, there exists a symmetric E satisfying

1

d+ 1

(
1 + ‖x‖22 + · · ·+ ‖x‖2d2

)
= [x]Td E[x]d, λmin(E) ≥ 1

d+ 1
.

So, Assumption 3.1 holds and the optimal value of (3.1) is at least 1
d+1 . ¤

Clearly, Theorem 3.4 (ii) and Lemma 4.1 imply the following.

Corollary 4.2. Assume n ≥ 2d. Let f ∈ R[x]2d, and fmin (resp., fmax) be its
minimum (resp., maximum) on the unit ball B. If fsos is the optimal value of (1.2),
then

1 ≤ fmax − fsos
fmax − fmin

≤ d+ 1

η2d
(
B
)
√(

n

2d

)
.

So, fsos is an O(nd)-approximation of fmin as n → ∞.
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4.2. Optimizing polynomials over a hypercube. Consider the case that S is
the hypercube C := [−1, 1]n. Then m = n and

g1(x) = 1− x2
1, . . . , gn(x) = 1− x2

n.

To get a bound by Theorem 3.4 (ii), we need to estimate η2d(C) and λmin(E
∗) in

(3.1).

By definition (2.15), we know η2d(C) =
√
λmin(Θ∆,2d(C)) for every ∆ ∈ Ω2d

since C is symmetric. Let ∆ = {1, . . . , 2d}, then

Θ∆,2d(C) =
∫

[−1,1]2d
[x∆]G,2d[x∆]

T
G,2ddµ∆(x∆).

If at least one αi is odd, the integral
∫
[−1,1]2d

xα
∆dµ∆(x∆) vanishes. If α = 2(β1, . . . , β2d)

is even, then ∫

[−1,1]2d
xα
∆dµ∆(x∆) =

1

(1 + 2β1) · · · (1 + 2β2d)
.

A list of typical values of η2d(C) is in Table 2.

2d 2 4 6 8
η2d(C) 0.2678 0.0671 0.0329 0.0096

Table 2. A list of η2d(C) for 2d = 2, 4, 6, 8.

Lemma 4.3. When S is the hypercube C = [−1, 1]n, we have η2d
(C) is independent

of n, Assumption 3.1 holds, and the optimal E∗ of (3.1) satisfies λmin(E
∗) ≥

1
d+1n

−d.

Proof. We already observed that η2d
(C) is independent of n. Now we estimate

λmin(E
∗). For sd(t) = 1

d+1

∑d
k=1

∑k−1
j=0 t

j , it holds that sd(t)(1−t) = 1− 1
d+1

(
1 + t+ · · ·+ td

)
.

In (4.1), replacing t by 1
n‖x‖22, we get that

1

n
sd

(
1

n
‖x‖22

)(
n∑

i=1

(1− x2
i )

)
= 1− 1

d+ 1

(
1 +

1

n
‖x‖22 + · · ·+ 1

nd
‖x‖2d2

)
.

Hence, there exists a symmetric matrix E such that

1

d+ 1

(
1 +

1

n
‖x‖22 + · · ·+ 1

nd
‖x‖2d2

)
= [x]Td E[x]d, λmin(E) ≥ 1

d+ 1
n−d.

The polynomial 1
nsd

(
1
n‖x‖22

)
is SOS. So, Assumption 3.1 holds and the optimal E∗

in (3.1) satisfies λmin(E
∗) ≥ 1

d+1n
−d. ¤

Clearly, Theorem 3.4 (ii) and Lemma 4.3 imply the following corollary.

Corollary 4.4. Let f ∈ R[x]2d, and fmin (resp., fmax) be its minimum (resp.,
maximum) on the hypercube C = [−1, 1]n. If fsos is the optimal value of (1.2), then

1 ≤ fmax − fsos
fmax − fmin

≤ (d+ 1)nd

η2d(C)

√(
n

2d

)
.

So, fsos is an O(n2d)-approximation of fmin as n → ∞.
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4.3. Optimizing square free polynomials over a hypercube. Consider the
case that S is the hypercube C = [−1, 1]n and f(x) is square free, that is,

f(x) =
∑

γ∈Sfr(Nn
2d)

fγx
γ , where Sfr(Nn

2d) = Nn
2d ∩ {0, 1}n.

Recall that Sfr[x]k is the space of square free polynomials of degrees at most k.

Lemma 4.5. It holds that

χ(Sfr[x]k, C) ≤
√
3
k
, λmin(E

∗) ≥ 1

d+ 1
n−d.

Proof. Let p ∈ Sfr[x]k be such that |p(x)| ≤ 1 for all x ∈ C. If we write p(x) =∑
γ∈Sfr(Nn

k )
pγx

γ , then a simple integration shows

1 ≥ 1

2n

∫

C
p(x)2dx =

∑

γ∈Sfr(Nn
k )

p2γ
1

2n

∫

C
x2γdx =

∑

γ∈Sfr(Nn
k )

p2γ3
−|γ| ≥ 3−k‖p‖22.

Therefore, we have ‖p‖G ≤ ‖p(x)‖2 ≤ √
3
k
. By definition (3.2), the first inequality

follows immediately. The second one is a consequence of Lemma 4.3. ¤

Lemma 4.5 implies χ(Sfr[x]2d, C) ≤ 3d. Hence, Theorem 3.3 implies the follow-
ing.

Corollary 4.6. Let f ∈ Sfr[x]2d, and fmin (resp., fmax) be its minimum (resp.,
maximum) on [−1, 1]n. If fsos is the optimal value of (1.2), then it holds that

fmax − fsos ≤ (d+ 1) · (3n)d(fmax − fmin).

4.4. Optimizing polynomials over boolean sets. Consider the case that S is
the boolean set {±1}n. Then m = 2n and

gi(x) = 1− x2
i ≥ 0, gn+i(x) = −1 + x2

i ≥ 0, i = 1, . . . , n.

The approximation bound of (1.2) for this case is given as below.

Corollary 4.7. Let f ∈ R[x]2d, and fmin (resp., fmax) be its minimum (resp.,
maximum) on {±1}n. If fsos is the optimal value of (1.2), then it holds that

fmax − fsos ≤ (d+ 1)nd(fmax − fmin).

Proof. From the proof of Lemma 4.3, we can find an SOS polynomial s(x) satisfying

s(x)(g1(x) + · · ·+ gn(x)) = 1− [x]Td E[x]d, λmin(E) ≥ 1

d+ 1
n−d.

So the optimal E∗ in (3.1) for the set {±1}n must satisfy λmin(E
∗) ≥ 1

d+1n
−d.

First, assume f ∈ Sfr[x]2d is square free. We claim that

(4.2) χ(Sfr[x]2d, {±1}n) ≤ 1.

To see this, suppose p ∈ Sfr[x]2d and |p(x)| ≤ 1 for all x ∈ {±1}n. If we write
p(x) =

∑
γ∈Sfr(Nn

2d)
pγx

γ , then

1 ≥ 1

2n

∑

u∈{±1}n

p(u)2 =
∑

γ∈Sfr(Nn
2d)

p2γ · 1

2n

∑

u∈{±1}n

u2γ =
∑

γ∈Sfr(Nn
2d)

p2γ = ‖p‖22.

Hence, ‖p‖G ≤ ‖p‖2 ≤ 1, and (4.2) is true by definition (3.2). So Theorem 3.3
implies the corollary when f is square free.
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Second, if f is not square free, there exists f̂ ∈ Sfr[x]2d such that

f(x) = f̂(x) ∀x ∈ {±1}n.
By the previous argument, the corollary is also true. ¤

After a linear coordinate transformation, the approximation bound in Corol-
lary 4.7 is also true for (1.2) when S = {0, 1}n. So we get

Corollary 4.8. Let f ∈ R[x]2d, and fmin (resp., fmax) be its minimum (resp.,
maximum) on {0, 1}n. If fsos is the optimal value of (1.2), then

fmax − fsos ≤ (d+ 1)nd(fmax − fmin).

4.5. Optimizing polynomials over quadratically constrained sets. Consider
the case that every gi(x) = [x]T1 Qi[x]1 is quadratic. If Assumption 3.1 holds,
Theorem 3.4 can be applied to get a bound. The optimal value λmin(E

∗) of (3.1)
can be estimated by using Qi. If we set d = 1, (3.1) reduces to

(4.3)





max
λ=(λ1,...,λm),A

λmin(A)

s.t. [x]T1

(
A+ λ1Q1 + · · ·+ λmQm

)
[x]1 = 1,

λ1, . . . , λm ≥ 0.

Let (λ∗, A∗) be an optimal solution of (4.3).

Lemma 4.9. Suppose every gi(x) is quadratic and λmin(A
∗) > 0 in (4.3). Then

Assumption 3.1 holds, and λmin(E
∗) ≥ 1

d

(
λmin(A

∗)
)d

for (3.1).

Proof. Let s(t) = 1
d

∑d
k=1

∑k−1
j=0 t

j , then s(t)(1− t) = 1− 1
d

(
t+ · · ·+ td

)
. Plugging

t by [x]T1 A
∗[x]1, we get the identity

s
(
[x]T1 A

∗[x]1
)
(1− [x]T1 A

∗[x]1) = 1− 1

d

(
[x]T1 A

∗[x]1 + · · ·+ ([x]T1 A
∗[x]1)d

)
.

From (4.3), we know 1 ≥ [x]1A
∗[x]1 ≥ λmin(A

∗)(1 + ‖x‖22) for all x ∈ S. So there
exists a symmetric matrix E satisfying

1

d

(
[x]T1 A

∗[x]1 + · · ·+ ([x]T1 A
∗[x]1)d

)
= [x]Td E[x]d, λmin(E) ≥ 1

d

(
λmin(A

∗)
)d
.

Let σi(x) = λ∗
i s
(
[x]T1 A

∗[x]1
)
for every i, which are all SOS, then we get

σ1g1 + · · ·+ σmgm = 1− [x]Td E[x]d.

Hence, Assumption 3.1 holds, and the optimal value of (3.1) is at least 1
d

(
λmin(A

∗)
)d
.

¤

Clearly, Theorem 3.4 and Lemma 4.9 imply the following corollary.

Corollary 4.10. Assume every gi is quadratic and an optimal A∗ in (4.3) is pos-
itive definite. Let f ∈ R[x]2d, and fmin (resp., fmax) be the minimum (resp.,
maximum) of f(x) on S. If fsos is the optimal value of (1.2), then it holds that

1 ≤ fmax − fsos
fmax − fmin

≤ min

{
1

κ2d(S)
,

1

η2d(S)

√(
n

2d

)}
d(

λmin(A∗)
)d .
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Remark 4.11. If every gi(x) = [x]T1 Qi[x]1 is concave, we can get λmin(A
∗) exactly.

Let R = maxx∈S ‖x‖2 be the radius of S. Then 1 ≥ [x]T1 A
∗[x]1 ≥ λmin(A

∗)(1 +
‖x‖22) for all x ∈ S, and hence λmin(A

∗) ≤ (1 + R2)−1. The quadratic function
1− (1 +R2)−1[x]T1 [x]1 is concave and nonnegative on S. If int

(
S
) 6= ∅, there exist

(λ̂1, . . . , λ̂m) ≥ 0 satisfying

(4.4) 1− (1 +R2)−1(1 + ‖x‖22) = λ̂1[x]
T
1 Q1[x]1 + · · ·+ λ̂m[x]T1 Qm[x]1.

Thus, (λ̂1, . . . , λ̂m, 1
1+R2 In+1) is feasible for (4.3) and λmin(A

∗) ≥ (1 +R2)−1. So

λmin(A
∗) = (1 +R2)−1.

If some gi(x) = [x]T1 Qi[x]1 is not concave, it would be quite difficult to estimate
λmin(A

∗) in (4.3) because (4.4) might not hold. However, if R is known in advance,
the redundant constraint 1 − (1 + R2)−1[x]T1 [x]1 ≥ 0 could be added, and we still
have λmin(A

∗) = (1 +R2)−1. ¤

Example 4.12 (Multi-unit ball). Suppose x = (x(1), . . . , x(m)) where each x(i) is
an ni-dimensional vector, gi(x) = 1−‖x(i)‖22, ni ≥ 2d, and n1+ · · ·+nm = n. Such
a set S is called a multi-unit ball. Observe that

1

m+ 1
(g1 + · · ·+ gm) =

1

m+ 1
(m− ‖x‖22) = 1− [x]T1

In+1

m+ 1
[x]1.

So the optimal A∗ of (4.3) satisfies λmin(A
∗) ≥ 1

m+1 . Obviously η2d(S) > 0 depends

only on d. Corollary 4.10 implies an approximation bound O((mn)d) holds for
(1.2). ¤
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