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Abstract

Given polynomials f(x), gi(x), hj(x), we study how to minimize f(x) on the set

S = {x ∈ Rn : h1(x) = · · · = hm1
(x) = 0, g1(x) ≥ 0, . . . , gm2

(x) ≥ 0} .

Let fmin be the minimum of f on S. Suppose S is nonsingular and fmin is achievable on
S, which are true generically. This paper proposes a new type semidefinite programming
(SDP) relaxation which is the first one for solving this problem exactly. First, we con-
struct new polynomials ϕ1, . . . , ϕr, by using the Jacobian of f, hi, gj , such that the above
problem is equivalent to

min
x∈Rn

f(x)

s.t. hi(x) = 0, ϕj(x) = 0, 1 ≤ i ≤ m1, 1 ≤ j ≤ r,
g1(x)

ν1 · · · gm2(x)
νm2 ≥ 0, ∀ν ∈ {0, 1}m2 .

Second, we prove that for all N big enough, the standard N -th order Lasserre’s SDP
relaxation is exact for solving this equivalent problem, that is, its optimal value is equal
to fmin. Some variations and examples are also shown.

Key words determinantal varieties, ideals, minors, polynomials, nonsingularity, semidefi-
nite programming, sum of squares

AMS subject classification 14P99, 65K05, 90C22

1 Introduction

Consider the optimization problem

min
x∈Rn

f(x)

s.t. h1(x) = · · · = hm1(x) = 0
g1(x) ≥ 0, . . . , gm2(x) ≥ 0

(1.1)

where f(x), gi(x), hj(x) are polynomial functions. When m1 = 0 (resp. m2 = 0), there are
no equality (resp. inequality) constraints. Let S be its feasible set and fmin be its global
minimum. We are interested in computing fmin. The problem is NP-hard [16].
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A standard approach for solving (1.1) is the hierarchy of semidefinite programming (SDP)
relaxations proposed by Lasserre [16]. It is based on a sequence of sum of squares (SOS) type
representations of polynomials that are nonnegative on S. The basic idea is, for a given
integer N > 0 (called relaxation order), solve the SOS program

max γ

s.t. f(x)− γ =
m1∑
i=1

φihi +
m2∑
j=1

σjgj ,

deg(φihi), deg(σjgj) ≤ 2N ∀ i, j,
σ1, . . . , σm2 are SOS.

(1.2)

In the above, g0(x) ≡ 1, the decision variables are the coefficients of polynomials φi and σj .
Here a polynomial is SOS if it is a sum of squares of other polynomials. The SOS program
(1.2) is equivalent to an SDP problem (see [16]). Let pN be the optimal value of (1.2). Clearly,
pN ≤ fmin for every N . Using Putinar’s Positivstellensatz [21], Lasserre proved pN → fmin

as N → ∞, under the archimedean condition. A stronger relaxation than (1.1) would be
obtained by using cross products of gj , which is

max γ
s.t. f(x)− γ =

∑
i=1,...,m1

φihi +
∑

ν∈{0,1}m2

σν · gν ,
deg(φihi) ≤ 2N, deg(σνgν) ≤ 2N ∀ i, ν,
σν are all SOS.

(1.3)

In the above, gν = gν11 · · · gνm2
m2 . Let qN be the optimal value of (1.3). When S is compact,

Lasserre showed qN → fmin as N goes to infinity, using Schmügen’s Positivstellensatz [24].
An analysis for the convergence speed of pN , qN to fmin is given in [19, 25]. Typically, (1.2)
and (1.3) are not exact for (1.1) with a finite N . Scheiderer [23] proved a very surprising
result: whenever S has dimension three or higher, there always exists f such that f(x)−fmin

does not have a representation required in (1.3). Thus, we usually need to solve a big number
of SDPs until convergence is met. This would be very inefficient in many applications.
Furthermore, when S is not compact, typically we do not have the convergence pN → fmin or
qN → fmin. This is another difficulty. Thus, people are interested in more efficient methods
for solving (1.1).

Recently, the author, Demmel and Sturmfels [18] proposed a gradient type SOS relaxation.
Consider the case of (1.1) without constraints, i.e., m1 = m2 = 0. If the minimum fmin is
achieved at a point u, then ∇f(u) = 0, and the problem is equivalent to

min
x∈Rn

f(x) s.t.
∂f

∂x1
= · · · = ∂f

∂xn
= 0. (1.4)

In [18], Lasserre’s relaxation is applied to solve (1.4), and it was shown that a sequence of
lower bounds converging to fmin would be obtained. It has finite convergence if the gradient
ideal, generated by the partial derivatives of f(x), is radical. More recently, Demmel, the
author and Powers [7] generalized the gradient SOS relaxation to solve (1.1) by using the
Karush-Kuhn-Tucker (KKT) conditions of (1.1)

∇f(x) =

m1∑

i=1

λi∇hi(x) +

m2∑

j=1

µj∇gj(x), µjgj(x) = 0, j = 1, . . . ,m2.
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If a global minimizer of (1.1) is a KKT point, then (1.1) is equivalent to

min
x,λ,µ

f(x)

s.t. h1(x) = · · · = hm1(x) = 0,

∇f(x) =
m1∑
i=1

λi∇hi(x) +
m2∑
j=1

µj∇gj(x),

µjgj(x) = 0, gj(x) ≥ 0, j = 1, . . . ,m2.

(1.5)

Let {vN} be the sequence of lower bounds for (1.5) obtained by applying Lasserre’s relax-
ation of type (1.3). It was shown in [7] that vN → fmin, no matter S is compact or not.
Furthermore, it holds that vN = fmin for a finite N when the KKT ideal is radical, but it
was unknown in [7] whether this property still holds without the KKT ideal being radical. A
drawback for this approach is that the involved polynomials are in (x, λ, µ). There are totally
n+m1 +m2 variables, which makes the resulting SDP very difficult to solve in practice.

Contributions This paper proposes a new type SDP relaxation for solving (1.1) via using
KKT conditions but the involved polynomials are only in x. Suppose S satisfies a nonsingu-
larity assumption (see Assumption 2.2 for its meaning) and fmin is achievable on S, which
are true generically. We construct new polynomials ϕ1(x), . . . , ϕr(x), by using the minors of
the Jacobian of f, hi, gj , such that (1.1) is equivalent to

min
x∈Rn

f(x)

s.t. hi(x) = 0 (1 ≤ i ≤ m1), ϕj(x) = 0 (1 ≤ j ≤ r),
g1(x)

ν1 · · · gm2(x)
νm2 ≥ 0, ∀ ν ∈ {0, 1}m2 .

Then we prove that for all N big enough, the standard N -th order Lasserre’s relaxation for
the above returns the minimum fmin. That is, an exact SDP relaxation for (1.1) is obtained
by using the Jacobian.

This paper is organized as follows. Section 2 gives the construction of this exact SDP
relaxation by using Jacobian. Its exactness and genericity are proved in Section 3. Some
efficient variations are proposed in Section 4. Some examples of how to apply it are shown
in Section 5. Some conclusions and discussions are made in Section 6. Finally, we attach an
appendix introducing some basics of algebraic geometry and real algebra that are used in the
paper.

Notations The symbol N (resp., R, C) denotes the set of nonnegative integers (resp., real
numbers, complex numbers). For any t ∈ R, dte denotes the smallest integer not smaller than
t. For integer n > 0, [n] denotes the set {1, . . . , n}, and [n]k denotes the set of subsets of [n]
whose cardinality is k. For a subset J of [n], |J | denotes its cardinality. For x ∈ Rn, xi denotes
the i-th component of x, that is, x = (x1, . . . , xn). For α ∈ Nn, denote |α| = α1 + · · · + αn.
For x ∈ Rn and α ∈ Nn, xα denotes xα1

1 · · ·xαn
n . The symbol R[x] = R[x1, . . . , xn] (resp.

C[x] = C[x1, . . . , xn]) denotes the ring of polynomials in (x1, . . . , xn) with real (resp. complex)
coefficients. A polynomial is called a form if it is homogeneous. The R[x]≤d denotes the
subspace of polynomials in R[x] of degrees at most d. For a general set T ⊆ Rn, int(T )
denotes its interior, and ∂T denotes its boundary in standard Euclidean topology. For a
symmetric matrix X, X º 0 (resp., X Â 0) means X is positive semidefinite (resp. positive
definite). For u ∈ RN , ‖u‖2 denotes the standard Euclidean norm.
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2 Construction of the exact Jacobian SDP relaxation

Let S be the feasible set of (1.1) and

m = min{m1 +m2, n− 1}. (2.1)

For convenience, we denote h(x) = (h1(x), . . . , hm1(x)) and g(x) = (g1(x), . . . , gm2(x)). For
a subset J = {j1, . . . , jk} ⊂ [m2], denote

gJ(x) = (gj1(x), . . . , gjk(x)).

Let x∗ be a minimizer of (1.1). If J is the active index set at x∗ such that gJ(x
∗) = 0 and

the KKT conditions hold at x∗, then there exist λi and µj(j ∈ J) such that

h(x∗) = 0, gJ(x
∗) = 0, ∇f(x∗) =

∑

i∈[m1]

λi∇hi(x
∗) +

∑

j∈J
µj∇gj(x

∗).

The above implies the Jacobian matrix of (f, h, gJ) is singular at x
∗. For a subset J ⊂ [m2],

denote the determinantal variety of (f, h, gJ)’s Jacobian being singular by

GJ =
{
x ∈ Cn : rankBJ(x) ≤ m1 + |J |} , BJ(x) =

[∇f(x) ∇h(x) ∇gJ(x)
]
. (2.2)

Then, x∗ ∈ V (h, gJ) ∩GJ where V (h, gJ) :=
{
x ∈ Cn : h(x) = 0, gJ(x) = 0

}
.

This motivates us to use gJ(x) = 0 and GJ to get tighter SDP relaxations for (1.1). To
do so, a practical issue is how to get a “nice” description for GJ? An obvious one is that all
its maximal minors vanish. But there are totally

(
n

m1+k+1

)
such minors (if m1 + k + 1 ≤ n),

which is huge for big n,m1, k. Can we define GJ by a set of the smallest number of equations?
Furthermore, the active index set J is usually unknown in advance. Can we get an SDP
relaxation that is independent of J?

2.1 Minimum defining equations for determinantal varieties

Let k ≤ n and X = (Xij) be a n× k matrix of indeterminants Xij . Define the determinantal
variety

Dn,k
t−1 =

{
X ∈ Cn×k : rankX < t

}
.

For any index set I = {i1, . . . , ik} ⊂ [n], denote by detI(X) the (i1, . . . , ik)× (1, . . . , k)-minor
of matrix X, i.e., the determinant of the submatrix of X whose row indices are i1, . . . , ik and
column indices are 1, . . . , k. Clearly, it holds that

Dn,k
k−1 =

{
X ∈ Cn×k : detI(X) = 0 ∀ I ∈ [n]k

}
.

The above has
(
n
k

)
defining equations of degree k. An interesting fact is that we do not need(

n
k

)
equations to define Dn,k

k−1. Actually, this number would be significantly smaller. There
is very nice work on this issue. Bruns and Vetter [3] showed that nk − t2 + 1 equations are

enough to define Dn,k
t−1. Later, Bruns and Schwänzl [2] showed that nk− t2+1 is the smallest

number of equations for defining Dn,k
t−1. Typically, nk−t2+1 ¿ (

n
k

)
for big n and k. A general
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method for constructing nk− t2 +1 defining polynomial equations for Dn,k
t−1 was described in

Chapt. 5 of [3]. Here we briefly show how it works for Dn,k
k−1.

Let Γ(X) denote the set of all k-minors of X (assume their row indices are strictly
increasing). For convenience, for i1 < · · · < ik, denote by [i1, . . . , ik] the (i1, . . . , ik) ×
(1, . . . , k)-minor of X. Define a partial ordering on Γ(X) as follows:

[i1, . . . , ik] < [j1, . . . , jk] ⇐⇒ i1 ≤ j1, . . . , ik ≤ jk, i1 + · · ·+ ik < j1 + · · ·+ jk.

If I = {i1, . . . , ik}, we also write I = [i1, . . . , ik] as a minor in Γ(X) for convenience. For any
I ∈ Γ(X), define its rank as

rk(I) = max
{
` : I = I(`) > · · · > I(1), every I(i) ∈ Γ(X)

}
.

The maximum minor in Γ(X) is [n − k + 1, . . . , n] and has rank nk − k2 + 1. For every
1 ≤ ` ≤ nk − k2 + 1, define

η`(X) =
∑

I∈[n]k,rk(I)=`

detI(X). (2.3)

Lemma 2.1 (Lemma (5.9), Bruns and Vetter [3]). It holds that

Dn,k
k−1 =

{
X ∈ Cn×k : η`(X) = 0, ` = 1, . . . , nk − k2 + 1

}
.

When k = 2, Dn,2
1 would be defined by 2n−3 polynomials. The biggest minor is [n−1, n]

and has rank 2n− 3. For each ` = 1, 2, . . . , 2n− 3, we clearly have

η`(X) =
∑

1≤i1<i2≤n: i1+i2=`+2

[i1, i2].

Every 2-minor of X is a summand of some η`(X).

When k = 3, Dn,3
2 can be defined by 3n− 8 polynomials of the form η`(X). For instance,

when n = 6, the partial ordering on Γ(X) is shown in the following diagram:

125 //

((

126 // 136 //

((

146 //

((

156 // 256

((
123 // 124

66

((

135

66

//

((

145

66

//

((

236

66

//

((

246

66

((

356 // 456.

134 //

66

234 //

66

235 //

66

245 //

66

345 // 346

66

In the above, an arrow points to a bigger minor. Clearly, we have the expressions

η1(X) = [1, 2, 3], η2(X) = [1, 2, 4], η3(X) = [1, 2, 5] + [1, 3, 4],

η4(X) = [1, 2, 6] + [1, 3, 5] + [2, 3, 4], η5(X) = [1, 3, 6] + [1, 4, 5] + [2, 3, 5],

η6(X) = [1, 4, 6] + [2, 3, 6] + [2, 4, 5], η7(X) = [1, 5, 6] + [2, 4, 6] + [3, 4, 5],

η8(X) = [2, 5, 6] + [3, 4, 6], η9(X) = [3, 5, 6], η10(X) = [4, 5, 6].
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Every above ηi(X) has degree 3. Note that the summands [i1, i2, i3] from the same ηi(X)
have a constant summation i1 + i2 + i3. Thus, for each ` = 1, . . . , 3n− 8, we have

η`(X) =
∑

1≤i1<i2<i3≤n: i1+i2+i3=`+5

[i1, i2, i3].

When k > 3 is general, Dn,k
k−1 can be defined by nk−k2+1 polynomials of the form η`(X).

For each ` = 1, 2, . . . , nk − k2 + 1, we similarly have the expression

η`(X) =
∑

1≤i1<···<ik≤n: i1+···+ik=`+(k+1
2 )−1

[i1, . . . , ik].

2.2 The exact Jacobian SDP relaxation

For every J = {j1, . . . , jk} ⊂ [m2] with k ≤ m−m1, by applying formula (2.3), let

ηJ1 , . . . , η
J
len(J)

(
len(J) := n(m1 + k + 1)− (m1 + k + 1)2 + 1

)

be the set of defining polynomials for the determinantal variety GJ defined in (2.2) of the
Jacobian of (f, h, gJ) being singular. For each i = 1, . . . , len(J), define

ϕJ
i (x) = ηJi

(
BJ(x)

)
·
∏

j∈Jc

gj(x), where Jc = [m2]\J. (2.4)

Using the product
∏

j∈Jc gj(x) in the above is motivated by a characterization of critical

points in [15]. For simplicity, list all possible ϕJ
i in (2.4) sequentially as

ϕ1, ϕ2, . . . , ϕr, where r =
∑

J⊂[m2],|J |≤m−m1

len(J). (2.5)

Now define the variety

W = {x ∈ Cn : h1(x) = · · · = hm1(x) = ϕ1(x) = · · · = ϕr(x) = 0} . (2.6)

If the minimum fmin of (1.1) is achieved at a KKT point, then (1.1) is equivalent to

min
x∈Rn

f(x)

s.t. hi(x) = 0 (1 ≤ i ≤ m1), ϕj(x) = 0 (1 ≤ j ≤ r),
gν(x) ≥ 0, ∀ν ∈ {0, 1}m2 .

(2.7)

In the above, each gν = gν11 · · · gνm2
m2 . Let f∗ be the minimum of (2.7). If (1.1) has a minimizer

that is a KKT point, then fmin = f∗. If (1.1) does not have a minimizer (i.e., fmin is not
achievable in (1.1)), or if (1.1) has one or several minimizers but none of them is a KKT
point, then we might have fmin < f∗ (e.g., for f(x) = x21 + (1 − x1x2)

2 and S = R2,
fmin = 0 < f∗ = 1 [18]). But in any case the minimum f∗ is always finite as will be shown
by Theorem 2.3, while fmin might not.
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To construct an SDP relaxation for (2.7), we need to define localizing moment matrices.

Let q(x) be a polynomial with deg(q) ≤ 2N . Define symmetric matrices A
(N)
α such that

q(x)[x]d[x]
T
d =

∑

α∈Nn:|α|≤2N

A(N)
α xα, where d = N − ddeg(q)/2e.

Then the N -th order localizing moment matrix of q is defined as

L(N)
q (y) =

∑

α∈Nn:|α|≤2N

A(N)
α yα.

Here y is a moment vector indexed by α ∈ Nn with |α| ≤ 2N . Moreover, denote

Lf (y) =
∑

α∈Nn:|α|≤deg(f)

fαyα for f(x) =
∑

α∈Nn:|α|≤deg(f)

fαx
α.

The N -th order Lasserre’s relaxation for (2.7) is the SDP

f
(1)
N := min Lf (y)

s.t. L
(N)
hi

(y) = 0 (1 ≤ i ≤ m1), L
(N)
ϕj (y) = 0 (1 ≤ j ≤ r),

L
(N)
gν (y) º 0, ∀ν ∈ {0, 1}m2 , y0 = 1.

(2.8)

Compared to Schmüdgen type Lasserre’s relaxation (1.3), the number of new constraints in

(2.8) is r = O
(
2m2 · n · (m1 + m2)

)
by (2.5). That is, r is of linear order in nm1 for fixed

m2, but is exponential in m2. So, when m2 is small or moderately large, (2.8) is practical;
but for big m2, (2.8) becomes more difficult to solve numerically. Now we present the dual
of (2.8). Define the truncated preordering P (N) generated by gj as

P (N) =





∑

ν∈{0,1}m2

σνgν

∣∣∣∣∣∣
deg(σνgν) ≤ 2N



 , (2.9)

and the truncated ideal I(N) generated by hi and ϕj as

I(N) =





m1∑

i=1

pihi +
r∑

j=1

qjϕj

∣∣∣∣∣∣
deg(pihi) ≤ 2N ∀ i
deg(qjϕj) ≤ 2N ∀ j



 . (2.10)

Then, as shown in Lasserre [16], the dual of (2.8) is the following SOS relaxation for (2.7):

f
(2)
N := max γ

s.t. f(x)− γ ∈ I(N) + P (N).
(2.11)

Note the relaxation (2.11) is stronger than (1.3). Then, by weak duality, we have

f
(2)
N ≤ f

(1)
N ≤ f∗. (2.12)

We are going to show that when N is big enough, (2.8) is an exact SDP relaxation for

(2.7), i.e., f
(2)
N = f

(1)
N = f∗. For this purpose, we need the following assumption.
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Assumption 2.2. (i) m1 ≤ n. (ii) For any u ∈ S, at most n − m1 of g1(u), . . . , gm2(u)
vanish. (iii) For every J = {j1, . . . , jk} ⊂ [m2] with k ≤ n − m1, the variety V (h, gJ) =
{x ∈ Cn : h(x) = 0, gJ(x) = 0} is nonsingular (its Jacobian has full rank on V (h, gJ)).

Theorem 2.3. Suppose Assumption 2.2 holds. Let f∗ be the minimum of (2.7). Then

f∗ > −∞ and there exists N∗ ∈ N such that f
(1)
N = f

(2)
N = f∗ for all N ≥ N∗. Furthermore,

if the minimum fmin of (1.1) is achievable, then f
(1)
N = f

(2)
N = fmin for all N ≥ N∗.

The proof of Theorem 2.3 is based on a new kind of Positivstellensatz using Jacobians
of the objective and constraining polynomials: there exists an integer N∗ > 0, which only
depends on polynomials f, hi, gj , such that for all ε > 0

f(x)− f∗ + ε ∈ I(N
∗) + P (N∗).

Note that the order N∗ in the above is independent of ε. This new Positivstellensatz is given
by Theorem 3.4 in the next section. Theorem 2.3 as well as this Positivstellensatz will be
proved in Section 3. We would like to remark that in Theorem 2.3, for N > N∗, the optimal
value of (2.11) might not be achievable (e.g., see Example 5.1), while the minimum of (2.8) is
always achievable if (1.1) has a minimizer (e.g., [x∗]2N is one for any optimizer x∗ of (1.1)).

When the feasible set S of (1.1) is compact, the minimum fmin is always achievable.
Thus, Theorem 2.3 implies the following.

Corollary 2.4. Suppose Assumption 2.2 holds. If S is compact, then f
(1)
N = f

(2)
N = fmin for

all N big enough.

A practical issue in applications is how to identify whether (2.8) is exact for a given
N . This would be possible by applying the flat-extension condition (FEC) [6]. Let y∗ be a
minimizer of (2.8). We say y∗ satisfies FEC if

rankL(N)
g0 (y∗) = rankL(N−dS)

g0 (y∗), where

dS = max
i∈[m1],j∈[r],ν∈{0,1}m2

{
ddeg(hi)/2e, ddeg(ϕj)/2e, ddeg(gν)/2e

}
.

Note that g0 ≡ 1 and L
(N)
g0 (y∗) reduces to an N -th order moment matrix. When FEC holds,

(2.8) is exact for (1.1), and a finite set of global minimizers would be extracted from y∗. We
refer to [13] for a numerical method on how to do this. A very nice software for solving SDP
relaxations from polynomial optimization is GloptiPoly 3 [14] which also provides routines
for finding minimizers if FEC holds.

Now we discuss how general the conditions of Theorem 2.3 are. Define

Bd(S) =

{
f ∈ R[x]≤d : inf

u∈S
f(u) > −∞

}
.

Clearly, Bd(S) is convex and has nonempty interior. Define the projectivization of S as

Sprj =
{
x̃ ∈ Rn+1 : h̃1(x̃) = · · · = h̃m1(x̃) = 0, g̃1(x̃) ≥ 0, . . . , g̃m2(x̃) ≥ 0

}
. (2.13)
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Here p̃ denotes the homogenization of p, and x̃ = (x0, x1, . . . , xn), i.e., p̃(x̃) = x
deg(p)
0 p(x/x0).

We say S is closed at ∞ if

Sprj ∩ {x0 ≥ 0} = closure
(
Sprj ∩ {x0 > 0}) .

Under some generic conditions, Assumption 2.2 holds and the minimum fmin of (1.1) is
achievable. These conditions are expressed as non-vanishing of the so-called resultants Res
or discriminants ∆, which are polynomial in the coefficients of f, hi, gj . We refer to Appendix
for a short introduction about Res and ∆.

Theorem 2.5. Let f, hi, gj be the polynomials in (1.1), and S be the feasible set.

(a) If m1 > n and Res(hi1 , . . . , hin+1) 6= 0 for some {i1, . . . , in+1}, then S = ∅.
(b) If m1 ≤ n and for every {j1, . . . , jn−m1+1} ⊂ [m2]

Res(h1, . . . , hm1 , gj1 , . . . , gjn−m1+1) 6= 0,

then item (ii) of Assumption 2.2 holds.

(c) If m1 ≤ n and for every {j1, . . . , jk} ⊂ [m2] with k ≤ n−m1

∆(h1, . . . , hm1 , gj1 , . . . , gjk) 6= 0,

then item (iii) of Assumption 2.2 holds.

(d) Suppose S is closed at ∞ and f ∈ Bd(S). If the resultant of any n of hhomi , ghomj is
nonzero (only when m1 +m2 ≥ n), and for every {j1, . . . , jk} with k ≤ n−m1 − 1

∆(fhom, hhom1 , . . . , hhomm1
, ghomj1 , . . . , ghomjk

) 6= 0,

then there exists v ∈ S such that fmin = f(v). Here phom denotes p’s homogeneous part
of the highest degree.

(e) If f ∈ Bd(Rn) and ∆(fhom) 6= 0, then the minimum of f(x) in Rn is achievable.

Theorem 2.5 will be proved in Section 3. Now we consider the special case of (1.1) having
no constraints. If fmin > −∞ is achievable, then (1.1) is equivalent to (1.4). The item (e)
of Theorem 2.5 tells us that this is generically true. The gradient SOS relaxation for solving
(1.4) proposed in [18] is a special case of (2.11). The following is an immediate consequence
of Theorem 2.3 and item (e) of Theorem 2.5.

Corollary 2.6. If S = Rn, f(x) has minimum fmin > −∞, and ∆(fhom) 6= 0, then the
optimal values of (2.8) and (2.11) are equal to fmin if N is big enough.

Corollary 2.6 is stronger than Theorem 10 of [18], where the exactness of gradient SOS
relaxation for a finite order N is only shown when the gradient ideal is radical.
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3 Proof of exactness and genericity

This section proves Theorems 2.3 and 2.5. First, we give some lemmas that are crucially used
in the proofs.

Lemma 3.1. Let K be the variety defined by the KKT conditions

K =



(x, λ, µ) ∈ Cn+m1+m2

∣∣∣∣∣∣
∇f(x) =

m1∑
i=1

λi∇hi(x) +
m2∑
j=1

µj∇gj(x)

hi(x) = µjgj(x) = 0, ∀ (i, j) ∈ [m1]× [m2]



 . (3.1)

If Assumption 2.2 holds, then W = Kx where

Kx = {x ∈ Cn : (x, λ, µ) ∈ K for some λ, µ}.

Proof. First, we prove W ⊂ Kx. Choose an arbitrary u ∈ W . Let J = {j ∈ [m2] : gj(u) = 0}
and k = |J |. By Assumption 2.2, m1 + k ≤ n. Recall from (2.2) that

BJ(x) =
[∇f(x) ∇h(x) ∇gJ(x)

]
.

Case m1 + k = n By Assumption 2.2, the matrix H(u) =
[∇h(u) ∇gJ(u)

]
is nonsingular.

Note that H(u) is now a square matrix. So, H(u) is invertible, and there exist λi and
µj(j ∈ J) such that

∇f(u) =

m1∑

i=1

λi∇hi(u) +
∑

j∈J
µj∇gj(u). (3.2)

Define µj = 0 for j 6∈ J , then we have u ∈ Kx.

Case m1 + k < n By the construction of polynomials ϕi(x) in (2.5), some of them are

ϕJ
i (x) := ηi(B

J(x)) ·
∏

j∈Jc

gj(x), i = 1, . . . , n(m1 + k + 1)− (m1 + k + 1)2 + 1.

So the equations ϕi(u) = 0 imply every above ϕJ
i (u) = 0 (see its definition in (2.4)). Hence

BJ(u) is singular. By Assumption 2.2, the matrix H(u) is nonsingular. So there exist λi and
µj(j ∈ J) satisfying (3.2). Define µj = 0 for j 6∈ J , then we also have u ∈ Kx.

Second, we prove Kx ⊂ W . Choose an arbitrary u ∈ Kx with (u, λ, µ) ∈ K. Let
I = {j ∈ [m2] : gj(u) = 0}. If I = ∅, then µ = 0, and

[∇f(u) ∇h(u)
]
and BJ(u) are

both singular, which implies all ϕi(u) = 0 and u ∈ W . If I 6= ∅, write I = {i1, . . . , it}. Let
J = {j1, . . . , jk} ⊂ [m2] be an arbitrary index set with m1 + k ≤ m.
Case I * J At least one j ∈ Jc belongs to I. By choice of I, we know from (2.4)

ϕJ
i (u) = ηi(B

J(u)) ·
∏

j∈Jc

gj(u) = 0.

Case I ⊆ J Then µj = 0 for all j ∈ Jc. By definition of K, the matrix BJ(u) must be
singular. All polynomials ϕJ

i (x) vanish at u by their construction.
Combining the above two cases, we know all ϕJ

i (x) vanish at u, that is, ϕ1(u) = · · · =
ϕr(u) = 0. So u ∈ W .
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Lemma 3.2. Suppose Assumption 2.2 holds. Let W be defined in (2.6), and T = {x ∈ Rn :
gj(x) ≥ 0, j = 1, . . . ,m2}. Then there exist disjoint subvarieties W0,W1, . . . ,Wr of W and
distinct v1, . . . , vr ∈ R such that

W = W0 ∪W1 ∪ · · · ∪Wr, W0 ∩ T = ∅, Wi ∩ T 6= ∅, i = 1, . . . , r,

and f(x) is constantly equal to vi on Wi for i = 1, . . . , r.

Proof. Let K = K1 ∪ · · · ∪ Kr be a decomposition of irreducible varieties. Then f(x) is
equaling a constant vi on each Ki, as shown by Lemma 3.3 in [7]. By grouping all Ki on

which vi are same into a single variety, we can assume all vi are distinct. Let Ŵi be the
projection of Ki into x-space, then by Lemma 3.1 we get

W = Ŵ1 ∪ · · · ∪ Ŵr.

Let Wi = Zar(Ŵi). Applying Zariski closure in the above gives

W = Zar(W ) = W1 ∪ · · · ∪Wr.

Note that f(x) still achieves a constant value on each Wi. Group all Wj for which Wj∩T = ∅
into a single variety W0 (if every Wj ∩ T 6= ∅ we set W0 = ∅). For convenience, we still write
the resulting decomposition as W = W0 ∪W1 ∪ · · · ∪Wr. Clearly, W0 ∩ T = ∅, and for i > 0
the values vi are real and distinct (because ∅ 6= Wi ∩ T ⊂ Rn and f(x) has real coefficients).
Since f(x) achieves distinct values on different Wi, we know Wi must be disjoint from each
other. Therefore, we get a desired decomposition for W .

Lemma 3.3. Let I0, I1, . . . , Ik be ideals of R[x] such that V (Ii) ∩ V (Ij) = ∅ for distinct i, j,
and I = I0 ∩ I1 ∩ · · · ∩ Ik. Then there exist a0, a1, . . . , ak ∈ R[x] satisfying

a20 + · · ·+ a2k − 1 ∈ I, ai ∈
⋂

i6=j∈{0,...,k}
Ij .

Proof. We prove by induction. When k = 1, by Theorem A.2, there exist p ∈ I0, q ∈ I1 such
that p+ q = 1. Then a0 = p, a1 = q satisfy the lemma.

Suppose the lemma is true for k = t. We prove it is also true for k = t + 1. Let
J = I0 ∩ · · · ∩ It. By induction, there exist b0, . . . , bt ∈ R[x] such that

b20 + · · ·+ b2t − 1 ∈ J, bi ∈
⋂

i6=j∈{0,...,t}
Ij , i = 0, . . . , t.

Since V (It+1) is disjoint from V (J) = V (I0)∪· · ·∪V (It), by Theorem A.2, there exist p ∈ It+1

and q ∈ J such that p+ q = 1. Let ai = bip for i = 0, . . . , t and at+1 = q. Then

ai ∈
⋂

i6=j∈{0,...,t+1}
Ij , i = 0, . . . , t+ 1.

Since (p+ q)2 = 1, I = It+1 ∩ J , we have pq ∈ I, (b20 + · · ·+ b2t − 1)p2 ∈ I, and

a20 + a21 + · · ·+ a2t+1 − 1 = (b20 + · · ·+ b2t − 1)p2 − 2pq ∈ I,

which completes the proof.
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Theorem 3.4. Suppose Assumption 2.2 holds and let f∗ be the minimum of (2.7). Then
f∗ > −∞ and there exists N∗ ∈ N such that for all ε > 0

f(x)− f∗ + ε ∈ I(N
∗) + P (N∗). (3.3)

Proof. Note that the feasible set of (2.7) is contained in the variety W defined by (2.6).
Decompose W as in Lemma 3.2. Thus, f(x) achieves finitely many values on W and

f∗ = min{v1, . . . , vr} > −∞.

So, we can generally assume f∗ = 0. Reorder Wi such that v1 > v2 > · · · > vr = 0. The ideal

IW = 〈h1, . . . , hm1 , ϕ1, . . . , ϕr〉 (3.4)

has a primary decomposition (see Sturmfels [28, Chapter 5])

IW = E0 ∩ E1 ∩ · · · ∩ Er

such that each ideal Ei ⊂ R[x] has variety Wi = V (Ei).

When i = 0, we have VR(E0) ∩ T = ∅ (T is defined in Lemma 3.2). By Theorem A.3,
there exist SOS polynomials τν satisfying

−1 ≡
∑

ν∈{0,1}m2

τν · gν(x) mod E0.

Thus, from f = 1
4(f + 1)2 − 1

4(f − 1)2, we have

f ≡ 1

4



(f + 1)2 + (f − 1)2

∑

ν∈{0,1}m2

τν · gν



 mod E0

≡
∑

ν∈{0,1}m2

τ̂ν · gν mod E0

for certain SOS polynomials τ̂ν . Let

σ0 = ε+
∑

ν∈{0,1}m2

τ̂ν · gν .

Clearly, if N0 > 0 is big enough, then σ0 ∈ P (N0) for all ε > 0. Let q0 = f + ε − σ0 ∈ E0,
which is independent of ε.

For each i = 1, . . . , r− 1, vi > 0 and v−1
i f(x)− 1 vanishes on Wi. By Theorem A.1, there

exists ki > 0 such that (v−1
i f(x)− 1)ki ∈ Ei. Thus, it holds that

si(x) :=
√
vi

(
1 +

(
v−1
i f(x)− 1

))1/2
≡ √

vi

ki−1∑

j=0

(
1/2

j

)
(v−1

i f(x)− 1)j mod Ei .

Let σi = si(x)
2 + ε, and qi = f + ε− σi ∈ Ei, which is also independent of ε > 0.
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When i = r, vr = 0 and f(x) vanishes on Wr. By Theorem A.1, there exists kr > 0 such
that f(x)kr ∈ Er. Thus we obtain that

sr(x) :=
√
ε
(
1 + ε−1f(x)

)1/2 ≡ √
ε

kr−1∑

j=0

(
1/2

j

)
ε−jf(x)j mod Er .

Let σr = sr(x)
2, and qr = f + ε− σr ∈ Er. Clearly, we have

qr(x) =

kr−2∑

j=0

cj(ε)f(x)
kr+j

for some real scalars cj(ε). Note each f(x)kr+j ∈ Er.

Applying Lemma 3.3 to E0, E1, . . . , Er, we can find a0, . . . , ar ∈ R[x] satisfying

a20 + · · ·+ a2r − 1 ∈ IW , ai ∈
⋂

i6=j∈{0,1,...,r}
Ej .

Let σ = σ0a
2
0 + σ1a

2
1 + · · ·+ σra

2
r, then

f(x) + ε− σ =
r∑

i=0

(f + ε− σi)a
2
i + (f + ε)(1− a20 − · · · − a2r).

Since qi = f + ε− σi ∈ Ei, it holds that

(f + ε− σi)a
2
i ∈

r⋂

j=0

Ej = IW .

For each 0 ≤ i < r, qi is independent of ε. There exists N1 > 0 such that for all ε > 0

(f + ε− σi)a
2
i ∈ I(N1), i = 0, 1, . . . , r − 1.

For i = r, qr = f + ε− σr depends on ε. By the choice of qr, it holds that

(f + ε− σr)a
2
r =

kr−2∑

j=0

cj(ε)f
kr+ja2r.

Note each fkr+ja2r ∈ IW , since fkr+j ∈ Er. So, there exists N2 > 0 such that for all ε > 0

(f + ε− σr)a
2
r ∈ I(N2).

Since 1− a21 − · · · − a2r ∈ IW , there also exists N3 > 0 such that for all ε > 0

(f + ε)(1− a21 − · · · − a2r) ∈ I(N3).

Combining the above, we know if N∗ is big enough, then f(x) + ε − σ ∈ I(N
∗) for all

ε > 0. From the constructions of σi and ai, we know their degrees are independent of ε. So,
σ ∈ P (N∗) for all ε > 0 if N∗ is big enough, which completes the proof.
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Theorem 3.4 is a kind of Positivstellensatz of representing f(x)− f∗+ ε, which is positive
on S for all ε > 0, by the preordering generated by gj modulo the ideal IW in (3.4) of variety
W . Usually, we can not conclude f(x) − f∗ ∈ I(N

∗) + P (N∗) by setting ε = 0, because the
coefficients of the representing polynomials of f(x)− f∗ + ε in I(N

∗) +P (N∗) go to infinity as
ε → 0 (see sr(x) in the proof). It is possible that f(x)− f∗ 6∈ I(N) + P (N) for every N > 0.
Such a counterexample is Example 5.1. However, Theorem 3.4 shows that the degree bound
N∗ required for representing f(x) − f∗ + ε is independent of ε. This is a crucial property
justifying the exactness of the SDP relaxation (2.8). Now we present its proof below.

Proof of Theorem 2.3 By Theorem 3.4, we know f∗ > −∞ and there exists N∗ ∈ N such
that for all ε > 0

f(x)− (f∗ − ε) ∈ I(N
∗) + P (N∗).

Since f
(1)
N∗ , f

(2)
N∗ are the optimal values of (2.8) and (2.11) respectively, we know

f∗ − ε ≤ f
(2)
N∗ ≤ f

(1)
N∗ ≤ f∗.

Because ε > 0 is arbitrary, the above implies f
(1)
N∗ = f

(2)
N∗ = f∗. Since the sequence {f (2)

N } is

monotonically increasing and every f
(2)
N ≤ f

(1)
N ≤ f∗ by (2.12), we get f

(1)
N = f

(2)
N = f∗ for

all N ≥ N∗. If the minimum fmin of (1.1) is achievable, then there exists x∗ ∈ S such that
fmin = f(x∗). By Assumption 2.2, we must have x∗ ∈ W . So x∗ is feasible for (2.7), and

f∗ = fmin. Thus, we also have f
(1)
N = f

(2)
N = fmin for all N ≥ N∗.

Last we prove Theorem 2.5 by using the properties of resultants and discriminants de-
scribed in Appendix.

Proof of Theorem 2.5 (a) If Res(hi1 , . . . , hin+1) 6= 0, then the polynomial system

hi1(x) = · · · = hin+1(x) = 0

does not have a complex solution. Hence, V (h) = ∅ and consequently S = ∅.
(b) For a contradiction, suppose n−m1 + 1 of gj vanish at u ∈ S, say, gj1 , . . . , gjn−m1+1 .

Then the polynomial system

h1(x) = · · · = hm1(x) = gj1(x) = · · · = gjn−m1+1(x) = 0

has a solution, which contradicts Res(h1, . . . , hm1 , gj1 , . . . , gjn−m1+1) 6= 0.
(c) For every J = {j1, . . . , jk} ⊂ [m2] with k ≤ n−m1, if

∆(h1, . . . , hm1 , gj1 , . . . , gjk) 6= 0,

then the polynomial system

h1(x) = · · · = hm1(x) = gj1(x) = · · · = gjk(x) = 0

has no singular solution, i.e., the variety V (h, gJ) is smooth.
(d) Let f0(x) = f(x)− fmin. Then f0 lies on the boundary of the set

Pd(S) =
{
p ∈ Bd(S) : p(x) ≥ 0∀x ∈ S

}
.
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Since S is closed at ∞, by Prop. 6.1 of [20], f0 ∈ ∂Pd(S) implies

0 = min
x̃∈Sprj ,‖x̃‖2=1,x0≥0

f̃0(x̃).

Let ũ = (u0, u1, . . . , un) 6= 0 be a minimizer of the above, which must exist because the feasible
set is compact. We claim that u0 6= 0. Otherwise, suppose u0 = 0. Then u = (u1, . . . , un) 6= 0
is a minimizer of

0 = min fhom(x)
s.t. hhom1 (x) = · · · = hhomm1

(x) = 0,
ghom1 (x) ≥ 0, . . . , ghomm2

(x) ≥ 0.

Let j1, . . . , jk ∈ [m2] be the indices of active constraints. By Fritz-John optimality condition
(see Sec. 3.3.5 in [1]), there exists (λ0, λ1, . . . , λm1 , µ1, . . . , µk) 6= 0 satisfying

λ0∇fhom(u) +
m1∑
i=1

λi∇hhomi (u) + · · ·+
k∑

`=1

µ`∇ghomj`
(u) = 0,

fhom(u) = hhom1 (u) = · · · = hhomm1
(u) = ghomj1

(u) = · · · = ghomjk
(u) = 0.

Thus, the homogeneous polynomial system

fhom(x) = hhom1 (x) = · · · = hhomm1
(x) = ghomj1 (x) = · · · = ghomjk

(x) = 0

has a nonzero singular solution. Since the resultant of any n of hhomi , ghomj is nonzero, we
must have m1 + k ≤ n− 1. So the discriminant

∆(fhom, hhom1 , . . . , hhomm1
, gj1 , . . . , g

hom
jk

)

is defined and must vanish, which is a contradiction. So u0 6= 0. Let v = u/u0, then ũ ∈ Sprj

implies v ∈ S and f(v)− fmin = u−d
0 f̃0(ũ) = 0.

Clearly, (e) is true since it is a special case of (d).

4 Some variations

This section presents some variations of the exact SDP relaxation (2.8) and its dual (2.11).

4.1 A refined version based on all maximal minors

An SDP relaxation tighter than (2.8) would be obtained by using all the maximal minors
to define the determinantal variety GJ in (2.2), while the number of equations would be
significantly larger. For every J = {j1, . . . , jk} ⊂ [m2] with m1 + k ≤ m, let τJ1 , . . . , τ

J
` be all

the maximal minors of BJ(x) defined in (2.2). Then define new polynomials

ψJ
i := τJi ·

∏

j∈Jc

gj , i = 1, . . . , `. (4.1)

List all such possible ψJ
i as

ψ1, ψ2, . . . , ψt, where t =
∑

J⊂[m2],|J |≤m−m1

(
n

|J |+m1 + 1

)
.
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Like (2.7), we formulate (1.1) equivalently as

min
x∈Rn

f(x)

s.t. hi(x) = ψj(x) = 0, i ∈ [m1], j ∈ [t],
gν(x) ≥ 0, ∀ν ∈ {0, 1}m2 .

(4.2)

The standard N -th order Lasserre’s relaxation for the above is

min Lf (y)

s.t. L
(N)
hi

(y) = 0, L
(N)
ψj

(y) = 0, i ∈ [m1], j ∈ [t],

L
(N)
gν (y) º 0, ∀ν ∈ {0, 1}m2 , y0 = 1.

(4.3)

Note that every ϕJ
i in (2.4) is a sum of polynomials like ψJ

i in (4.1). So the equations

L
(N)
ψj

(y) = 0 in (4.3) implies L
(N)
ϕj (y) = 0 in (2.8). Hence, (4.3) is stronger than (2.8). Its

dual is an SOS program like (2.11). Theorem 2.3 then implies the following.

Corollary 4.1. Suppose Assumption 2.2 is true, and the minimum fmin of (1.1) is achiev-
able. If N is big enough, then the optimal value of (4.3) is equal to fmin.

4.2 A Putinar type variation without using cross products of gj

If the minimum fmin of (1.1) is achieved at a KKT point, then (1.1) is equivalent to

min
x∈Rn

f(x)

s.t. hi(x) = ϕj(x) = 0, i ∈ [m1], j ∈ [r],
g1(x) ≥ 0, . . . , gm2(x) ≥ 0.

(4.4)

The standard N -th order Lasserre’s relaxation for (4.4) is

min Lf (y)

s.t. L
(N)
hi

(y) = 0, L
(N)
ϕj (y) = 0, i ∈ [m1], j ∈ [r],

L
(N)
gi (y) º 0, i = 0, 1, . . . ,m2, y0 = 1.

(4.5)

The difference between (4.5) and (2.8) is that the cross products of gj(x) are not used in
(4.5), which makes the number of resulting LMIs much smaller. Similar to P (N), define the
truncated quadratic module M (N) generated by gi as

M (N) =

{
m2∑

i=0

σigi

∣∣∣∣∣deg(σigi) ≤ 2N

}
. (4.6)

The dual of (4.5) would be shown to be the following SOS relaxation for (4.4):

max γ

s.t. f(x)− γ ∈ I(N) +M (N).
(4.7)

Clearly, for the same N , (4.7) is stronger than the standard Lasserre’s relaxation (1.2). To
prove (4.5) and (4.7) are exact for some N , we need the archimedean condition (AC) for S,
i.e., there exist R > 0, φ1, . . . , φm1 ∈ R[x] and SOS s0, . . . , sm2 ∈ R[x] such that

R− ‖x‖22 =

m1∑

i=1

φihi +

m2∑

j=0

sjgj .

16



Theorem 4.2. Suppose Assumption 2.2 and the archimedean condition hold. If N is big
enough, then the optimal values of (4.5) and (4.7) are equal to fmin.

To prove Theorem 4.2, we need the following.

Theorem 4.3. Suppose Assumption 2.2 and the archimedean condition hold. Let f∗ be the
optimal value of (4.4). Then there exists an integer N∗ > 0 such that for every ε > 0

f(x)− f∗ + ε ∈ I(N
∗) +M (N∗). (4.8)

Proof. The proof is almost same as for Theorem 3.4. We follow the same approach used
there. The only difference occurs for the case i = 0 and VR(E0) ∩ T = ∅. By Theorem A.3,
there exist SOS polynomials ην satisfying

−2 ≡
∑

ν∈{0,1}m2

ην · gν mod E0.

Clearly, each 1
2m2 + ην · gν11 · · · gνm2

m2 is positive on S. Since AC holds, by Putinar’s Positivtel-
lensatz (Theorem A.4), there exist SOS polynomials θν,i such that

1

2m2
+ ην · gν =

m2∑

i=0

θν,igi mod 〈h1, . . . , hm1〉.

Hence, it holds that

−1 ≡
∑

ν∈{0,1}m2

(
1

2m2
+ ην · gν

)
mod 〈h1, . . . , hm1〉+ E0

≡
m2∑

i=0


 ∑

ν∈{0,1}m2

θν,i


 gi mod E0.

The second equivalence above is due to the relation

〈h1, . . . , hm1〉 ⊂ IW ⊂ E0.

Letting τi =
∑

ν∈{0,1}m2 θν,i, which is clearly SOS, we get

−1 ≡ τ0 + τ1g1 + · · ·+ τm2gm2 mod E0.

The rest of the proof is almost same as for Theorem 3.4.

Proof of Theorem 4.2 For convenience, still let f
(1)
N , f

(2)
N be the optimal values of (4.5) and

(4.7) respectively. From Theorem 4.3, there exists an integer N∗ such that for all ε > 0

f(x)− (f∗ − ε) ∈ I(N
∗) +M (N∗).

Like in the proof of Theorem 2.3, we can similarly prove f
(1)
N = f

(2)
N = f∗ for all N ≥ N∗.

Since AC holds, the set S must be compact. So the minimum fmin of (1.1) must be achievable.
By Assumption 2.2, we know f∗ = fmin, and the proof is complete.
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4.3 A simplified version for inactive constraints

Suppose in (1.1) we are only interested in a minimizer making all the inequality constraints
inactive. Consider the problem

min
x∈Rn

f(x)

s.t. h1(x) = · · · = hm1(x) = 0,
g1(x) > 0, . . . , gm2(x) > 0.

(4.9)

Let u be a minimizer of (4.9). If V (h) is smooth at u, there exist λi such that

∇f(u) = λ1∇h1(u) + · · ·+ λm1∇hm1(u).

Thus, u belongs to the determinantal variety

Gh =
{
x : rank

[∇f(x) ∇h(x)
] ≤ m1

}
.

If m1 < n, let φ1, . . . , φs be a minimum set of defining polynomials for Gh by using formula
(2.3). If m1 = n, then Gh = Rn and we do not need these polynomials; set s = 0, and [s] is
empty. Then, (4.9) is equivalent to

min
x∈Rn

f(x)

s.t. hi(x) = φj(x) = 0, i ∈ [m1], j ∈ [s],
g1(x) > 0, . . . , gm2(x) > 0.

(4.10)

The difference between (4.10) and (2.7) is that the number of new equations in (4.10) is

s = O
(
nm1

)
, which is much smaller than r in (2.7). So, (4.10) is preferable to (2.7) when

the inequality constraints are all inactive. The N -th order Lasserre’s relaxation for (4.10) is

min Lf (y)

s.t. L
(N)
hi

(y) = 0, L
(N)
φj

(y) = 0, i ∈ [m1], j ∈ [s],

L
(N)
gj (y) º 0, j = 1, . . . ,m2, y0 = 1.

(4.11)

A tighter version than the above using cross products of gj is

min Lf (y)

s.t. L
(N)
hi

(y) = 0, L
(N)
φj

(y) = 0, i ∈ [m1], j ∈ [s],

L
(N)
gν (y) º 0, ∀ν ∈ {0, 1}m2 , y0 = 1.

(4.12)

Define the truncated ideal J (N) generated by hi(x) and φj as

J (N) =





m1∑

i=1

pihi +
s∑

j=1

qjφj

∣∣∣∣
deg(pihi) ≤ 2N ∀ i
deg(qjφj) ≤ 2N ∀ j



 .

The dual of (4.11) is the SOS relaxation

max γ

s.t. f(x)− γ ∈ J (N) +M (N).
(4.13)
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The dual of (4.12) is the SOS relaxation

max γ

s.t. f(x)− γ ∈ J (N) + P (N).
(4.14)

The exactness of the above relaxations is summarized as follows.

Theorem 4.4. Suppose the variety V (h) is nonsingular and the minimum fmin of (4.9) is
achieved at some feasible u with every gj(u) > 0. If N is big enough, then the optimal values
of (4.12) and (4.14) are equal to fmin. If, in addition, the archimedean condition holds for
S, the optimal values of (4.11) and (4.13) are also equal to fmin for N big enough.

Proof. The proof is almost same as for Theorems 2.3 and 4.2. We can first prove a decom-
position result like Lemma 3.2, and then prove there exists N∗ > 0 such that for all ε > 0
(like in Theorem 3.4)

f(x)− fmin + ε ∈ J (N∗) + P (N∗).

Furthermore, if AC holds, we can similarly prove there exists N∗ > 0 such that for all ε > 0
(like in Theorem. 4.3)

f(x)− fmin + ε ∈ J (N∗) +M (N∗).

The rest of the proof is almost same as for Theorems 2.3 and 4.2. Due to its repeating, we
omit the details here for cleanness of the paper.

5 Examples

This section presents some examples on how to apply the SDP relaxation (2.8) and its dual
(2.11) to solve polynomial optimization problems. The software GloptiPoly 3 [14] is used to
solve (2.8) and (2.11).

First, consider unconstrained polynomial optimization. Then the resulting SOS relaxation
(2.11) is reduced to the gradient SOS relaxation in [18], which is a special case of (2.11).

Example 5.1. Consider the optimization problem

min
x∈R3

x81 + x82 + x83 + x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3.

This example was studied in [18]. Its global minimum is zero. The SDP relaxation (2.8) and
its dual (2.11) for this problem are equivalent to gradient SOS relaxations in [18] (there are
no constraints). We apply (2.8) of order N = 4, and get a lower bound −9.7 · 10−9. The
resulting SDP (2.8) has a single block of size 35× 35. The minimizer (0, 0) is extracted. In
[18], it was shown that f(x) is not SOS modulo its gradient ideal Igrad. But for every ε > 0,
f(x)+ε ≡ sε(x) modulo Igrad for some SOS polynomial sε(x), whose degree is independent of
ε (see equation (10) of [18]). But its coefficients go to infinity as ε → 0. This shows that the
optimal value of (2.11) might not be achievable. On the other hand, if (1.1) has a minimizer
(say, x∗) that is a KKT point (then x∗ ∈ W ), then its dual problem (2.8) always achieves its
optimal value fmin for N big enough, e.g., [x∗]2N is a minimizer. Thus, for this example, the
minimum of the dual (2.8) is achievable.
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Second, consider polynomial optimization having only equality constraints:

min
x∈Rn

f(x) s.t. h1(x) = · · · = hm(x) = 0. (5.1)

When V (h) is nonsingular, its equivalent version (2.7) reduces to

min
x∈Rn

f(x)

s.t. h1(x) = · · · = hm(x) = 0,∑
I∈[n]m+1

sum(I)=`

detIF (x) = 0, ` =
(
m+2
2

)
, . . . , (n− m

2 )(m+ 1).
(5.2)

In the above sum(I) denotes the summation of the indices in I, F (x) =
[∇f(x) ∇h(x)

]
,

and detI F (x) denotes the maximal minor of F (x) whose row indices are in I. When m ≥ n,
there are no minor equations in (5.2).

Example 5.2. Consider the optimization problem

min
x∈R3

x61 + x62 + x63 + 3x21x
2
2x

2
3 − (x21(x

4
2 + x43) + x22(x

4
3 + x41) + x23(x

4
1 + x42))

s.t. x1 + x2 + x3 − 1 = 0.

The objective is the Robinson polynomial, which is nonnegative everywhere but not SOS
[22]. So the minimum fmin = 0. We apply SDP relaxation (2.8) of order N = 4, and get
a lower bound −4.4600 · 10−9. The resulting SDP (2.8) has a single block of size 35 × 35.
The minimizer (1/3, 1/3, 1/3) is also extracted. Applying Lasserre’s relaxation (1.2) of orders
N = 3, 4, 5, 6, 7, we get lower bounds respectively

−0.0582, −0.0479, −0.0194, −0.0053, −4.8358 · 10−5.

We can see that (1.2) is weaker than (2.8). It is not clear whether the sequence of lower
bounds returned by (1.2) converges to zero or not, because it is not guaranteed when the
feasible set is noncompact, which is the case in this example. The objective f(x) here is not
SOS modulo the constraint. Otherwise, suppose there exist polynomials σ(x) being SOS and
φ(x) such that

f(x) = σ(x) + φ(x)(x1 + x2 + x3 − 1).

In the above, replacing every xi by xi/(x1 + x2 + x3) gives

f(x) = (x1 + x2 + x3)
6σ(x/(x1 + x2 + x3)).

So, there exist polynomials p1, . . . , pk, q1, . . . , q` such that

f(x) = p21 + · · ·+ p2k +
q21

(x1 + x2 + x3)2
+ · · ·+ q2`

(x1 + x2 + x3)2`
.

Since the objective f(x) does not have any pole, every qi must vanish on the plane x1 +x2 +
x3 = 0. Thus qi = (x1 + x2 + x3)

iwi for some polynomials wi. Hence, we get

f(x) = p21 + · · ·+ p2r + w2
1 + · · ·+ w2

`

is SOS, which is a contradiction.
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Third, consider polynomial optimization having only a single inequality constraint.

min
x∈Rn

f(x) s.t. g(x) ≥ 0. (5.3)

Its equivalent problem (2.7) becomes

min
x∈Rn

f(x)

s.t. g(x)∂f(x)∂xi
= 0, i = 1, . . . , n, g(x) ≥ 0,

∑
i+j=`

(
∂f(x)
∂xi

∂g(x)
∂xj

− ∂f(x)
∂xj

∂g(x)
∂xi

)
= 0, ` = 3, . . . , 2n− 1.

(5.4)

There are totally 3(n− 1) new equality constraints.

Example 5.3. Consider the optimization problem

min
x∈R3

x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3

s.t. x21 + x22 + x23 ≤ 1.

The objective is the Motzkin polynomial which is nonnegative everywhere but not SOS [22].
So its minimum fmin = 0. We apply SDP relaxation (2.8) of order N = 4, and get a lower
bound −1.6948 · 10−8. The resulting SDP (2.8) has two blocks of sizes 35× 35 and 20× 20.
The minimizer (0, 0, 0) is also extracted. Now we apply Lasserre’s relaxation (1.2). For orders
N = 4, 5, 6, 7, 8, (1.2) returns the lower bounds respectively

−2.0331 · 10−4,−2.9222 · 10−5,−8.2600 · 10−6,−4.2565 · 10−6,−2.3465 · 10−6.

Clearly, (1.2) is weaker than (2.8). The sequence of lower bounds given by (1.2) converges
to zero for this example, because the archimedean condition holds. The feasible set has
nonempty interior. Hence, for every N , there is no duality gap between (1.2) and its dual,
and (1.2) has an optimizer. The objective does not belong to the preordering generated
by the ball condition. This fact was kindly pointed out to the author by Claus Scheiderer
(implied by his proof of Prop. 6.1 in [23], since the objective is a nonnegative but non-SOS
form vanishing at origin). Therefore, for every N , the optimal value of (1.2) as well as its
dual is strictly smaller than the minimum fmin.

Example 5.4. Consider Example 5.3 but the constraint is the outside of the unit ball:

min
x∈R3

x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3

s.t. x21 + x22 + x23 ≥ 1.

Its minimum is still 0. We apply SDP relaxation (2.8) of order N = 4, and get a lower bound
1.7633 · 10−9 (its sign is not correct due to numerical issues). The resulting SDP (2.8) has
two blocks of sizes 35× 35 and 20× 20. Now we compare it with Lasserre’s relaxation (1.2).
When N = 4, (1.2) is not feasible. When N = 5, 6, 7, 8, (1.2) returns the following lower
bounds respectively

−4.8567 · 105, −98.4862, −0.7079, −0.0277.

So we can see (1.2) is much weaker than (2.8). Again, it is not clear whether the sequence
of lower bounds given by (1.2) converges to zero or not, because it is only guaranteed when
the feasible set is compact, which is not the case in this example.
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Last, we show some general examples.

Example 5.5. Consider the following polynomial optimization

min
x∈R2

x21 + x22

s.t. x22 − 1 ≥ 0,
x21 −Mx1x2 − 1 ≥ 0,
x21 +Mx1x2 − 1 ≥ 0.

This problem was studied in [7, 12]. Its global minimum is 2 + 1
2M(M +

√
M2 + 4). Let

M = 5 here. Applying (2.8) of order N = 4, we get a lower bound 27.9629 which equals the
global minimum, and four global minimizers (±5.1926,±1.0000). The resulting SDP (2.8)
has eight blocks whose matrix lengths are 15, 10, 10, 10, 6, 6, 6, 3 respectively. However, if we
apply the Lasserre’s relaxation either (1.2) or (1.3), the best lower bound we would obtain
is 2, no matter how big the relaxation order N is (see Example 4.5 of [7]). The reason for
this is that its feasible set is noncompact, while Lasserre’s relaxations (1.2) or (1.3) are only
guaranteed to converge for compact sets.

Example 5.6. Consider the polynomial optimization

min
x∈R3

x41x
2
2 + x42x

2
3 + x43x

2
1 − 3x21x

2
2x

2
3

s.t. 1− x21 ≥ 0, 1− x22 ≥ 0, 1− x23 ≥ 0.

The objective is a nonnegative form being non-SOS [22, Sec. 4c]. Its minimum fmin = 0. We
apply SDP relaxation (2.8) of orderN = 6, and get a lower bound −9.0752·10−9. A minimizer
(0, 0, 0) is also extracted. The resulting SDP (2.8) has eight blocks whose matrix lengths are
84, 56, 56, 56, 35, 35, 35, 20 respectively. Now we apply Lasserre’s relaxation of type (1.3). Let
fsmg
N be the optimal value of (1.3) for an order N , and fmom

N be the optimal value of its
dual optimization problem (an analogue of (2.8) by using moments and localizing matrices,
see Lasserre [16]). Since the feasible set here has nonempty interior, the dual optimization
problem of (1.3) has an interior point, so (1.3) always has an optimizer and there is no duality
gap, i.e., f smg

N = fmom
N for every order N (cf. [16]). For N = 6, 7, 8, (1.3) returns the lower

bounds f smg
N respectively

−3.5619 · 10−5, −1.0406 · 10−5, −7.6934 · 10−6.

The sequence of lower bounds given by (1.3) converges to zero, since the feasible set is com-
pact. However, the objective does not belong to the preordering generated by the constraints,
which is implied by the proof of Prop. 6.1 of [23] (the objective is a nonnegative but non-SOS
form vanishing at origin). Because (1.3) has an optimizer for every order N , this implies that
fsmg
N = fmom

N < fmin = 0 for every N . Thus, the relaxation (1.3) and its dual could not be
exact for any order N .

6 Some conclusions and discussions

This paper proposes an exact type SDP relaxation (2.8) and its dual (2.11) for polynomial
optimization (1.1) by using the Jacobian of its defining polynomials. Under some generic
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conditions, we showed that the minimum of (1.1) would be found by solving the SDP (2.8)
for a finite relaxation order.

A drawback of the proposed relaxation (2.8) and its dual (2.11) is that there are totally
O(2m2 · n · (m1 +m2)) new constraints. This would make the computation very difficult to
implement if either m1 or m2 is big. Thus, this method is more interesting theoretically.
However, this paper discovers an important fact: it is possible to solve the polynomial opti-
mization (1.1) exactly by a single SDP relaxation, which was not known in the prior existing
literature. Currently, it is not clear for the author whether the number of newly introduced
constraints would be significantly dropped while the exactness is still wanted. This is an
interesting future research topic. On the other hand, the relaxation (2.8) is not too bad
in applications. For problems that have only a few constraints, the method would also be
efficiently implemented. For instance, in all the examples of Section 5, they are all solved
successfully, and the advantages of the method over the prior existing ones are very clear.
Thus, this method would also be computationally attractive in such applications.

The results of this paper improve the earlier work [7, 18], where the exactness of gradient
or KKT type SOS relaxations for a finite relaxation order is only proved when the gradient
or KKT ideal is radical. There are other conditions like boundary hessian condition (BHC)
guaranteeing this property, like in [15, 17]. In [17], Marshall showed that the gradient SOS
relaxation is also exact for a finite relaxation order by assuming BHC, in unconstrained
optimization. In this paper, the exactness of (2.8) and (2.11) for a finite N is proved without
the conditions like radicalness or BHC. The only assumptions required are nonsingularity of
S and the minimum fmin being achievable (the earlier related work also requires this), but
they are generically true as shown by Theorem 2.5.

We would like to point out that the KKT type SOS relaxation proposed in [7] using
Lagrange multipliers is also exact for a finite order, no matter the KKT ideal is radical or
not. This would be proved in a similar way as we did in Section 3. First, we can get a
similar decomposition for the KKT variety like Lemma 3.2. Second, we can prove a similar
representation for f(x) − f∗ + ε like in Theorem 3.4, with degree bounds independent of ε.
Based on these two steps, we can similarly prove its exactness for a finite relaxation order.
Since the proof is almost a repeating of Section 3, we omit it for cleanness of the paper.

The proof of the exactness of (2.8) provides a representation of polynomials that are posi-
tive on S through using the preordering of S and the Jacobian of all the involved polynomials.
A nice property of this representation is that the degrees of the representing polynomials are
independent of the minimum value. This is presented by Theorem 3.4. A similar representa-
tion result using the quadratic module of S is given by Theorem 4.3.

An issue that is not addressed by the paper is that the feasible set S has singularities.
If a global minimizer x∗ of (1.1) is singular on S, then the KKT condition might no longer
hold, and x∗ 6∈ W . In this case, the original optimization (1.1) is not equivalent to (2.7), and
the SDP relaxation (2.8) might not give a correct lower bound for fmin. It is not clear how
to handle singularities generally in an efficient way.

Another issue that is not addressed by the paper is the minimum fmin of (1.1) is not
achievable, which happens only if S is noncompact. For instance, when S = R2, the poly-
nomial x21 + (x1x2 − 1)2 has minimum 0 but it is not achievable. If applying the relaxation
(2.8) for this instance, we would not get a correct lower bound. Generally, this case will not
happen, as shown by items (d), (e) of Theorem 2.5. In unconstrained optimization, when
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fmin is not achievable, excellent approaches are proposed in [9, 10, 26]. It is an interesting
future work to generalize them to constrained optimization.

An important question is for what concrete relaxation order N∗ the SDP relaxation (2.8)
is exact for solving (1.1). No good estimates for N∗ in Theorem 2.3 are available currently.
Since the original problem (1.1) is NP-hard, any such estimates would be very bad if they
exist. This is another interesting future work.

Acknowledgement The author is grateful to Bernd Sturmfels for pointing out the refer-
ences on minimum defining equations for determinantal varieties. The author thanks Bill
Helton for fruitful discussions.

A Some basics in algebraic geometry and real algebra

In this appendix, we give a short review on basic algebraic geometry and real algebra. More
details would be found in the books [4, 11].

An ideal I of R[x] is a subset such that I · R[x] ⊆ I and I + I ⊆ I. Given polynomials
p1, . . . , pm ∈ R[x], 〈p1, · · · , pm〉 denotes the smallest ideal containing every pi, which is the
set p1R[x] + · · ·+ pmR[x]. The ideals in C[x] are defined similarly. An algebraic variety is a
subset of Cn that are common complex zeros of polynomials in an ideal. Let I be an ideal of
R[x]. Define

V (I) = {x ∈ Cn : p(x) = 0 ∀ p ∈ I},
VR(I) = {x ∈ Rn : p(x) = 0 ∀ p ∈ I}.

The V (I) is called an algebraic variety or just a variety, and VR(I) is called a real algebraic
variety or just a real variety. Every subset T ⊂ Cn is contained in a variety in Cn. The
smallest one containing T is called the Zariski closure of T , and is denoted by Zar(T ). In the
Zariski topology on Cn, the varieties are called closed sets, and the complements of varieties
are called open sets. A variety V is irreducible if there exist no proper subvarieties V1, V2 of
V such that V = V1 ∪ V2. Every variety is a finite union of irreducible varieties.

Theorem A.1 (Hilbert’s Strong Nullstellensatz). Let I ⊂ R[x] be an ideal. If p ∈ R[x]
vanishes on V (I), then pk ∈ I for some integer k > 0.

If an ideal I has empty variety V (I), then 1 ∈ I. This is precisely the Hilbert’s weak
Nullstellensatz.

Theorem A.2 (Hilbert’s Weak Nullstellensatz). Let I ⊂ R[x] be an ideal. If V (I) = ∅, then
1 ∈ I.

Now we consider I to be an ideal generated by polynomials having real coefficients. Let
T be a basic closed semialgebraic set. There is a certificate for VR(I) ∩ T = ∅. This is the
so-called Positivstellensatz.

Theorem A.3 (Positivstellensatz, [27]). Let I ⊂ R[x] be an ideal, and T = {x ∈ Rn :
g1(x) ≥ 0, . . . , gr(x) ≥ 0} be defined by real polynomials gi. If VR(I)∩T = ∅, then there exist
SOS polynomials σν such that

−1 ≡
∑

ν∈{0,1}r
σν · gν11 · · · gνrr mod I.
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Theorem A.4 (Putinar’s Positivstellensatz, [21]). Let I be an ideal of R[x] and T = {x ∈
Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be defined by real polynomials gi. Suppose there exist R > 0
and SOS polynomials s0(x), . . . , sm(x) such that (the archimedean condition holds)

R− ‖x‖22 ≡ s0(x) + s1(x)g1(x) + · · ·+ sm(x)gm(x) mod I.

If a polynomial f(x) is positive on VR(I) ∩ T , then there exist SOS polynomials σi such that

f(x) ≡ σ0(x) + σ1(x)g1(x) + · · ·+ σm(x)gm(x) mod I.

In the following, we review some elementary background about resultants and discrimi-
nants. More details would be found in [5, 8, 28].

Let f1, . . . , fn be homogeneous polynomials in x = (x1, . . . , xn). The resultantRes(f1, . . . , fn)
is a polynomial in the coefficients of f1, . . . , fn satisfying

Res(f1, . . . , fn) = 0 ⇐⇒ ∃ 0 6= u ∈ Cn, f1(u) = · · · = fn(u) = 0.

The resultant Res(f1, . . . , fn) is homogeneous, irreducible and has integer coefficients. When
f(x) is a single homogeneous polynomial, its discriminant is defined to be

∆(f) = Res(
∂f

∂x1
, . . . ,

∂f

∂xn
).

Thus, we have the relation

∆(f) = 0 ⇐⇒ ∃ 0 6= u ∈ Cn, ∇f(u) = 0.

The discriminants and resultants are also defined for inhomogeneous polynomials. Let
f0, f1, . . . , fn be general polynomials in x = (x1, . . . , xn). Their resultant Res(f0, f1, . . . , fn)

is then defined to be Res(f̃0(x̃), f̃1(x̃), . . . , f̃n(x̃)), where each f̃i(x̃) = x
deg(fi)
0 f(x/x0) is the

homogenization of fi(x). Clearly, if the polynomial system

f0(x) = f1(x) = · · · = fn(x) = 0

has a solution in Cn, then the homogeneous system

f̃0(x̃) = f̃1(x̃) = · · · = f̃n(x̃) = 0

has a nozero solution in Cn+1, and hence Res(f0, f1, . . . , fn) = 0. The reverse is not always
true, because the latter homogeneous system might have a solution at infinity x0 = 0. If f(x)
is a single nonhomogeneous polynomial, its discriminant is defined similarly as ∆(f̃).

The discriminants are also defined for several polynomials. More details are in [20, Sec. 3].
Let f1(x̃), . . . , fm(x̃) be forms in x = (x1, . . . , xn) of degrees d1, . . . , dm respectively, and
m ≤ n − 1. Suppose at least one di > 1. The discriminant for f1, . . . , fm, denoted by
∆(f1, . . . , fm), is a polynomial in the coefficients of fi such that

∆(f1, . . . , fm) = 0
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if and only if the polynomial system

f1(x) = · · · = fm(x) = 0

has a solution u 6= 0 such that the matrix
[∇f1(u) · · · ∇fm(u)

]
does not have full rank.

When m = 1, ∆(f1, . . . , fm) reduces to the standard discriminant of a single polynomial.
When f1, . . . , fm are nonhomogeneous polynomials in x = (x1, . . . , xn) and m ≤ n, the

discriminant ∆(f1, . . . , fm) is then defined to be ∆(f̃1(x̃), . . . , f̃m(x̃)), where each f̃i(x̃) is the
homogenization of fi(x).
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