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Abstract

This paper studies the relationship between the optimal value of a homogeneous quadratic

optimization problem and that of its Semidefinite Programming (SDP) relaxation. We consider

two quadratic optimization models: (1) min{x∗Cx | x∗Akx ≥ 1, k = 0, 1, ..., m, x ∈ Fn} and (2)

max{x∗Cx | x∗Akx ≤ 1, k = 0, 1, ..., m, x ∈ F
n}, where F is either the real field R or the complex

field C, and Ak, C are symmetric matrices. For the minimization model (1), we prove that, if the

matrix C and all but one of Ak’s are positive semidefinite, then the ratio between the optimal

value of (1) and its SDP relaxation is upper bounded by O(m2) when F = R, and by O(m) when

F = C. Moreover, when two or more of Ak’s in (1) are indefinite, this ratio can be arbitrarily large.

For the maximization model (2), we show that, if C and at most one of Ak’s are indefinite while

other Ak’s are positive semidefinite, then the ratio between the optimal value of (2) and its SDP

relaxation is bounded from below by O(1/ logm) for both the real and complex case. This result

improves the bound based on the so-called approximate S-Lemma of Ben-Tal et al. [3]. When two

or more of Ak in (2) are indefinite, we derive a general bound in terms of the problem data and

the SDP solution. For both optimization models, we present examples to show that the derived

approximation bounds are essentially tight.
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1 Introduction

In this paper we study the relationship between the optimal values of a homogeneous quadratic

optimization problem and its Semidefinite Programming (SDP) relaxation. Two specific optimization

models are considered.

The minimization model. Let Ak (k = 0, 1, ...,m) and C be n × n real symmetric or complex

Hermitian matrices. Consider

min x∗Cx

s.t. x∗Akx ≥ 1, k = 0, 1, ...,m

x ∈ F
n,

(1.1)

where F can be either the field of real numbers R or the field of complex numbers C, and the

superscript ∗ represents Hermitian transpose (or regular transpose in case of real matrices). The

quadratic optimization problems of form (1.1) are NP-hard [14], even when all the data matrices,

C and Ak, k = 1, ...,m, are positive semidefinite. Homogeneous quadratic optimization problems

(1.1) arise naturally in telecommunications and robust control applications; see [22, 17, 14] and the

references therein. In these applications, the optimization variables are naturally complex since they

represent the in-phase and quadrature components of a complex signal. A popular approach to

approximately solving the NP-hard quadratic problem (1.1) is to use the following SDP relaxations:

min Tr (CX)

s.t. Tr (AkX) ≥ 1, k = 0, 1, ...,m

X ∈ SF
n
+,

where Tr (·) represents the trace of a matrix, SF
n
+ denotes the convex cone of positive semidefinite

matrices in the space of all (Hermitian) symmetric matrices SF
n. The above SDP is convex and can

be solved efficiently using interior point methods. After the SDP relaxation problems are solved,

we can apply a probabilistic method to the corresponding optimal SDP solution to extract rank-

one feasible solutions for (1.1). Theoretically, even though the probabilistic solutions obtained in

this manner are not globally optimal for (1.1), they can be shown to be high quality approximate

solutions; see, e.g. [3, 14]. Recently, Luo et al. [14] considered problem (1.1) and gave bounds for the

SDP approximation ratio for (1.1) . When all the matrices Ak and C are positive semidefinite, Luo

et al. [14] showed that the ratio between the original optimal value and the SDP relaxation optimal

value is bounded above by O(m2) when F = R and by O(m) when F = C, where the factors in the big

O notations are absolute constants and independent of data matrices Ak and C. All these bounds are

shown to be tight in the worst case. However, the average performance can be much better than the

stated worst-case bounds for randomly generated instances. The simulation studies in [14] showed

that the average ratios are typically close to 1.

Our contributions. In Section 3, we analyze the approximation ratio of the SDP relaxation for

homogeneous quadratic optimization problem (1.1) when some of the constraint matrices Ak are
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indefinite. We show that, for problem (1.1), the same upper bounds for the SDP approximation

ratios as given in [14] (O(m2) when F = R and O(m) when F = C) still hold true even when one of

the constraint matrices is indefinite. If there are more than one indefinite quadratic constraints, we

show by an example that the SDP approximation ratio can be infinity. Therefore, our bounds are

essentially the best possible.

The maximization model. We also consider the quadratic optimization problem of the form

max x∗Cx

s.t. x∗Akx ≤ 1, k = 0, 1, ...,m

x ∈ F
n.

(1.2)

This quadratic optimization problem is still NP-hard [3, 18], even when all the matrices C and Ak

are positive semidefinite. Problem (1.2) arises naturally in telecommunications and robust control

applications; see [22, 17, 3] and the references therein. The SDP relaxation for (1.2) can be written

as follows:
max Tr (CX)

s.t. Tr (AkX) ≤ 1, k = 0, 1, ...,m

X ∈ SF
n
+.

As in the minimization case, after the SDP relaxation problem is solved, some probabilistic method

can be applied to extract a high quality rank-one feasible solution for (1.2). Various estimates

exist for the quality of approximate solutions; see, e.g. [3, 18]. Specifically, Nemirovski et al. [18]

proved that if all Ak’s are positive semidefinite, then the ratio between the optimal value of the

SDP relaxation problem and that of the original quadratic problem is bounded above by O(log m).

More generally, Ben-Tal et al. [3] established a so-called approximate S-Lemma which shows that the

approximation ratio for the SDP relaxation is at most O(log(n2m)) when all but one of the matrices

Ak, k = 0, 1, ...,m are positive semidefinite.

Our contributions. In Section 4, we study the SDP approximation ratio for the homogeneous

quadratic maximization problem (1.2) when some of the constraint matrices {Ak} are indefinite.

Our results are as follows. We strengthen the approximate S-Lemma of Ben-Tal et al. [3] by im-

proving their upper bound on the SDP approximation ratio from O(log(n2m)) to O(log m) when one

quadratic inequality is indefinite. In the process of establishing this new bound, we give a universal

lower bound of 0.03 on the probability that a homogeneous quadratic form of n binary i.i.d. Bernoulli

random variables lies below its mean. The previous best known lower bound for this probability was

1/(8n2) due to Ben-Tal et al. [3]. In this reference, the authors also conjectured that the actual lower

bound should be 0.25. We also present a new and unifying upper bound on the ratio of the optimal

value of SDP relaxation over that of the original quadratic maximization problem (1.2) without any

positive definiteness assumptions. This new general bound involves the problem data and the SDP

optimal solution, which is computable in polynomial time. We also present an example showing that

this bound is essentially best possible.
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Related literature. In addition to the work of Ben-Tal et al. [3], Luo et al. [14], and Nemirovski

et al. [18], there is a sizeable literature on the quality bound of SDP relaxation for solving nonconvex

quadratic optimization problems. For instance, for problem (1.2), when m = n, Ai = eie
T
i (there is

no A0) and C is positive semidefinite with nonpositive non-diagonal entries and row sums 0 (which

corresponds to the Maximum Cut problem), Goemans and Williamson [8] showed that the ratio of

the optimal value of SDP relaxation over that of the original quadratic maximization problem (1.2) is

bounded below by 0.87856.... Furthermore, if C is only positive semidefinite, Nesterov [19] showed the

same ratio is bounded below by 0.6366.... For closely related results, see Ye [24] and Bertsimas and

Ye [4]. Recently, So et al. [23] developed SDP relaxation methods for finding approximate low rank

solutions for linear matrix inequalities. Their results unify and extend the approximation bounds

of Nemirovski et al. [18] and Luo et al. [14] for the case when all the data matrices are positive

semidefinite. Beck and Teboulle [2] discussed the nonconvex problem of minimizing the ratio of

two nonconvex quadratic functions over a possibly degenerate ellipsoid, and showed that the SDP

relaxation can return exact solutions under a certain condition. There is also some work on solving

quadratic optimization problems using other methods, e.g., Hiriart-Urruty and Jean-Baptiste [10],

Jeyakumar, Rubinov and Wu [12], and Madsen, Nielsen and Pinar [15, 16].

Outline of this paper. Section 2 is devoted to analyzing the probability of a general random

variable to be above (or below) its mean value. Section 3 concentrates on the SDP approximation

bound for the quadratic minimization problem (1.1), while Section 4 studies the SDP approximation

bound for quadratic maximization problem (1.2). Some concluding remarks are given in the last

section (Section 5).

2 Estimating the Asymmetry of a Random Variable

To facilitate the technical analysis in subsequent sections, we establish in this section a bound on the

probability for a general random variable to be above (or symmetrically, below) its mean value, using

only the high order moment information of the random variable. This problem is of importance on

its own in statistics and probability theory. The following lemma is a generalization of Theorem 2.1

in [13].

Lemma 2.1. Suppose that a random variable Φ satisfies EΦ = 0, Var(Φ) = 1 and E|Φ|t ≤ τ for

some t > 2 and τ > 0. Then Prob {Φ ≥ 0} > 0.25τ− 2

t−2 and Prob {Φ ≤ 0} > 0.25τ− 2

t−2 .

Proof. Let p1 = Prob {Φ ≥ 0} and p2 = Prob {Φ ≤ 0}. Also let Y1 = max(Φ, 0) and Y2 = −min(Φ, 0).

Since EΦ = 0, we know EY1 − EY2 = 0. Let s := EY1 = EY2. By Hölder’s inequality it follows that

(EY t
1 )1/(t−1)(EY1)

(t−2)/(t−1) ≥ EY 2
1 and (EY t

2 )1/(t−1)(EY2)
(t−2)/(t−1) ≥ EY 2

2 . Since EY t
1 + EY t

2 = E|Φ|t,
we have

τ ≥ E|Φ|t = EY t
1 + EY t

2 ≥ (EY 2
1 )t−1 + (EY 2

2 )t−1

st−2
.
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Let u = EY 2
1 ∈ [0, 1]. Since EY 2

1 + EY 2
2 = EΦ2 = Var(Φ) = 1, it follows that st−2 ≥ ut−1+(1−u)t−1

τ .

On the other hand, by the Cauchy-Schwartz inequality, we have

s2 = (EY1)
2 = (E(sign(Y1)Y1))

2 ≤ E(sign(Y1)
2)EY 2

1 ≤ p1u

which implies that

p1 ≥ u−1

[

ut−1 + (1 − u)t−1

τ

]

2

t−2

=

(

ut−1 + (1 − u)t−1
)

2

t−2

u
τ− 2

t−2

≥
(

ut−1 + (1 − u)t−1
)

2

t−2 τ− 2

t−2

≥
(

2

(

1

2

)t−1
)

2

t−2

τ− 2

t−2

= 0.25τ− 2

t−2 ,

where the third inequality follows from the convexity of the function ut−1 when t > 2. Obviously,

the equality can not hold throughout. Therefore, p1 > 0.25τ− 2

t−2 . By symmetry, we also have

p2 > 0.25τ− 2

t−2 .

In case t = 4, Lemma 2.1 asserts that Prob {Φ ≥ 0} ≥ 1
4τ and Prob {Φ ≤ 0} ≥ 1

4τ . However, in this

particular case, this specific bound can in fact be further sharpened.

Lemma 2.2. Suppose that a random variable Φ satisfies EΦ = 0, Var(Φ) = 1 and EΦ4 ≤ τ . Then

Prob {Φ ≥ 0} ≥ 2
√

3−3
τ > 9

20τ and Prob {Φ ≤ 0} ≥ 2
√

3−3
τ > 9

20τ .

Proof. It follows from the proof in the Lemma 2.1 that

p1 ≥ u3 + (1 − u)3

τu
=

(

1

u
+ 3u − 3

)

1

τ
≥ 2

√
3 − 3

τ
>

9

20τ
.

By symmetry, p2 > 9
20τ holds as well.

3 SDP Relaxation Bounds for the Quadratic Minimization Model

Consider the homogeneous quadratic optimization

vmin
qp := min x∗Cx

s.t. x∗Akx ≥ 1, k = 0, 1, ...,m

x ∈ F
n,

(3.1)
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where C,A0, A1, ..., Am ∈ SF
n are symmetric matrices. This problem is NP-hard [14]. A natural

semidefinite programming (SDP) relaxation to the above quadratic optimization problem is

vmin
sdp := min Tr (CZ)

s.t. Tr (AkZ) ≥ 1, k = 0, 1, ...,m

Z ∈ SF
n
+.

(3.2)

Obviously, the SDP relaxation provides a lower bound, i.e., vmin
sdp ≤ vmin

qp . In the case C = In,

and A0, A1, ..., Am are all positive semidefinite, Luo et al. [14] proved that vmin
qp /vmin

sdp ≤ 27(m+1)2

π for

F = R, and vmin
qp /vmin

sdp ≤ 8(m + 1) for F = C. Moreover, when there are two or more of A0, A1, ..., Am

are indefinite, there is in general no data-independent upper bound on vmin
qp /vmin

sdp , as shown by the

following example [14]:

min x2
1 + x2

2

s.t. x2
1 ≥ 1

x2
1 + Mx1x2 ≥ 1

x2
1 − Mx1x2 ≥ 1

where M > 0 is a constant. In the above example, vmin
sdp = 1, and the last two constraints imply

x2
1 ≥ M |x1||x2| + 1 which, together with the first constraint x2

2 ≥ 1, yield x2
1 ≥ M |x1| + 1 or,

equivalently, |x1| ≥ (M+
√

M2 + 4)/2. Therefore, vmin
qp ≥ 1+ 1

4(M+
√

M2 + 4)2. That is, vmin
qp /vmin

sdp ≥
1 + 1

4(M +
√

M2 + 4)2, which can be arbitrarily large, depending on the problem data M > 0.

In this section, we consider the homogeneous quadratic optimization (3.1) under the assumption that

C,A1, A2, ..., Am ∈ SF
n
+ are positive semidefinite while A0 ∈ SF

n can be indefinite. Throughout

this section, we assume that (3.1) is feasible, and that there is µk ≥ 0, k = 0, 1, ...,m, such that
∑m

k=0 µkAk ≺ C. This assumption guarantees that the SDP relaxation is primal feasible while its

dual problem satisfies the Slater condition. Hence the strong duality holds and the primal problem

(3.2) has an optimal solution that attains its infimum.

Our analysis shall treat the cases F = R and F = C separately, leading to strikingly different bounds.

3.1 The real case

Let us start with a useful lemma regarding a lower bound on worst asymmetric mass distributions

for a χ2-distribution around its mean vector. In fact this result is interesting on its own right.

Lemma 3.1. Let τi be any real numbers, i = 1, ..., n, and let η ∼ N(0, In) be an n-dimensional

normal distribution with zero mean and covariance matrix In. Then we have

Prob

{

n
∑

i=1

τi(η
2
i − 1) ≥ 0

}

>
3

100
, Prob

{

n
∑

i=1

τi(η
2
i − 1) ≤ 0

}

>
3

100
.
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Proof. Note that E(η2
i − 1)2 = E(η4

i − 2η2
i + 1) = 3 − 2 + 1 = 2. Let Ψ =

∑n
i=1 τi(η

2
i − 1), and

Φ = Ψ√
2
∑n

i=1
τ2

i

. Then EΦ = 0 and Var(Φ) = 1. Since E(η2
i − 1)2 = 2, and E(η2

i − 1)4 = 60, direct

calculation shows

EΨ4 = 48
n
∑

i=1

τ4
i + 12

(

n
∑

i=1

τ2
i

)2

≤ 60

(

n
∑

i=1

τ2
i

)2

.

Therefore, we have

EΦ4 =
EΨ4

4(
∑n

i=1 τ2
i )2

≤ 15.

It follows from Lemma 2.2 that Prob {Φ ≥ 0} > 3
100 . Similarly, we have Prob {Φ ≤ 0} > 3

100 by

symmetry.

Using Hölder’s inequality, we also have E|Ψ|3 ≤ 60
3

4 (
∑n

i=1 τ2
i )

3

2 and E|Φ|3 ≤ 15
3

4 which can be used

to lower Prob {Φ ≥ 0} (c.f. Theorem 2.1 in [13]). However, in this particular case, the bound so

obtained is slightly worse than the one that we derived in Lemma 3.1.

Lemma 3.2. Let A,Z be two real symmetric matrices with Z � 0 and Tr (AZ) ≥ 0. Let ξ ∈ N(0, Z)

be a normal random vector with zero mean and covariance matrix Z. Then for any 0 ≤ γ ≤ 1 we

have

Prob {ξT Aξ < γE(ξT Aξ)} < 1 − 3

100
.

Proof. Let r = rank(AZ), and Q ∈ R
n×n be an orthogonal matrix such that

QT (Z
1

2 AZ
1

2 )Q = diag(λ1, · · · , λr, 0, · · · , 0).

Since Tr (AZ) ≥ 0 we have
∑r

i=1 λi ≥ 0. Let ξ̄ ∈ N(0, In) and ξ := Z
1

2 Qξ̄. Then ξ follows a Gaussian

distribution N(0, Z). Moreover, we have ξT Aξ =
∑r

i=1 λiξ̄
2
i , where ξ̄i, i = 1, ..., r, are independent

and follow the normal distribution N(0, 1). Therefore, we have E(ξT Aξ) =
∑r

i=1 λi and

Prob {ξT Aξ < γE(ξT Aξ)} = Prob

{

r
∑

i=1

λiξ̄
2
i < γ

r
∑

i=1

λi

}

= Prob

{

r
∑

i=1

λi(ξ̄
2
i − 1) < (γ − 1)

r
∑

i=1

λi

}

≤ Prob

{

r
∑

i=1

λi(ξ̄
2
i − 1) < 0

}

< 1 − 3

100
,

where the first inequality follows from γ ∈ [0, 1] and
∑r

i=1 λi ≥ 0, and the last step is due to

Lemma 3.1.

Now we are ready to establish the following quality bound for the SDP relaxation. The argument

follows closely those of [14].
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Theorem 3.3. Consider the real quadratic program (3.1) and its SDP relaxation (3.2), where F = R.

Then, there holds
vmin
qp

vmin
sdp

≤ 106m2

π
.

Proof. Let Ẑ be an optimal solution of the SDP relaxation (3.2) with rank r satisfying (r+1)r
2 ≤ m.

The existence of such matrix solution is well known; cf. Pataki [20]. Moreover, this low rank matrix

can be constructed in polynomial-time; cf. [11]. Clearly, r <
√

2m. Since Ẑ is feasible, Tr (A0Ẑ) ≥ 1.

Define random vector ξ = N (0, Ẑ). For any 0 < γ ≤ 1 and µ > 0 we have

Prob

{

min
0≤k≤m

ξT Akξ ≥ γ, ξT Cξ ≤ µ Tr (CẐ)

}

= Prob
{

ξT Akξ ≥ γ for all k = 0, 1, ...,m, and ξT Cξ ≤ µ Tr (CẐ)
}

≥ Prob
{

ξT Akξ ≥ γ Tr (AkẐ) for all k = 0, 1, ...,m, and ξT Cξ ≤ µ Tr (CẐ)
}

= Prob
{

ξT Akξ ≥ γ E(ξAkξ) for all k = 0, 1, ...,m, and ξT Cξ ≤ µ E(ξT Cξ)
}

≥ 1 −
m
∑

k=0

Prob
{

ξT Akξ < γ E(ξAkξ)
}

− Prob
{

ξT Cξ > µE(ξT Cξ)
}

.

Since Ak � 0 for k = 1, ...,m, it follows from Lemma 3.1 of [14] that

Prob
{

ξT Akξ < γE(ξT Akξ)
}

≤ max

{√
γ,

2(r − 1)γ

π − 2

}

.

Although A0 is indefinite, we can use Lemma 3.2 to obtain

Prob
{

ξT A0ξ < γE(ξT A0ξ)
}

< 1 − 3

100
.

Also, since C � 0, we can apply Markov inequality to obtain

Prob
{

ξT Cξ > µE(ξT Cξ)
}

≤ 1

µ
.

Combining the above estimates yields

Prob

{

min
0≤k≤m

ξT Akξ ≥ γ, ξT Cξ ≤ µ Tr (CẐ)

}

>
3

100
− m max

{√
γ,

2(r − 1)γ

π − 2

}

− 1

µ
.

Let µ̂ = 100 and γ̂ = π
104m2 . Since r <

√
2m, we have

√
γ̂ ≥ 2(r−1)γ̂

π−2 . Then we have

3

100
− m max

{

√

γ̂,
2(r − 1)γ̂

π − 2

}

− 1

µ̂
=

3

100
− m

√
π

100m
− 1

100
>

1

500
.

Therefore, there exists a vector ξ ∈ R
n such that

ξT Akξ ≥ γ̂, k = 0, 1, ...,m, and ξT Cξ ≤ µ̂Tr (CẐ).
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Now let x = 1√
γ̂
ξ. Then, xT Akx ≥ 1, k = 0, 1, ...,m, and

vmin
qp ≤ xT Cx =

1

γ̂
ξT Cξ ≤ µ̂

γ̂
Tr (CẐ) =

106m2

π
vmin
sdp ,

which establishes the desired bound

3.2 The complex case

Recall that the density function of a complex-valued normal distribution1 η ∼ Nc(0, 1) is

1

π
e−|u|2, ∀u ∈ C.

In polar coordinates, the density function becomes

ρ

π
e−ρ2

, ∀ ρ ∈ [0,+∞), θ ∈ [0, 2π).

The argument θ is uniformly distributed in [0, 2π), and the modulus ρ has the distribution

f(ρ) =

{

2ρe−ρ2

, if ρ ≥ 0;

0, if ρ < 0.

Thus squared modulus |η|2 has the exponential distribution

Prob {|η|2 ≤ α} ≤ 1 − e−α.

Lemma 3.4. For any real numbers τi, and i.i.d. exponential random variables ηi with unit variance,

i = 1, ..., n, there holds

Prob

{

n
∑

i=1

τi(ηi − 1) ≥ 0

}

>
1

20
, Prob

{

n
∑

i=1

τi(ηi − 1) ≤ 0

}

>
1

20
.

Proof. Note that E(ηi − 1)2 = 1. Let Ψ =
∑n

i=1 τi(ηi − 1) and Φ = Ψ√
∑n

i=1
τ2

i

. Clearly, EΦ = 0 and

Var(Φ) = 1. Since E(ηi − 1)4 = 9, direct calculation shows

EΨ4 = 6

n
∑

i=1

τ4
i + 3

(

n
∑

i=1

τ2
i

)2

≤ 9

(

n
∑

i=1

τ2
i

)2

.

This further implies

EΦ4 =
EΨ4

(
∑n

i=1 τ2
i )2

≤ 9.

Using Lemma 2.2 we have Prob {Φ ≥ 0} > 1
20 . Similarly, Prob {Φ ≤ 0} > 1

20 .

1For a discussion on the complex normal distribution and the related references, see Zhang and Huang [26].
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Interestingly, it is possible to find a closed formula (see e.g. [7] and [1]) for the above probability. In

particular, if all the τi’s are distinctive, then

Prob

{

n
∑

i=1

τi(ηi − 1) ≥ 0

}

=
n
∑

i=1

e
− 1

τi

∏

j 6=i

(

1 − τj

τi

) .

Therefore, we have

1

20
<

n
∑

i=1

e
− 1

τi

∏

j 6=i

(

1 − τj

τi

) <
19

20

for any distinctive real values τi, i = 1, ..., n.

Lemma 3.5. Let A,Z be two Hermitian matrices satisfying Z � 0 and Tr (AZ) ≥ 0. Let ξ ∼ Nc(0, Z)

be a complex normal random vector. Then, for any 0 ≤ γ ≤ 1, we have

Prob {ξ∗Aξ < γE(ξ∗Aξ)} < 1 − 1

20
.

Proof. Let Q ∈ C
n×n be an unitary matrix such that

Q∗(Z
1

2 AZ
1

2 )Q = diag(λ1, · · · , λr, 0, · · · , 0)

where r = rank(AZ). Since Tr (AZ) ≥ 0, it follows that
∑r

i=1 λi ≥ 0. Let ξ̂ ∈ C
n be a random

Gaussian vector drawn from the complex normal distribution Nc(0, In). Then the random vector

ξ = Z
1

2 Qξ̂ follows the Gaussian distribution Nc(0, Z). As a result, there holds

Prob {ξ∗Aξ < γE(ξ∗Aξ)) = Prob

{

r
∑

i=1

λi|ξ̂i|2 < γ
n
∑

i=1

λi

}

= Prob

{

n
∑

i=1

λi(|ξ̂i|2 − 1) < (γ − 1)

n
∑

i=1

λi

}

≤ Prob

{

n
∑

i=1

λi(|ξ̂i|2 − 1) < 0

}

,

where the last step follows from γ ∈ [0, 1] and
∑r

i=1 λi ≥ 0. Since |ξi|2 is exponentially distributed,

by Lemma 3.4, we have

Prob

{

n
∑

i=1

λi(|ξ̂i|2 − 1) ≥ 0

}

>
1

20

which proves the lemma.

Theorem 3.6. Consider (3.1) and (3.2), where F = C. Then

vmin
qp

vmin
sdp

≤ 2400m.

10



Proof. It is known that in this case, if vmin
sdp is finite and m ≤ 3, then vmin

qp /vmin
sdp = 1 (cf. e.g. [11]

and [25]). Below we shall only consider the case where m ≥ 4. Let Ẑ be a low rank optimal solution

of the SDP relaxation (3.2), such that r = rank(Ẑ) ≤ √
m (see [11], §5). The feasibility of Ẑ implies

that Tr (A0Ẑ) ≥ 1. Similar to Theorem 3.3, we can use the union bound to obtain the following

inequality

Prob

{

min
0≤k≤m

ξ∗Akξ ≥ γ, ξ∗Cξ ≤ µ Tr (CẐ)

}

≥ 1 −
m
∑

k=0

Prob {ξ∗Akξ < γ E(ξ∗Akξ)} − Prob {ξ∗Cξ > µE(ξ∗Cξ)} .

Since Ak � 0, k = 1, ...,m, it follows from Lemma 3.4 in [14] that

Prob {ξ∗Akξ < γE(ξ∗Akξ)} ≤ max

{

4

3
γ, 16(r − 1)2γ2

}

.

Although A0 is indefinite, Lemma 3.5, asserts that

Prob {ξ∗A0ξ < γE(ξ∗A0ξ)} < 1 − 1

20
.

Therefore, combining these estimates and using Markov inequality, we have

Prob

{

min
0≤k≤m

ξ∗Akξ ≥ γ, ξ∗Cξ ≤ µ, Tr (CẐ)

}

>
1

20
− m max

{

4

3
γ, 16(r − 1)2γ2

}

− 1

µ
.

Now choose µ̂ = 60 and γ̂ = 1
40m . In this case, 4

3 γ̂ ≥ 1̂6(r − 1)2γ̂2. We also have a strict lower bound

of the above probability

Prob

{

min
0≤k≤m

ξ∗Akξ ≥ γ̂, ξ∗Cξ ≤ µ̂ Tr (CẐ)

}

> 0.

This implies that there exists ξ ∈ C
n such that

ξ∗Akξ ≥ γ̂, k = 0, 1, ...,m; ξ∗Cξ ≤ µ̂Tr (CẐ).

Now let x := 1√
γ̂
ξ. Then x∗Akx ≥ 1, k = 0, 1, ...,m, and so

vmin
qp ≤ x∗Cx ≤ ξ∗Cξ

γ̂
≤ µ̂Tr (CẐ)

γ̂
= 2400m · vmin

sdp .

The theorem is proven.

Notice that there are examples (see [14]) which show that the worst-case ratios of vmin
qp /vmin

sdp are

indeed O(m2) and O(m) in the real and complex case respectively, even in the absence of indefinite

constraint x∗A0x ≥ 1. Thus, the bounds of Theorems 3.3 and 3.6 are essentially tight.

What happens if there are more than one indefinite quadratic constraint? The following example

shows that in this case the SDP relaxation does not admit any finite quality bound.

11



Example 3.7.
min x2

4

s.t. x1x2 + x2
3 + x2

4 ≥ 1

−x1x2 + x2
3 + x2

4 ≥ 1
1
2x2

1 − x2
3 ≥ 1

1
2x2

2 − x2
3 ≥ 1

x1, x2, x3, x4 ∈ R.

The first two constraints are equivalent to |x1x2| ≤ x2
3 + x2

4 − 1. At the same time, the last two

constraints imply |x1x2| ≥ 2(x2
3 + 1). Combining these two inequalities yields

x2
3 + x2

4 − 1 ≥ 2(x2
3 + 1),

which further implies x2
4 ≥ 3. Therefore, we must have vmin

qp ≥ 3 in this case. However,










4 0 0 0

0 4 0 0

0 0 1 0

0 0 0 0











is feasible for the corresponding SDP relaxation problem and attains an objective value of 0. Thus,

it must be optimal and thus vmin
sdp = 0. Hence, vmin

qp /vmin
sdp = ∞ in this case.

4 SDP Relaxation Bounds for the Quadratic Maximization Model

In this section, we discuss the approximation bound of SDP relaxation for the the nonconvex homo-

geneous quadratic maximization problem (1.2). Subsection 4.1 considers the case that one constraint

is indefinite, and Subsection 4.2 considers the case that two or more constraints are indefinite.

4.1 One Indefinite Constraint

In this subsection, consider the quadratic maximization problem

vmax
qp := max x∗Cx

s.t. x∗Akx ≤ 1, k = 0, 1, ...,m

x ∈ F
n,

(4.1)

where Ak ∈ SF
n
+, k = 1, ...,m, are positive semidefinite, while C,A0 ∈ SF

n may be indefinite. For

convenience, from now on we shall focus on the case F = R
n. Unlike the case of minimization form,

this choice does not significantly affect the quality of SDP approximation ratios, since in the complex

case the bounds are of the same order of magnitude. We assume that there is µk ≥ 0, k = 0, 1, ...,m,

such that
m
∑

k=0

µkAk ≻ 0.

12



Under this condition, the SDP relaxation satisfies the dual Slater condition. Thus the primal-dual

optimal solutions exist and the primal-dual optimal objective values are attainable. Let the SDP

relaxation optimal value be

vmax
sdp := max Tr (CX)

s.t. Tr (AkX) ≤ 1, k = 0, 1, ...,m

X � 0.

(4.2)

Obviously vmax
qp ≤ vmax

sdp .

Lemma 4.1. Let wij (1 ≤ i < j ≤ n) be any real numbers, and ξi (1 ≤ i ≤ n) be random variables

such that Prob {ξi = −1} = Prob {ξi = 1} = 0.5. Then there holds

Prob







∑

1≤i<j≤n

wijξiξj ≤ 0







>
3

100
.

Proof. Let Ψ =
∑

1≤i<j≤n wijξiξj. Then EΨ = 0, E(Ψ2) =
∑

1≤i<j≤n w2
ij and

E(Ψ4) =
∑

1≤i<j≤n

w4
ij + 6

∑

1≤i<j<k≤n

(w2
ijw

2
ik + w2

ijw
2
jk + w2

ikw
2
jk) + W

where

W = 24
∑

1≤i<j<k<ℓ≤n

(wijwikwjℓwkℓ + wijwiℓwjkwkℓ + wikwiℓwjkwjℓ)

+6
∑

1≤i<j<k<ℓ≤n

(

w2
ijw

2
kℓ + w2

ikw
2
jℓ + w2

iℓw
2
jk

)

≤ 30
∑

1≤i<j<k<ℓ≤n

(

w2
ijw

2
kℓ + w2

ikw
2
jℓ + w2

iℓw
2
jk

)

.

Therefore we have E(Ψ4) ≤ 15(
∑

1≤i<j≤n w2
ij)

2. Now let Φ = Ψ
√

∑

1≤i<j≤n w2

ij

. Then E(Φ) = 0,

Var(Φ) = 1 and E(Φ4) ≤ 15. By Lemma 2.2, we have

Prob {Φ ≤ 0} >
3

100
.

The desired result follows.

Lemma 4.1 settles in the affirmative an open question of Ben-Tal et al. [3, Conjecture A.5] who

conjectured that

Prob







∑

1≤i<j≤n

wijξiξj ≤ 0







≥ 1

4
, ∀ wij ,

except that we have a smaller constant of 3/100. The above inequality was needed to establish the

so called approximate S-Lemma — an extension of the well-known S-Lemma, which is important in

13



the context of robust optimization and is closely related to our analysis in this section. In their work

[18], Ben-Tal et al. derived a weaker lower bound of 1/8n2, which goes to zero as n → ∞.

We can now use Lemma 4.1 to analyze the performance of SDP relaxation for (4.2). Let X̂ = UUT be

one optimal solution of (4.2), where U ∈ R
n×r and r = rank(X̂). Suppose Q ∈ R

n×r is the orthogonal

matrix such that Ĉ := QT UT CUQ is diagonal. Let ξk, k = 1, ..., r, be i.i.d. random variables taking

values −1 or 1 with equal probabilities, and let

x(ξ) :=
1

√

max
0≤k≤m

ξT Âkξ
UQξ,

where Âk = QT UT AkUQ. Note that the above random vector x(ξ) is always well-defined, since the

assumption
∑m

k=0 µkAk ≻ 0 implies

max
0≤k≤m

ξT Âkξ > 0 for any ξ 6= 0.

Let µ = min{m,maxi rank(AiX̂)}. We have the following estimate of the SDP approximation ratio.

Theorem 4.2. There holds

vmax
qp ≤ vmax

sdp ≤ 2 log(67mµ) vmax
qp .

Proof. Notice that Ĉ = QT UT CUQ is diagonal and hence

x(ξ)T Cx(ξ) =
1

max
0≤k≤m

ξT Âkξ
ξT QT UT CUQξ =

1

max
0≤k≤m

ξT Âkξ
Tr (CX).

Therefore for any α > 1 we have

Prob

{

x(ξ)T Cx(ξ) ≥ 1

α
Tr (CX)

}

= Prob

{

max
0≤k≤m

ξT Âkξ ≤ α

}

= 1 − Prob

{

max
0≤k≤m

ξT Âkξ > α

}

≥ 1 − Prob

{

max
1≤k≤m

ξT Âkξ > α

}

− Prob
{

ξT Â0ξ > α
}

.

Since Tr (A0) ≤ 1 and so α − Tr (A0) ≥ 0, it follows from Lemma 4.1 that

Prob
{

ξT Â0ξ > α
}

≤ Prob







∑

1≤i<j≤m

(Â0)ijξiξj > 0







< 1 − 3

100
.

Since Âk � 0 for k = 1, ...,m, and Tr (Âk) ≤ 1, it follows from (12) in [18] that

Prob

{

max
1≤k≤m

ξT Âkξ > α

}

< 2mµe−
1

2
α.

14



Hence we have

Prob

{

x(ξ)T Cx(ξ) ≥ 1

α
Tr (CX)

}

>
3

100
− 2mµe−

1

2
α.

Letting α̂ = 2 log(67mµ) ensures the above probability to be positive. Therefore, there exists a

random vector ξ such that Tr (CX) ≤ α̂ x(ξ)T Cx(ξ), and the theorem is proven.

We point out that Theorem 4.2 is an improvement of the so-called approximate S-Lemma of Ben-Tal,

Nemirovski, and Roos [3] (Lemma A.6). In particular, Ben-Tal et al. showed that α ≤ 2 log(16n2 mµ),

in contrast to our bound α ≤ 2 log(67mµ).

Notice that in (4.1) there is only one indefinite inequality. Can we allow more than one indefinite con-

straints? The following example shows that the answer is “no” if we wish to have a data-independent

worst-case approximation ratio. (Data-dependent approximation ratio bounds will be discussed in

Section 4.2 where we do allow multiple indefinite constraints.)

Example 4.3. Consider
max x2

1 + 1
M x2

2

s.t. Mx1x2 + x2
2 ≤ 1

−Mx1x2 + x2
2 ≤ 1

M(x2
1 − x2

2) ≤ 1,

where M > 0 is an arbitrarily large positive constant. Its SDP relaxation is

max X11 + 1
M X22

s.t. MX12 + X22 ≤ 1, −MX12 + X22 ≤ 1, M(X11 − X22) ≤ 1
[

X11 X12

X21 X22

]

� 0.

For this quadratic program, the first two constraints imply that |x1x2| ≤ 1−x2

2

M ≤ 1
M and so x2

1 ≤ 1
M2x2

2

.

The third inequality assures that x2
1 ≤ 1

M +x2
2. Therefore, x2

1 ≤ min
{

1
M2x2

2

, 1
M + x2

2

}

≤
√

5+1
2M ≈ 1.618

M .

Moreover, x2
2 ≤ 1, and so vmax

qp ≤ 2.618
M .

The SDP relaxation satisfies both primal and dual Slater conditions, so the primal-dual optimal

solutions exist. A feasible solution for the SDP relaxation (primal problem) is the 2 by 2 identity

matrix, with the objective value being 1+ 1
M > 1. On the other hand, since X22 ≤ M |X12|+X22 ≤ 1,

and X11 ≤ X22+ 1
M , an upper bound for the SDP optimal value is 1+ 2

M . Therefore, for this example,

the ratio
vmax

sdp

vmax
qp

≥ M
2.618 ≈ 0.382M , which can be arbitrarily large, depending on the size of M .

If there are at most two homogeneous quadratic constraints, and moreover if the SDP relaxation

has a primal-dual complementary optimal solution, then the SDP optimal value will be equal to the

optimal value of the quadratic model; see e.g. Ye and Zhang [25] (Corollary 2.6). In other words, if

there are no more than two inequality constraints, then under the primal-dual Slater condition, we

will have vmax
sdp /vmax

qp = 1. In this sense, Example 4.3 is the smallest possible in size. By removing the
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requirement that the SDP relaxation has a finite optimal value, then it is possible to construct an

example which involves only two inequality constraints.

Example 4.4. Consider
max x1x2 + x2

1

s.t. x1x2 ≤ 1

x2
1 − x2

2 ≤ 1,

with the SDP relaxation
max X12 + X11

s.t. X12 ≤ 1, X11 − X22 ≤ 1,
[

X11 X12

X21 X22

]

� 0.

In terms of polar coordinates, (x1, x2) −→ (r cos θ, r sin θ), the original quadratic problem can be

turned into
max r2(sin 2θ + cos 2θ + 1)/2

s.t. r2 sin 2θ ≤ 2

r2 cos 2θ ≤ 1.

By a further change of variables (r2 cos 2θ, r2 sin 2θ) −→ (y1, y2), we can reformulate the original

quadratic problem as

max 1
2

(

y1 + y2 +
√

y2
1 + y2

2

)

s.t. y1 ≤ 2

y2 ≤ 1.

This optimization problem has a unique optimal solution at (y∗1, y
∗
2) = (2, 1) with the optimal value

being 3+
√

5
2 ≈ 2.618. The SDP relaxation problem is clearly unbounded, as any positive multiple of

the identity matrix is feasible. Therefore, vmax
sdp /vmax

qp = +∞. This example is possible because the

dual of the SDP relaxation problem is infeasible.

4.2 Multiple Indefinite Constraints

Unlike the minimization form (1.1) for which the SDP approximation ratio can be infinite when there

are more than one indefinite constraints (see Example 3.7), the maximization form (1.2) can still

admit a finite SDP approximation ratio in this case. In particular, consider a general homogeneous

quadratic maximization problem

max xT Cx

s.t. xT Akx ≤ 1, k = 0, 1, ...,m

x ∈ F
n.

(4.3)
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Suppose that I,D are two index sets, I ∪ D = {0, 1, ...,m} and I ∩ D = ∅, such that Ak � 0 for

k ∈ D and Ak indefinite for k ∈ I. The SDP relaxation for (4.3) is

max Tr (CX)

s.t. Tr (AkX) ≤ 1, k = 0, 1, ...,m

X � 0.

(4.4)

We begin our analysis with a technical lemma which bounds the probability of an exponential tail.

Similar bounds exist in the literature, e.g. [6]. However, the lemma below serves our needs exactly;

for completeness we include a proof here.

Lemma 4.5. Let {λi}n
i=1 be any given real numbers and {ηi}n

i=1 be i.i.d. random variables drawn

from either the real or complex valued zero mean Gaussian distribution with unit variance. Let

σ =
√

∑n
i=1 λ2

i and δ = max {max{λi | 1 ≤ i ≤ n}, 0}. Then, for any α > 0 there holds

Prob

{

n
∑

i=1

λiη
2
i −

n
∑

i=1

λi ≥ ασ

}

≤







exp
(

−min
{

α, σ
δ

}

α
8

)

, if ηi ∼ N(0, 1) is real Gaussian,

exp
(

−min
{

α, σ
δ

}

α
4

)

, if ηi ∼ Nc(0, 1) is complex Gaussian.

Proof. We will only prove the real Gaussian case; the complex case is similar and therefore omitted.

Let β := 1
4 min{1

δ , α
σ }. Then, 2βλi ≤ 1/2 for all i = 1, ..., n, and βσ = 1

4 min{σ
δ , α}. Note that for

any t ≤ 1/2 the following inequality holds:

1

1 − t
≤ et+t2 . (4.5)

Let ζ := eβ
∑n

i=1
λiη2

i . Since {η2
i }n

i=1 are standard i.i.d. χ2 random variables, it follows that

E(ζ) =

n
∏

i=1

E

(

eβλiη2

i

)

=

n
∏

i=1

1√
1 − 2βλi

=

(

n
∏

i=1

1

1 − 2βλi

)
1

2

≤
(

n
∏

i=1

e2βλi+4β2λ2

i

)
1

2

= e2β2σ2+β
∑n

i=1
λi

where the inequality is due to (4.5). This together with the Markov inequality implies

Prob

{

n
∑

i=1

λiη
2
i −

n
∑

i=1

λi ≥ ασ

}

= Prob
{

ζ ≥ eβ(ασ+
∑n

i=1
λi)
}

≤ E(ζ)

eβ(ασ+
∑n

i=1
λi)

≤ e2β2σ2−βσα = eβσ(2βσ−α) ≤ eβσ(α
2
−α)

= e−min{α, σ
δ }α

8 .

The lemma is proven.

We are now ready to pursue the performance analysis for the real case F = R. Assume that (4.4)

has an optimal solution X̂. Denote the set of (real) eigenvalues of AkX̂ as λk
1 , ..., λ

k
n, k = 0, 1, ...,m.

17



Since Tr (AkX̂) ≤ 1, it follows that
∑n

i=1 λk
i ≤ 1. Moreover, ‖AkX̂‖2

F ≥ ∑n
i=1(λ

k
i )

2, k = 0, 1, ...,m,

where ‖ · ‖F denotes the Frobenius norm of a matrix.

Let ξ be a random vector drawn from the Gaussian distribution N(0, X̂). For any α > 1 and

0 ≤ k ≤ m, we consider the probability of the event Prob {ξT Akξ > α}. By diagonalization, we have

Prob {ξT Akξ > α} = Prob {∑n
i=1 λk

i η
2
i > α}, where η = (η1, ..., ηn)T is a random vector following the

normal distribution N(0, In).

If we let σk :=
√

∑n
i=1(λ

k
i )

2 ≤ ‖AkX̂‖F , and δk := max
{

0,max{λk
i | 1 ≤ i ≤ n}

}

, then Lemma 4.5

leads to

Prob {ξT Akξ > α} ≤ exp

(

−min

{

α −∑n
i=1 λk

i

σk
,
σk

δk

}

α −∑n
i=1 λk

i

8σk

)

, ∀ 0 ≤ k ≤ m. (4.6)

Alternatively, we can bound the tail probability using Chebyshev’s inequality. In particular, since

Var(
∑n

i=1 λk
i η

2
i ) = 2

∑n
i=1(λ

k
i )2 ≤ 2‖AkX̂‖2

F , it follows from Chebyshev’s inequality

Prob

{

n
∑

i=1

λk
i η

2
i > α

}

= Prob

{

n
∑

i=1

λk
i η

2
i −

n
∑

i=1

λk
i > α −

n
∑

i=1

λk
i

}

≤ Prob

{
∣

∣

∣

∣

∣

n
∑

i=1

λk
i η

2
i −

n
∑

i=1

λk
i

∣

∣

∣

∣

∣

> α −
n
∑

i=1

λk
i

}

≤ Var(
∑n

i=1 λk
i η

2
i )

(

α −∑n
i=1 λk

i

)2 ≤ 2‖AkX̂‖2
F

(α − 1)2
, ∀ 0 ≤ k ≤ m, (4.7)

where we have used the fact α > 1 ≥∑n
i=1 λk

i . Applying Lemma 3.1 and using (4.7)–(4.6) gives

Prob
{

ξT Akξ ≤ α, k = 0, 1, ...,m; ξT Cξ ≥ Tr (CX̂)
}

≥ 1 − Prob
{

ξT Cξ < Tr (CX̂)
}

−
m
∑

k=0

Prob
{

ξT Akξ > α
}

≥ 3

100
−

m
∑

k=0

min

{

exp

(

−min

{

α −∑n
i=1 λk

i

σk
,
σk

δk

}

α −∑n
i=1 λk

i

8σk

)

,
2‖AkX̂‖2

F

(α − 1)2

}

.

Notice that δk ≤ σk and
∑n

i=1 λk
i ≤ 1 for any k. Therefore, we have, for any α > 1,

Prob
{

ξT Akξ ≤ α, k = 0, 1, ...,m; ξT Cξ ≥ Tr (CX̂)
}

≥ 3

100
−
∑

i∈D
exp

(

−min

{

α − 1

σk
, 1

}

α − 1

8σk

)

−
∑

i∈I
min

{

exp

(

−min

{

α − 1

σk
, 1

}

α − 1

8σk

)

,
2‖AkX̂‖2

F

(α − 1)2

}

.

Let us choose

α̂ = 1 + max







20 + 8 log |D|,min







(20 + 8 log |I|)max
k∈I

‖AkX̂‖F ,

√

200
∑

k∈I
‖AkX̂‖2

F













.
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Since σk ≤∑n
i=1 λk

i ≤ 1 for k ∈ D, it follows from the choice of α̂ that

exp

(

−min

{

α̂ − 1

σk
, 1

}

α̂ − 1

8σk

)

= exp

(

− α̂ − 1

8σk

)

≤ exp

(

− α̂ − 1

8

)

≤ 1

100|D| , ∀ k ∈ D,

and
∑

i∈I
min

{

exp

(

−min

{

α̂ − 1

σk
, 1

}

α̂ − 1

8σk

)

,
2‖AkX̂‖2

F

(α̂ − 1)2

}

≤ 1

100
.

This further implies that

Prob
{

ξT Akξ ≤ α̂, k = 0, 1, ...,m; ξT Cξ ≥ Tr (CX̂)
}

≥ 1

100
.

Summarizing, we obtain the following worst-case performance ratio bounds on the SDP relaxation for

a real-valued homogeneous (indefinite) quadratic maximization problem. [We also state the complex

case without proof.]

Theorem 4.6. For the quadratic optimization problem (4.3) with F = R and its SDP relaxation

(4.4), suppose that an optimal solution, say X̂, for (4.4) exists. Then,

vmax
sdp

vmax
qp

≤ 1 + max







20 + 8 log |D|,min







(20 + 8 log |I|)max
k∈I

‖AkX̂‖F ,

√

200
∑

k∈I
‖AkX̂‖2

F













.

Similarly, for the complex case F = C, we have

vmax
sdp

vmax
qp

≤ 1 + max







15 + 4 log |D|,min







(15 + 4 log |I|)max
k∈I

‖AkX̂‖F ,

√

40
∑

k∈I
‖AkX̂‖2

F













.

Let us consider two special cases of Theorem 4.6. First, if I = ∅, then Theorem 4.6 becomes
vmax

sdp

vmax
qp

≤ 20 + 8 log m (in the real case), which recovers the approximation result of Nemirovski et

al. [18]. The second case is D = ∅, where Theorem 4.6 becomes

vmax
sdp

vmax
qp

≤ 1 + min







(20 + 8 log(m + 1)) max
0≤k≤m

‖AkX̂‖F ,

√

√

√

√200
m
∑

k=0

‖AkX̂‖2
F







.

Below is an example showing that this bound is also tight (in the order of magnitude). Specifically,

consider Example 4.3 again:
max x2

1 + 1
M x2

2

s.t. Mx1x2 + x2
2 ≤ 1

−Mx1x2 + x2
2 ≤ 1

M(x2
1 − x2

2) ≤ 1.
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In this case we know that the SDP relaxation has an optimal solution X̂ =

[

1 + 1
M 0

0 1

]

, while the

approximation ratio is vmax
sdp /vmax

qp = O(M). There are three constraints, all indefinite, I = {1, 2, 3},
with

A1 =

[

0 M
2

M
2 1

]

, A2 =

[

0 −M
2

−M
2 1

]

, A3 =

[

M 0

0 −M

]

,

and so one may compute that

A1X̂ =

[

0 M
2

M
2 + 1

2 1

]

, A2X̂ =

[

0 −M
2

−M
2 − 1

2 1

]

, A3X̂ =

[

M + 1 0

0 −M

]

.

Thus, ‖AkX̂‖2
F = O(M2), for k = 1, 2, 3. Theorem 4.6 predicts that vmax

sdp /vmax
qp ≤ O(M), and this

upper bound is exactly attained in this example.

5 Discussions

This paper studies the quality bound of SDP relaxations for some classes of nonconvex quadratic

optimization problems. Our analysis reveals interesting differences in the quality bounds for the

optimization models expressed in either maximization or minimization form, and for optimization

variables defined over either the real or complex field. It provides a complete picture on the per-

formance of the SDP relaxation techniques for quadratic optimization problems involving indefinite

constraints.

Theoretically, the minimization model (1.1) and maximization model (1.2) are intrinsically differ-

ent, and they cannot be directly transformed from one to the other. In general, the feasible region

of problem (1.1) can be nonconvex, unbounded or even disconnected, while its objective function

is usually assumed to be convex. In contrast, the maximization model (1.2) typically has a con-

vex and bounded feasible region, but the nonconvexity of the objective function makes it difficult.

These essential differences have led to the qualitatively different behaviors in the respective SDP

approximation ratios.

It is equally interesting to note that the choice of field in which the optimization variables reside can

also impact the quality of SDP relaxation. In a natural way, every complex quadratic program can be

turned into an equivalent real quadratic program by doubling the dimension. Such a transformation

will not affect the resulting approximation ratio. Since the SDP approximation ratio is weaker in

the real case, we cannot derive the desired approximation ratio for the complex case by this simple

reduction. It is worth noting that the tighter SDP approximation ratio for the complex case has been

observed in digital communication applications [22, 17, 14] where the signals are naturally complex

due to their in-phase and quadrature components.

An interesting byproduct of our work is a universal lower bound of Prob (
∑n

i=1 τi(ηi − 1) ≥ 0) for the

independently distributed exponential random variables ηi (Lemma 4.1). The lower bounds of this
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type are interesting on their own and are related to the well-known inequality of Grünbaum [9] in

convex analysis. In particular, by a different analytic argument, it is possible to further improve the

universal lower bound obtained in this paper to the following

Prob

(

n
∑

i=1

τi(ηi − 1) ≥ 0

)

=

n
∑

i=1

e
− 1

τi

∏

j 6=i

(

1 − τj

τi

) >
1

e
(5.1)

where τi, i = 1, ..., n, are any real numbers. [The above equality can be derived by evaluating a

multidimensional integral.] The inequality (5.1) admits a simple geometric interpretation. For the

joint standard exponential distribution on Rn
+, the center of gravity of Rn

+ is xc := E(η) = (1, 1, ..., 1)T ,

and the inequality (5.1) can be interpreted as follows:

Prob(Rn
+ ∩H+) ≥ e−1, for any hyperplane H passing through xc. (5.2)

Here H+ denotes the positive side of the hyperplane H. The inequality (5.2) is an extension of the

Grünbaum inequality [9]:

Volume (C ∩ H+) ≥ e−1 Volume (C)

for any bounded convex set C in R
n and any hyperplane H passing through the center of gravity of C

xc =
1

Volume(C)

∫

C
dx.

In particular, if we assign the uniform distribution to C, then the mean vector of this distribution is

given by the center of gravity xc and the probability in (5.2) can be expressed in terms of volume. In

this way, Grünbaum’s inequality can be equivalently written as (5.2). This shows that the inequality

(5.2) generalizes Grünbaum’s theorem [9] from the uniform distribution over a compact convex set

to the exponential distribution over R
n
+. Interestingly, it is possible to establish the inequality (5.2)

for any log-concave distributions defined over any (possibly unbounded) convex set in R
n. The proof

of this inequality relies on a result of Bobkov [5, Lemma 3.3] and a result of Prekopa [21] on the

projection of any log-concave distribution. We plan to report the details of this proof elsewhere in

future.
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