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Abstract

This paper studies the problem of minimizing a homogeneous polynomial (form) f(x)
over the unit sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. The problem is NP-hard when f(x) has
degree 3 or higher. Denote by fmin (resp., fmax) the minimum (resp., maximum) value
of f(x) on Sn−1. First, when f(x) is an even form of degree 2d, we study the standard
sum of squares (SOS) relaxation for finding a lower bound of the minimum fmin:

max γ s.t. f(x)− γ · ‖x‖2d2 is SOS.

Let fsos be the above optimal value. Then we show that for all n ≥ 2d

1 ≤ fmax − fsos
fmax − fmin

≤ C(d)

√(
n

2d

)
.

Here the constant C(d) is independent of n. Second, when f(x) is a multi-form and
Sn−1 becomes a multi-unit sphere, we generalize the above SOS relaxation and prove
a similar bound. Third, when f(x) is sparse, we prove an improved bound depending
on its sparsity pattern; when f(x) is odd, we formulate the problem equivalently as
minimizing a certain even form, and prove a similar bound. Last, for minimizing f(x)
over a hypersurface H(g) = {x ∈ Rn : g(x) = 1} defined by a positive definite form g(x),
we generalize the above SOS relaxation and prove a similar bound.

Key words approximation bound, form, hypersurface, L2-norm, G-norm, multi-form, poly-
nomial, semidefinite programming, sum of squares

AMS subject classification 65K05, 68Q25, 90C22, 90C59

1 Introduction

Let f(x) be a multivariate homogeneous polynomial (form) in x ∈ Rn. Consider problem

min
x∈Sn−1

f(x). (1.1)
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Here Sn−1 = {x ∈ Rn : ‖x‖2 = 1} is the n − 1 dimensional unit sphere. Denote by fmin

the minimum value of f(x) on Sn−1. When f(x) = fTx is a linear form, fmin = −‖f‖2,
which can be found easily. When f(x) = xTFx is a quadratic form, fmin is the minimum
eigenvalue of the symmetric matrix 1

2(F + F T ), which can also be computed efficiently by
solving an eigenvalue problem. However, if deg(f) > 2, it is usually very difficult to compute
fmin. Nesterov [7] showed (1.1) is already NP-hard when f(x) is cubic. So in practical
applications, we are more interested in approximation algorithms. The sum of squares (SOS)
relaxation is a standard approximation method for solving (1.1).

When f(x) is an even form of degree 2d, the standard SOS relaxation for (1.1) is

max γ
s.t. f(x)− γ · ‖x‖2d2 is SOS.

(1.2)

Here a polynomial is said to be SOS if it is a sum of squares of some other polynomials.
Denote by fsos the optimal value of (1.2). Obviously, every γ feasible in (1.2) is a lower
bound of the minimum fmin. This is because if f(x) − γ‖x‖2d2 is SOS, then f(x) − γ‖x‖2d2
must be globally nonnegative and hence f(x) ≥ γ for all x ∈ Sn−1. So fsos ≤ fmin. The
original problem (1.1) is NP-hard, but SOS relaxation (1.2) is a convex program and can be
solved efficiently. In fact, (1.2) is equivalent to a semidefinite programming (SDP) problem.

Note that every form p(x) of degree 2d can be written as p(x) = [xd]TP [xd] for a sym-
metric matrix P . Here [xd] denotes the column vector of all monomials of degree d ordered
lexicographically, that is,

[xd]T =
[
xd1 xd−1

1 x2 · · · xd−1
1 xn xd−2

1 x22 · · · · · · · · · xdn
]
.

The length of vector [xd] is
(
n+d−1

d

)
. The matrix P is called a Gram matrix of p(x) and it

is not unique if n > 2 and d > 1. For convenience, we index the columns and rows of P by
monomials of degree d, or equivalently by n dimensional nonnegative integer vectors whose
1-norm is d. It can be shown [9, 10] that p(x) is SOS if and only if it has a Gram matrix P
which is positive semidefinite. Define constant symmetric matrices Aα such that

[xd][xd]T =
∑

α∈N(2d)
Aαx

α, where N(2d) = {α ∈ Nn : |α| = 2d}. (1.3)

Here for α = (α1, . . . , αn), |α| = α1 + · · · + αn and xα = xα1
1 · · ·xαn

n , and N is the set of
nonnegative integers. If p(x) is given as

p(x) =
∑

α∈N(2d)
pαx

α,

then p(x) is SOS if and only if there exists a symmetric matrix X satisfying

Aα •X = pα ∀α ∈ N(2d),
X º 0.

In the above X º 0 (resp., X Â 0) means that X is positive semidefinite (resp., positive
definite), and • denotes the standard Frobenius inner product in matrix spaces.
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If we write f(x) and ‖x‖2d2 as

f(x) =
∑

α∈N(2d)
fαx

α, ‖x‖2d2 =
∑

α∈N(2d)
Dαx

α,

then SOS relaxation (1.2) is equivalent to the SDP problem

max
γ,X

γ

s.t. Aα •X +Dαγ = fα ∀α ∈ N(2d),
X º 0.

(1.4)

Problem (1.4) can be solved efficiently by numerical methods like interior point algorithms.
SDP is a very nice convex optimization and has many attractive properties. There has been
much work on designing efficient solvers for SDP and applying SDP in various settings like
control and nonconvex optimization. We refer to [14] for more details about the theory,
algorithms and applications of semidefinite programming.

Even though the lower bound fsos given by (1.2) might match fmin in many situations,
as demonstrated by numerical results in [5, 9, 10], we usually can not expect fsos = fmin.
For example, this is the case when f(x) is the so-called Motzkin polynomial

Mot(x) := x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3.

It is well known that Mot(x) is nonnegative everywhere but not SOS [13]. Thus (1.2) would
return a lower bound fsos < fmin. Blekherman [1] proved a very surprising result: for
any fixed even degree bigger than two, there are significantly more nonnegative polynomials
than SOS polynomials. So generally we do not have fsos = fmin. Therefore, it is very
interesting to know how well fsos approximates fmin. In (1.2), if f(x) − γ‖x‖2d2 is replaced
by ‖x‖2N2 (f(x)−γ‖x‖2d2 ) for an integer N big enough, Faybusovich [2] gave an estimation on
fmin−fsos based on a result of Reznick [13] regarding degree bounds of uniform denominators
in Hilbert’s 17th problem. But there is no estimation of fmin − fsos when N = 0. Generally,
how does SOS relaxation (1.2) perform? How large is fmin − fsos in the worst case? To the
best knowledge of the author, there is very little work on this issue. The motivation of this
paper is to analyze the approximation performance of (1.2).

Contributions. First, we discuss the performance of SOS relaxation (1.2). Suppose f(x)
is an even form of degree 2d. Let fmax be the maximum value of f(x) on Sn−1. Suppose
n ≥ 2d. Then we will show that the lower bound fsos of fmin given by (1.2) satisfies

1 ≤ fmax − fsos
fmax − fmin

≤ C(d)

√(
n

2d

)
. (1.5)

The constant C(d) is independent of n and can be evaluated numerically. Note the first
inequality in (1.5) is obvious because fsos ≤ fmin. The second inequality in (1.5) means that
fsos is an O(nd)-approximation of fmin. This will be shown in Section 2.

Second, we discuss how to minimize multi-forms (all their terms have fixed degrees in the
components of variables) over multi-unit spheres (cross products of lower dimensional unit
spheres). This problem is an extension of the bi-quadratic optimization discussed in [6] and
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is also NP-hard. The SOS relaxation (1.2) can be generalized naturally. We will prove a
similar approximation bound like (1.5). This will be presented in Section 3.

Third, SOS relaxation (1.2) might have better performance when f(x) has special features.
If f(x) is a sparse form, we will prove an approximation bound better than (1.5), which
depends on the sparsity pattern of f(x). When f(x) is an odd form, we can formulate (1.1)
equivalently as minimizing a certain even form, and prove an approximation bound based on
(1.2). This will be shown in Section 4.

Last, we consider the more general problem of minimizing f(x) over a hypersurfaceH(g) =
{x ∈ Rn : g(x) = 1}, where g(x) is a positive definite form. The SOS relaxation (1.2) can be
generalized naturally, and we will prove a similar approximation bound like (1.5). This will
be shown in Section 5. Some discussions about bounds will be made in Section 6.

Some notations. N (resp., R) denotes the set of nonnegative integers (resp., real numbers).
For any t ∈ R, dte (resp., btc) denotes the smallest integer not smaller (resp., the largest
integer not bigger) than t. For any k ∈ N, [k] = {1, . . . , k}. The N(k) denotes the multi-
index set {α ∈ Nn : |α| = k}. For any x ∈ Rn, xi denotes the i-th component of x, that
is, x = (x1, . . . , xn). For any α ∈ Nn, denote |α| = α1 + · · · + αn, and supp(α) = {i ∈ [n] :
αi 6= 0}. For any x ∈ Rn and α ∈ Nn, xα denotes xα1

1 · · ·xαn
n . The R[x] denotes the ring

of real multivariate polynomials in (x1, . . . , xn), and R[x]k denotes the subspace of forms of
degree k. For nonnegative integers k1, . . . , k`, denote R[x]k1,...,k` = R[x]k1 + · · ·+ R[x]k` . For
a polynomial p(x), supp(p) denotes the support of p(x), i.e., the set of α ∈ Nn such that the
monomial xα appears in p(x). For a finite set S, |S| denotes its cardinality. For a matrix
A, AT denotes its transpose. For a symmetric matrix X, λmax(X) and λmin(X) denote the
maximum and minimum eigenvalues of X respectively. For a symmetric matrix X, X º 0
(resp., X Â 0) means λmin(X) ≥ 0 (resp., λmin(X) > 0). For two matrices A and B, A⊗B
denotes the standard Kronecker product of A and B. For any vector u ∈ RN , ‖u‖2 =

√
uTu

denotes the standard Euclidean norm; For matrix A, ‖A‖2 denotes the maximum singular
value of A, and ‖A‖F denotes the Frobenius norm of A, i.e., ‖A‖2 =

√
Trace(ATA).

2 Minimizing general forms

This section analyzes the approximation performance of SOS relaxation (1.2). The basic
technique is to estimate the L2-norm and G-norm of forms. We begin with some definitions
of norms.

2.1. Norms of forms

For a form f(x) of degree k given as

f(x) =
∑

α∈N(k)
fαx

α,

we define its G-norm as

‖f(x)‖G =


 ∑

α∈N(k)
p(α)−1f2

α




1/2

. (2.1)
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Here p(α) denotes the partition number of the exponent α, that is,

p(α) =
∣∣∣
{
(β, η) ∈ N(dk/2e)× N(bk/2c) : β + η = α

}∣∣∣ . (2.2)

In view of (2.1), denote by fG the column vector of weighted coefficients of f(x)

fG =
(
p(α)−1/2fα : α ∈ N(k)

)
, (2.3)

and denote by [xk]G the column vector of weighted monomials

[xk]G =
(
p(α)1/2xα : α ∈ N(k)

)
. (2.4)

The entries in fG and [xk]G are ordered lexicographically according to their indices. Thus
f(x) = fT

G [x
k]G and ‖f(x)‖G = ‖fG‖2. The reason that we call this norm G-norm is the

close relationship between ‖ · ‖G and Gram matrices.

Lemma 2.1. If a form f(x) has degree 2d, there exists a symmetric W such that

f(x) = [xd]TW [xd], ‖W‖F = ‖f(x)‖G.
Proof. For any matrix W satisfying f(x) = [xd]TW [xd], the following holds

fα =
∑

(β,η)∈N(d)×N(d):β+η=α

Wβ,η ∀α ∈ N(2d).

Now we choose W as follows

W (β, η) = p(α)−1fα ∀ (β, η) ∈ N(d)× N(d) : β + η = α.

The above W is a symmetric matrix. Its Frobenius norm is

‖W‖2F =
∑

α∈N(2d)

∑

(β,η)∈N(d)×N(d)
β+η=α

(p(α)−1fα)
2 =

∑

α∈N(2d)
(p(α)−1fα)

2p(α) = ‖f(x)‖2G.

So the lemma is proved.

Useful in our approximation analysis are the L2 type norms. Define

‖f(x)‖L2 =

(∫

Sn−1

f(x)2dµ(x)

)1/2

. (2.5)

Here µ is the uniform probability measure on Sn−1. We also need to define a so-calledmarginal
L2-norm. Throughout out this section, assume n ≥ k. Given a subset ∆ ⊂ {1, . . . , n} with
|∆| = k ≤ n, denote by x∆ the subvector of x whose indices are in ∆, that is,

x∆ = (xi : i ∈ ∆).

For f(x) ∈ R[x]k, denote by f∆(x∆) the restriction of f(x) to x∆, that is,

f∆(x∆) = f(x̃), where x̃i =

{
xi if i ∈ ∆,

0 otherwise.
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So f∆(x∆) is a polynomial only in x∆. Denote the set

Ωk = {∆ ⊂ [n] : |∆| = k}. (2.6)

Clearly, its cardinality |Ωk| =
(
n
k

)
. The marginal L2-norm of f(x) is then defined as

‖f(x)‖L2,mg =


 ∑

∆∈Ωk

‖f∆(x∆)‖2L2




1/2

. (2.7)

The name “marginal” comes from the observation that the k − 1 dimensional unit sphere
{x∆ : ‖x∆‖2 = 1} is a sub-sphere of Sn−1 when we restrict xi = 0 for all i 6∈ ∆.

For our purpose of approximation analysis, we need to define the constant matrix

Θk =

∫

‖x∆‖2=1
[xk∆]G[x

k
∆]

T
Gdµ∆(x∆), ∆ ∈ Ωk. (2.8)

Here µ∆(x∆) is the uniform probability measure on Sk−1. For instance,

Θ2 =
1

8



3 0 1
0 2 1
1 0 3


 . (2.9)

Note that Θk is independent of the choice of ∆ ∈ Ωk, because the monomials of [xk∆]G

k 2 4 6 8

δk 0.5000 0.0559 0.0039 0.0002

Table 1: A list of the constants δk.

are ordered lexicographically and the integrals are independent of ∆. The matrix Θk is
positive definite, because the monomials of [xk∆]G are linearly independent. Define the positive
constant

δk =
√

λmin(Θk) > 0. (2.10)

Note that δk is independent of n. A list of typical values of δk for even k (we are only
interested in even k later) is in Table 1. The constant δk relates the marginal L2-norm and
G-norm as follows.

Lemma 2.2. If f(x) ∈ R[x]k, then ‖f(x)‖L2,mg ≥ δk‖f(x)‖G.
Proof. By definitions of L2-norm and δk, we know

‖f∆(x∆)‖2L2 = fT
∆,GΘkf∆,G ≥ δ2k‖f∆(x∆)‖2G.

Here f∆,G denotes the vector of weighted coefficients of polynomial f∆(x∆) (see (2.3)). By
definition of the marginal L2-norm, it holds

‖f(x)‖2L2,mg =
∑

∆∈Ωk

‖f∆(x∆)‖2L2 ≥ δ2k
∑

∆∈Ωk

‖f∆(x∆)‖2G ≥ δ2k‖f(x)‖2G.

Taking the square root of the above results in the lemma.
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The marginal L2-norm of forms can be estimated as follows.

Lemma 2.3. Suppose f(x) ∈ R[x]k and k ≤ n. If |f(x)| ≤ 1 for all x ∈ Sn−1, then

‖f(x)‖L2,mg ≤
√(

n

k

)
.

Proof. For every ∆ ∈ Ωk, the condition that |f(x)| ≤ 1 for all x ∈ Sn−1 implies |f∆(x∆)| ≤ 1
for all x∆ ∈ Sk−1. By definition of the marginal L2-norm, we get

‖f(x)‖2L2,mg =
∑

∆∈Ωk

∫

Sk−1

f∆(x∆)
2dµ∆(x∆) ≤

∑

∆∈Ωk

µ∆(Sk−1) =

(
n

k

)
,

where the last step is because µ∆ is the uniform probability measure on Sk−1.

2.2. Bound analysis

Now we analyze the performance of SOS relaxation (1.2). The basic technique is to
estimate the marginal L2 and G norms by applying Lemmas 2.2 and 2.3.

Theorem 2.4. Let f(x) be a form of degree 2d, and fmin (resp., fmax) be its minimum
(resp., maximum) value on the unit sphere Sn−1. Suppose n ≥ 2d. If fsos is the lower bound
given by SOS relaxation (1.2), then it holds

1 ≤ fmax − fsos
fmax − fmin

≤ 1

δ2d

√(
n

2d

)
,

where δ2d is defined in (2.10).

Proof. Let fmed = 1
2(fmin + fmax) and f̃(x) = f(x)− fmed · ‖x‖2d2 . Then we have

∣∣∣∣
1

fmed − fmin
f̃(x)

∣∣∣∣ ≤ 1 ∀x ∈ Sn−1.

By Lemma 2.3, we know

∥∥∥∥
1

fmed − fmin
f̃(x)

∥∥∥∥
L2,mg

≤
√(

n

2d

)
. (2.11)

Now fix a constant

γ∗ = fmed − (fmed − fmin) · 1

δ2d

√(
n

2d

)
. (2.12)

Then the inequality (2.11) implies

∥∥∥∥
1

fmed − γ∗
f̃(x)

∥∥∥∥
L2,mg

≤ δ2d.
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By Lemma 2.2, the above then implies

∥∥∥∥
1

fmed − γ∗
f̃(x)

∥∥∥∥
G

≤ δ−1
2d

∥∥∥∥
1

fmed − γ∗
f̃(x)

∥∥∥∥
L2,mg

≤ 1. (2.13)

Thus, by Lemma 2.1, there exists a symmetric matrix W such that

1

fmed − γ∗
f̃(x) = [xd]TW [xd], ‖W‖F ≤ 1.

Let D be the diagonal matrix such that ‖x‖2d2 = [xd]TD[xd]. Note λmin(D) ≥ 1 and

1

fmed − γ∗
f̃(x) + ‖x‖2d2 = [xd]T (W +D)[xd].

Since ‖W‖2 ≤ ‖W‖F ≤ 1, we know W +D º 0. Hence the form

1

fmed − γ∗
f̃(x) + ‖x‖2d2

must be SOS, or equivalently, the form f(x)−γ∗‖x‖2d2 is SOS. Since fsos is the optimal value
of (1.2), we have fsos ≥ γ∗. By the choice of γ∗ in (2.12), the following holds

1 ≤ fmed − fsos
fmed − fmin

≤ 1

δ2d

√(
n

2d

)
.

Since fmin ≤ fmed ≤ fmax, the above immediately implies the theorem.

3 Minimizing multi-forms over multi-spheres

This section studies the problem of optimizing multi-forms over multi-unit spheres. We first
generalize SOS relaxation (1.2) and then analyze its approximation performance.

Suppose x = (xI1 , . . . , xIm) is partitioned such that every component xIk is nk-dimensional
and n1 + · · · + nm = n. A form f(x) is said to be a multi-form if all its terms have fixed
degrees in each component xIk . We say f(x) is a (n1, . . . , nm)× (r1, . . . , rm)-form if

f(x) =
∑

α=(α1,...,αm)∈Nn1×···×Nnm

|α1|=r1,...,|αm|=rm

fα · (xI1)α1 · · · (xIm)αm . (3.1)

Here every (xIk)
αk is defined as before. Consider the optimization problem

min
x=(xI1

,...,xIm )
f(x)

s.t. ‖xI1‖2 = · · · = ‖xIm‖2 = 1,
(3.2)

where f(x) is a (n1, . . . , nm)× (r1, . . . , rm)-form. When m = 1, (3.2) reduces to (1.1); when
m = 2 and r1 = r2 = 2, (3.2) reduces to the so-called bi-quadratic optimization which was
studied by Ling, Nie, Qi and Ye [6]. It was shown in [6] that the bi-quadratic optimization is
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already NP-hard. Thus, the more general problem (3.2) is also NP-hard. If every rk = 2dk
is even, a natural generalization of SOS relaxation (1.2) is

max γ

s.t. f(x)− γ · ‖xI1‖2d12 · · · ‖xIm‖2dm2 is SOS.
(3.3)

Like (1.2), the relaxation (3.3) is equivalent to an SDP problem.
Define the index set

Nn1,...,nm
r1,...,rm =

{
α = (α1, . . . , αm) ∈ Nn1 × · · · × Nnm : |α1| = r1, . . . , |αm| = rm

}
.

For every α ∈ Nn1,...,nm
r1,...,rm , denote xα = (xI1)

α1 · · · (xIm)αm . Define the multi-unit sphere

Sn1−1,...,nm−1 = Sn1−1 × · · · × Snm−1.

Thus (xI1 , . . . , xIm) ∈ Sn1−1,...,nm−1 if and only if every xIk ∈ Snk−1. Let

Fn1,...,nm
r1,...,rm =

{
f(x) is a multi-form given by (3.1)

}

be a space of multi-forms. For convenience, fmin (resp., fmax) still denotes the minimum
(resp., maximum) value of f(x) on Sn1−1,...,nm−1, and fsos denotes the optimal value of (3.3).

3.1. Norms of multi-forms

For a multi-form f(x) ∈ Fn1,...,nm
r1,...,rm given by (3.1), we define its G-norm as

‖f(x)‖G =




∑

α∈Nn1,...,nm
r1,...,rm

p(α)−1f2
α




1/2

. (3.4)

In the above, for every α = (α1, . . . , αm) ∈ Nn1,...,nm
r1,...,rm , the partition number p(α) is defined

to be p(α1) · · · p(αm), where each individual p(αk) is defined by (2.2). Note p(α) is precisely
the cardinality of the set

{
(η, ν) ∈ Nn1,...,nm

br1/2c,...,brm/2c × Nn1,...,nm

dr1/2e,...,drm/2e : η + ν = α
}
.

For f(x) ∈ Fn1,...,nm
r1,...,rm , denote

fG =
(
(p(α))−1/2fα : α ∈ Nn1,...,nm

r1,...,rm

)
, (3.5)

[xr1,...,rm ]G =
(√

p(α)xα : α ∈ Nn1,...,nm
r1,...,rm

)
. (3.6)

The components of fG and [xr1,...,rm ]G are ordered lexicographically according to their indices.
So f(x) = fT

G [x
r1,...,rm ]G and ‖f(x)‖G = ‖fG‖2.

Lemma 3.1. If f(x) ∈ Fn1,...,nm

2d1,...,2dm
, then there exists a symmetric matrix W such that

f(x) = [xd1,...,dm ]TW [xd1,...,dm ], ‖W‖F = ‖f(x)‖G.
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Lemma 3.1 is a natural generalization of Lemma 2.1, and can be proved in almost the same
way. So its proof is omitted here.

Similar to general forms, the L2-norm of f(x) ∈ Fn1,...,nm
r1,...,rm is defined as

‖f(x)‖L2 =

(∫

Sn1−1
· · ·

∫

Snm−1

f(x)2dµ1(xI1) · · · dµm(xIm)

)1/2

. (3.7)

Here every µk(·) is the uniform probability measure on Snk−1. Throughout this section, we
always assume ni ≥ ri for every i. Then the marginal L2-norm of f(x) can be defined in a
similar way as in Section 2. For this purpose, denote

Ωn1,...,nm
r1,...,rm =

{
(∆1, . . . ,∆m) ⊂ [n1]× · · · × [nm] : |∆1| = r1, . . . , |∆m| = rm

}
. (3.8)

Clearly, |Ωn1,...,nm
r1,...,rm | = (

n1

r1

) · · · (nm

rm

)
. For ∆ = (∆1, . . . ,∆m) ∈ Ωn1,...,nm

r1,...,rm , f∆(x∆) denotes the
restriction of f(x) to

x∆ =
(
(xI1)∆1 , . . . , (xIm)∆m

)
.

The L2-norm of f∆(x∆) is defined similarly as in (3.7) by replacing every nk by rk. Like
general forms, the marginal L2-norm of f(x) ∈ Fn1,...,nm

r1,...,rm is then defined as

‖f(x)‖L2,mg =




∑

∆∈Ωn1,...,nm
r1,...,rm

‖f∆(x∆)‖2L2




1/2

. (3.9)

Denote the monomial vector

[xr1,...,rm∆r1,...,rm
]G =

(√
p(α)xα :

α = (α1, . . . , αm) ∈ Nn1,...,nm
r1,...,rm

supp(α1) ⊂ ∆(r1), . . . , supp(αm) ⊂ ∆(rm)

)
, (3.10)

where ∆r1,...,rm = (∆(r1), . . . ,∆(rm)) and every ∆(rk) = [rk]. Then define the matrix

Mr1,...,rm =

∫

Sr1−1
· · ·

∫

Srm−1

[xr1,...,rm∆r1,...,rm
]G[x

r1,...,rm
∆r1,...,rm

]TGdµ∆(r1)(x∆(r1)) · · · dµ∆(rm)(x∆(rm)).

Here every µ∆(rk)(·) is the uniform probability measure on Srk−1. Since the monomials of
[xr1,...,rm∆r1,...,rm

]G are linearly independent, Mr1,...,rm is positive definite. Define the constant

δr1,...,rm =
√
λmin(Mr1,...,rm) > 0. (3.11)

Lemma 3.2. If f(x) ∈ Fn1,...,nm
r1,...,rm , then ‖f(x)‖L2,mg ≥ δr1,...,rm‖f(x)‖G.

Proof. By definition of L2-norm, we know for every ∆ ∈ Ωn1,...,nm
r1,...,rm

‖f∆(x∆)‖2L2 = fT
∆,GB∆f∆,G,

where B∆ is the following symmetric matrix

B∆ =

∫

Sr1−1
· · ·

∫

Srm−1

[xr1,...,rm∆ ]G[x
r1,...,rm
∆ ]TGdµ∆1(x∆1) · · · dµ∆1(x∆1).
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Note that B∆ = Mr1,...,rm . So we have

‖f∆(x∆)‖2L2 = fT
∆,GM

r1,...,rmf∆,G ≥ δ2r1,...,rm‖f∆(x∆)‖2G.
Here f∆,G denotes the vector of weighted coefficients of f∆(x∆) (see (3.5)). Therefore, by
definition of the marginal L2-norm (3.9), the following holds

‖f(x)‖2L2,mg =
∑

∆∈Ωn1,...,nm
r1,...,rm

‖f∆(x∆)‖2L2 ≥ δ2r1,...,rm

∑

∆∈Ωn1,...,nm
r1,...,rm

‖f∆(x∆)‖2G ≥ δ2r1,...,rm‖f(x)‖2G.

So the lemma is proved.

Lemma 3.3. If f(x) ∈ Fn1,...,nm
r1,...,rm and |f(x)| ≤ 1 for all x ∈ Sn1−1,...,nm−1, then

‖f(x)‖L2,mg ≤
√(

n1

r1

)
· · ·

(
nm

rm

)
.

Proof. For every ∆ ∈ Ωn1,...,nm
r1,...,rm , we have |f∆(x∆)| ≤ 1 for all x∆ ∈ Sr1−1,...,rm−1. Then, by

definition of the marginal L2-norm in (3.9), the following holds

‖f(x)‖2L2,mg =
∑

∆∈Ωn1,...,nm
r1,...,rm

∫

Sn1−1
· · ·

∫

Snm−1

f∆(x∆)
2dµ∆1

(
(xI1)∆1

) · · · dµ∆m

(
(xIm)∆m

)

≤
∑

∆∈Ωn1,...,nm
r1,...,rm

1 =

(
n1

r1

)
· · ·

(
nm

rm

)
.

The lemma is proved.

3.2. Bound analysis

Now we analyze the performance of SOS relaxation (3.3). An approximation bound can
be obtained by generalizing the techniques used in the proof of Theorem 2.4.

Theorem 3.4. Let f(x) ∈ Fn1,...,nm

2d1,...,2dm
be a multi-form, and fmin (resp., fmax) be its minimum

(resp., maximum) value on the multi-unit sphere Sn1−1,...,nm−1. Suppose ni ≥ 2di for every
i. If fsos is the optimal value of SOS relaxation (3.3), then

1 ≤ fmax − fsos
fmax − fmin

≤ 1

δ2d1,...,2dm

√(
n1

2d1

)
· · ·

(
nm

2dm

)
,

where δ2d1,...,2dm is defined by (3.11).

Proof. The proof is very similar to what we have done in proving Theorem 2.4. Set

fmed =
1

2
(fmin + fmax), f̃(x) = f(x)− fmed · ‖xI1‖2d12 · · · ‖xIm‖2dm2 .

Then the following holds
∣∣∣∣

1

fmed − fmin
f̃(x)

∣∣∣∣ ≤ 1 ∀x ∈ Sn1−1,...,nm−1.
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By Lemma 3.3, we know

∥∥∥∥
1

fmed − fmin
f̃(x)

∥∥∥∥
L2,mg

≤
√(

n1

2d1

)
· · ·

(
nm

2dm

)
.

Fix a constant

τ∗ = fmed − (fmed − fmin) · 1

δ2d1,...,2dm

√(
n1

2d1

)
· · ·

(
nm

2dm

)
. (3.12)

The above then implies ∥∥∥∥
1

fmed − τ∗
f̃(x)

∥∥∥∥
L2,mg

≤ δ2d1,...,2dm .

By Lemma 3.2, we get

∥∥∥∥
1

fmed − τ∗
f̃(x)

∥∥∥∥
G

≤ 1

δ2d1,...,2dm

∥∥∥∥
1

fmed − τ∗
f̃(x)

∥∥∥∥
L2,mg

≤ 1.

By Lemma 3.1, there exists a symmetric matrix W such that

1

fmed − τ∗
f̃(x) = [xd1,...,dm ]TW [xd1,...,dm ], ‖W‖F ≤ 1.

Let D be the diagonal matrix satisfying

‖xI1‖2d12 · · · ‖xIm‖2dm2 = [xd1,...,dm ]TD[xd1,...,dm ].

Then we get

1

fmed − τ∗
f̃(x) + ‖xI1‖2d12 · · · ‖xIm‖2dm2 = [xd1,...,dm ]T (W +D)[xd1,...,dm ].

Since λmin(D) ≥ 1 and ‖W‖2 ≤ ‖W‖F ≤ 1, we know W +D º 0. Hence

1

fmed − τ∗
f̃(x) + ‖xI1‖2d12 · · · ‖xIm‖2dm2

must be SOS, or equivalently, the multi-form

f(x)− τ∗‖xI1‖2d12 · · · ‖xIm‖2dm2

is SOS. Since fsos is the optimal value of (3.3), fsos ≥ τ∗, and then (3.12) implies

1 ≤ fmed − fsos
fmed − fmin

≤ 1

δ2d1,...,2dm

√(
n1

2d1

)
· · ·

(
nm

2dm

)
.

Since fmin ≤ fmed ≤ fmax, the theorem follows.
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The constant δ2d1,...,2dm is independent of (n1, . . . , nn). Now we estimate it. Note that

M2d1,2d2,...,2dm = Θ2d1 ⊗Θ2d2 ⊗ · · · ⊗Θ2dm .

Here ⊗ denotes the standard Kronecker product, and each Θ2di is defined by (2.8). Since
the eigenvalues of A1 ⊗A2 ⊗ · · · ⊗Am are products of the eigenvalues of Ai, we have

δ2d1,2d2,...,2dm = δ2d1δ2d2 · · · δ2dm .
In the special case of bi-quadratic optimization, that is, m = 2 and d1 = d2 = 1, the

constant δ2d1,...,2dm can be found explicitly. This leads to the following corollary.

Corollary 3.5. Let m = 2 and d1 = d2 = 1. Suppose n1 ≥ 2 and n2 ≥ 2. If f(x) ∈ Fn1,n2
2,2

is a bi-quadratic form, then the optimal value fsos of (3.3) satisfies

1 ≤ fmax − fsos
fmax − fmin

≤ 4

√(
n1

2

)(
n2

2

)
.

Proof. When m = 2 and d1 = d2 = 1, M2,2 = Θ2 ⊗Θ2 where Θ2 is given in (2.9). Since Θ2

has eigenvalues 1
4 ,

1
4 ,

1
2 , we get δ2,2 =

1
4 . Then the corollary follows Theorem 3.4.

4 Sparse and odd forms

The previous sections analyze the approximation performance of SOS relaxations (1.2) and
(3.3). When the forms to be optimized have special features, do they have better perfor-
mance? This section discusses this issue.

4.1. Sparse forms

In many applications, the forms to be optimized are often sparse. For computational
efficiency, it is important to exploit their sparsity patterns. There has been much work in
this area, and we refer to [4, 8, 11]. For sparse forms, we can certainly apply (1.2) to get
a lower bound, and its quality is estimated by Theorem 2.4. However, the approximation
bound in Theorem 2.4 would be improved when f(x) is sparse.

Denote R[x]0,k = R[x]0 + R[x]k. For p(x) ∈ R[x]0,k, we can write p(x) = a + q(x) with
a ∈ R and q(x) ∈ R[x]k. Then the G-norm of p(x) is naturally defined as

‖p‖G =
√

a2 + ‖q‖2G.

Since a nonzero p(x) ∈ R[x]0,k might vanish on the unit sphere, we define its L2-norm as

‖p(x)‖L2
B
=

(∫

‖x‖2≤1
p(x)2dν(x)

)1/2

.

Here ν is now the uniform probability measure on the unit ball B(0, 1) = {x : ‖x‖2 ≤ 1}.
For p(x) ∈ R[x]0,k and Φ ⊆ Ωk, we say Φ is a cover of p(x) if for every α ∈ supp(p), there

is a ∆ ∈ Φ such that supp(α) ⊆ ∆. Denote by Ω(p) the smallest cover of p(x):

Ω(p) = argmin
Φ∈Ωk

{
|Φ| : Φ is a cover of p(x)

}
. (4.1)
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The cardinality |Ω(p)| is called the length of p(x). Let p∆(x∆) be the restriction of p(x) to
x∆. We similarly define

‖p∆(x∆)‖2L2
B
=

(∫

‖x∆‖2≤1
p∆(x∆)

2dν∆(x∆)

)1/2

.

The above ν∆ denotes the uniform probability measure on the sub-unit ball B∆(0, 1) = {x∆ :
‖x‖2 ≤ 1}. For p(x) ∈ R[x]0,k, its sparse marginal L2-norm is naturally defined as

‖p(x)‖L2
B ,Ω(p) =


 ∑

∆∈Ω(p)

‖p∆(x∆)‖2L2
B




1/2

.

As before, we denote by pmax (resp., pmin) the maximum (resp., minimum) value of p(x) on
Sn−1. Then we define matrix

Bk =

∫

‖x∆‖2≤1

[
1

[xk∆]G

] [
1

[xk∆]G

]T
dµ∆(x∆), ∆ ∈ Ωk.

Note that Bk is independent of the choice ∆ ∈ Ωk and Bk Â 0. Set

ζk =
√

λmin(Bk) > 0. (4.2)

The relation between the sparse marginal L2-norm and G-norm is summarized as follows.

Lemma 4.1. Let p(x) ∈ R[x]0,k and Ω(p) be its smallest cover.
(i) If |p(x)| ≤ 1 for all x ∈ Sn−1, then ‖p(x)‖L2

B ,Ω(p) ≤
√

|Ω(p)|.
(ii) It always holds that ‖p(x)‖L2

B ,Ω(p) ≥ ζk‖p(x)‖G.

Proof. (i) For every ∆ ∈ Ωk, we have |p∆(x∆)| ≤ 1 for all x∆ ∈ Sn−1, hence

‖p∆(x∆)‖2L2
B
=

∫

‖x∆‖2≤1
p∆(x∆)

2dµ∆(x∆) ≤ 1.

By definition of the sparse marginal L2-norm, we get

‖p(x)‖L2
B ,Ω(p) =

√ ∑

∆∈Ω(p)

‖p∆(x∆)‖2L2
B
≤

√
|Ω(p)|.

(ii) For every ∆ ∈ Ωk, p∆(x∆) = a+ q(x∆) with a ∈ R and q(x∆) ∈ R[x∆]k. Then

‖p∆(x∆)‖2L2
B
=

[
a
qG

]T
Bk

[
a
qG

]
≥ ζ2k(a

2 + ‖qG‖22) = ζ2k‖p∆(x∆)‖2G.

By definition of the sparse marginal L2-norm, we have

‖p(x)‖2L2
B ,Ω(p) =

∑

∆∈Ω(p)

‖p∆(x∆)‖2L2
B
≥ ζ2k

∑

∆∈Ω(p)

‖p∆(x∆)‖2G ≥ ζ2k‖p(x)‖2G.

So item (ii) follows.
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For minimizing sparse forms, Theorem 2.4 can be improved as follows.

Theorem 4.2. Let f(x) ∈ R[x]2d, and fmin (resp., fmax) be its minimum (resp., maximum)
value on Sn−1. If fsos is the lower bound given by (1.2), then the following holds

1 ≤ fmax − fsos
fmax − fmin

≤ 2

ζ2d

√
|Ω(f)|.

Here ζ2d is defined in (4.2), and Ω(f) is defined in (4.1).

Proof. We follow the same approach for proving Theorem 2.4. Let fmed = 1
2(fmin + fmax)

and f̃(x) = f(x)− fmed, then

∣∣∣∣
1

fmed − fmin
f̃(x)

∣∣∣∣ ≤ 1 ∀x ∈ Sn−1.

By Lemma 4.1, we know

∥∥∥∥
1

fmed − fmin
f̃(x)

∥∥∥∥
L2
B ,mg

≤
√
|Ω(f)|.

Fixing a constant

γ∗ = fmed − (fmed − fmin) · 2

ζ2d

√
|Ω(f)|, (4.3)

we obtain that ∥∥∥∥
2

fmed − γ∗
f̃(x)

∥∥∥∥
L2(g),mg

≤ ζ2d.

Lemma 4.1 and the above imply that

∥∥∥∥
2

fmed − γ∗
f̃(x)

∥∥∥∥
G

≤ 1

ζ2d

∥∥∥∥
2

fmed − γ∗
f̃(x)

∥∥∥∥
L2
B ,mg

≤ 1.

Let a ∈ R and p(x) ∈ R[x]2d be such that

2

fmed − γ∗
f̃(x) = a+ p(x), a2 + ‖p(x)‖2G =

∥∥∥∥
2

fmed − γ∗
f̃(x)

∥∥∥∥
2

G

≤ 1. (4.4)

By Lemma 2.1, there exists a symmetric matrix P satisfying

p(x) = [xd]TP [xd], ‖P‖F = ‖p(x)‖G.

Let D be the diagonal matrix such that ‖x‖2d2 = [xd]TD[xd]. Then λmin(D) ≥ 1 and

2

fmed − γ∗
f̃(x) + (1 + ‖x‖2d2 ) = 1 + a+ [xd]T (P +D)[xd].

Since ‖P‖2 ≤ ‖P‖F = ‖p(x)‖G, (4.4) implies 1 + a ≥ 0 and the form

σ1(x) = [xd]T (P +D)[xd]
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is SOS. By definition of f̃(x), it holds the identity

f(x)− fmed +
fmed − γ∗

2
(1 + ‖x‖2d2 ) =

fmed − γ∗

2
(1 + a+ σ1(x)).

In the above, replacing x by x
‖x‖2 and multiplying both sides by ‖x‖2d2 , we get

f(x)− γ∗‖x‖2d2 = σ(x)

where the form σ(x) = fmed−γ∗
2

(
(1 + a)‖x‖2d2 + σ1(x)

)
is SOS. By the optimality of fsos, we

have fsos ≥ γ∗. Then the theorem follows (4.3).

Example 4.3. Consider sparse forms like

f(x) =
n−1∑

i,j=1

fijxixi+1xjxj+1.

Clearly, |Ω(f)| = (
n−1
2

)
. Therefore, by Theorem 4.2, to minimize f(x) over Sn−1, the SOS

relaxation (1.2) gives an O(n)-approximation.

4.2. Odd forms

A quite general problem is to minimize odd forms over unit spheres. For instance, the
stability number of a graph can be expressed in terms of the optimal value of a particular
cubic form over the unit sphere, as shown by Nesterov [7]. He actually [7] showed that (1.1)
is NP-hard when deg(f) = 3. However, SOS relaxation (1.2) can not be applied directly
when f(x) is odd. Fortunately, we can formulate the problem equivalently as minimizing a
certain even form in a higher dimensional space.

Suppose f(x) is an odd form of degree 2d− 1. Then we must have fmax + fmin = 0 and
fmin ≤ 0 ≤ fmax. Let f̂(x, t) = f(x)t be a new even form in (x, t) and denote

f̂min = min
‖x‖22+t2=1

f(x)t, f̂max = max
‖x‖22+t2=1

f(x)t.

Note the following relations

min
0≤t≤1

min
‖x‖2=

√
1−t2

f(x)t = min
0≤t≤1

t min
‖x‖2=

√
1−t2

f(x) =

min
0≤t≤1

(t(1− t2)d−1/2)fmin = fmin max
0≤t≤1

(t(1− t2)d−1/2) =
1√

2d− 1

(
1− 1

2d

)d

fmin,

min
−1≤t≤0

min
‖x‖2=

√
1−t2

f(x)t = min
0≤t≤1

t max
‖x‖2=

√
1−t2

f(x) =

min
−1≤t≤0

(t(1− t2)d−1/2)fmax = fmax min
−1≤t≤0

(t(1− t2)d−1/2) =
1√

2d− 1

(
1− 1

2d

)d

fmin.

Thus we have

fmin =
√
2d− 1

(
1− 1

2d

)−d

f̂min, fmax =
√
2d− 1

(
1− 1

2d

)−d

f̂max.
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Therefore, minimizing f(x) over Sn−1 is equivalent to

min
‖x‖22+t2=1

f(x)t. (4.5)

Since the form f̂(x, t) = f(x)t is even, SOS relaxation (1.2) can be applied to get a lower
bound f̂sos for f̂min. Then

fsos =
√
2d− 1

(
1− 1

2d

)−d

f̂sos

is also a lower bound of fmin. Observe that

|Ω(f̂)| = |Ω(f)| ≤
(

n

2d− 1

)
.

So Theorem 4.2 immediately implies the following.

Theorem 4.4. Let f(x) ∈ R[x]2d−1, and fmin (resp., fmax) be its minimum (resp., maxi-
mum) value on Sn−1. If fsos is obtained as above through solving (4.5), then

1 ≤ fmax − fsos
fmax − fmin

≤ 2

ζ2d

√
|Ω(f)|.

In particular, if f(x) is dense, then fsos is an O(nd−1/2)-approximation of fmin.

4.3. Odd multi-forms

Let f(x) ∈ Fn1,...,nm

2d1−1,...,2dm−1 be an odd multi-form, i.e., every term of f(x) has a fixed odd
degree in each component xIi . We want to find a lower bound of its minimum value fmin

over the multi-unit sphere Sn1−1,...,nm−1. Suppose f(x) is given as

f(x) =
∑

α∈Nn1,...,nm
2d1−1,...,2dm−1

fα(xI1)
α1 · · · (xIm)αm .

Introduce new variables t = (t1, . . . , tm), and let f̂(x, t) = f(x)t1 . . . tm. Then f̂(x, t) has
even degrees in every component x̃Ii = (xIi , ti). Consider the even multi-form optimization

min
x,t

f̂(x, t)

s.t. ‖xIi‖22 + t2i = 1, i = 1, . . . ,m.
(4.6)

Denote the minimum (resp., maximum) objective value in the above by f̃min (resp., f̃max).
As in the preceding subsection, we can similarly prove that

fmin =

(
m∏

i=1

√
2di − 1

(1− 1/2di)di

)
f̃min, fmax =

(
m∏

i=1

√
2di − 1

(1− 1/2di)di

)
f̃max.

The techniques in the preceding two subsections can be generalized in a natural way to get
an approximation bound O(

√
|Ω(f)|) for SOS relaxation (3.3) applied to (4.6). When f(x)

is dense, the approximation bound is O(n
d1−1/2
1 · · ·ndm−1/2

m ). We would like to leave this as
an exercise for interested readers.
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5 Optimization over hypersurfaces

A more general problem is to optimize homogeneous polynomials over hypersurfaces. For
instance, we might minimize a form over the 2d-sphere {x ∈ Rn : x2d1 + · · ·+ x2dn = 1}. This
section will propose an SOS relaxation similar to (1.2), and then analyze its approximation
performance. Generalizing the techniques we have used earlier, an approximation bound like
in Theorem 2.4 can be obtained.

Let f(x), g(x) be two even forms of degree 2d. Consider optimization problem

min
x∈Rn

f(x)

s.t. g(x) = 1.
(5.1)

The feasible set H(g) = {x ∈ Rn : g(x) = 1} is a hypersurface. When g(x) = ‖x‖2d2 , (5.1)
reduces to (1.1). So problem (5.1) is also NP-hard. A natural SOS relaxation for (5.1) is

max γ
s.t. f(x)− γ · g(x) is SOS.

(5.2)

For convenience, we still denote by fmin (resp., fmax) the minimum (resp., maximum) value
of f(x) on H(g), and denote by fsos the maximum objective value of (5.2). It is obvious that
fsos ≤ fmin. We are interested in estimating how far away fsos is from fmin.

When g(x) is a positive definite form, the hypersurface H(g) is compact, and we can
define a norm of p(x) as

‖p(x)‖L2(g) =

(∫

g(x)=1
p(x)2dµg(x)

)1/2

.

Here µg(·) is the uniform probability measure on H(g). Suppose n ≥ 2d. When p(x) has
degree 2d, we can similarly define its marginal L2-norm as

‖p(x)‖L2(g),mg =


 ∑

∆∈Ω2d

‖p∆(x∆)‖2L2(g∆)




1/2

.

Here p∆ and g∆ are the restrictions of p(x) and g(x) to x∆ respectively, and

‖p∆(x∆)‖L2(g∆) =

(∫

g∆(x∆)=1
p∆(x∆)

2dµg∆(x∆)

)1/2

.

The above µg∆(·) is the uniform probability measure on H(g∆) := {x∆ : g∆(x∆) = 1}.
Similarly, for each ∆ ∈ Ω2d, define matrix

Θ∆(g) =

∫

g∆(x∆)=1
[x2d∆ ]G[x

2d
∆ ]TGdµg∆(x∆).

If g(x) is positive definite, then every g∆(x∆) is also positive definite, andΘ∆(g) Â 0, because
the monomials of [xk∆]G are linearly independent. Define a positive constant

δ(g) = min
∆∈Ω2d

√
λmin(Θ∆(g)) > 0. (5.3)

Note δ(g) is depending only on g. Like Lemmas 2.3 and 2.2, we can similarly prove
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Lemma 5.1. Let g(x) ∈ R[x]2d be a positive definite form.

(i) If |p(x)| ≤ 1 for all x ∈ H(g), then ‖p(x)‖L2(g),mg ≤
√(

n
2d

)
.

(ii) If p(x) ∈ R[x]2d, then ‖p(x)‖L2(g),mg ≥ δ(g)‖p(x)‖G.
The performance of SOS relaxation (5.2) is summarized in the following theorem.

Theorem 5.2. Assume g(x) = [xd]TE[xd] and E is a symmetric positive definite matrix.
Let f(x) ∈ R[x]2d, and fmin (resp., fmax) be its minimum (resp., maximum) value on the
hypersurface H(g). Then the optimal value fsos of (5.2) satisfies

1 ≤ fmax − fsos
fmax − fmin

≤ 1

δ(g)λmin(E)

√(
n

2d

)
.

Proof. We follow the same approach of proving Theorem 2.4, and only list the distinct parts.
Set fmed = 1

2(fmin + fmax) and f̃(x) = f(x)− fmed · g(x). Then
∣∣∣∣

1

fmed − fmin
f̃(x)

∣∣∣∣ ∀x ∈ H(g).

By Lemma 5.1, we know

∥∥∥∥
1

fmed − fmin
f̃(x)

∥∥∥∥
L2(g),mg

≤
√(

n

2d

)
.

Fixing a constant

γ∗ = fmed − (fmed − fmin) · 1

δ(g)λmin(E)

√(
n

2d

)
,

we can get ∥∥∥∥
1

fmed − γ∗
f̃(x)

∥∥∥∥
L2(g),mg

≤ δ(g)λmin(E).

By Lemma 5.1, the above implies
∥∥∥∥

1

fmed − γ∗
f̃(x)

∥∥∥∥
G

≤ δ(g)−1

∥∥∥∥
1

fmed − γ∗
f̃(x)

∥∥∥∥
L2(g),mg

≤ λmin(E).

By Lemma 2.1, there exists a symmetric matrix W satisfying

1

fmed − γ∗
f̃(x) = [xd]TW [xd], ‖W‖F ≤ λmin(E).

From ‖W‖2 ≤ ‖W‖F ≤ λmin(E), we know W +E º 0 and

1

fmed − γ∗
f̃(x) + g(x) = [xd]T (W + E)[xd]

is SOS, or equivalently, the form f(x) − γ∗g(x) is SOS. By the optimality of fsos, we know
fsos ≥ γ∗. Thus the theorem follows the choice of γ∗.
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Now we finish this section with an example.

Example 5.3. For g(x) = x2d1 + · · ·+ x2dn , H(g) is a compact hypersurface of degree 2d. We
show that there exists a symmetric matrix E Â 0 such that

x2d1 + · · ·+ x2dn = [xd]TE[xd]. (5.4)

Recall the arithmetic-geometric inequality (AGI)

y1 · · · y2d ≤ 1

2d
(y2d1 + · · ·+ y2d2d) ∀ (y1, . . . , y2d) ∈ R2d.

Hurwitz [3] (also see Reznick [12]) proved a very nice result that the form

1

2d
(y2d1 + · · ·+ y2d2d)− y1 · · · y2d

is SOS. For every α ∈ N(d), it holds

x2α1
1 · · ·x2αn

n ≤ 1

2d
(2α1x

2d
1 + · · ·+ 2αnx

2d
n ).

Then Hurwitz’s result implies there exists an sos polynomial sα(x) such that

x2α + sα(x) =
1

d

n∑

i=1

αix
2d
i .

Observing the equalities

∑

α∈N(d)

α1

d
= · · · =

∑

α∈N(d)

αn

d
=

1

n

∑

α∈N(d)

(
α1 + · · ·+ αn

d

)
=

1

n

(
n+ d− 1

d

)
,

we get the identity

∑

α∈N(d)

(
x2α + sα(x)

)
=

1

n

(
n+ d− 1

d

) n∑

i=1

x2di ,

or equivalently
n∑

i=1

x2ki = n

(
n+ d− 1

d

)−1 (
sd(x) + [xd]T [xd]

)
.

Here sd(x) =
∑

α∈N(d) sα(x) is also an SOS form. So there exists a symmetric matrix S º 0

such that sd(x) = [xd]TS[xd]. Letting

E = n

(
n+ d− 1

d

)−1

(S + I) ,

we know (5.4) holds with

λmin(E) ≥ n

(
n+ d− 1

d

)−1

= O(n1−d).

By (5.3), δ(g) is a constant independent of n. So Theorem 5.2 shows that SOS relaxation
(5.2) gives an O(n2d−1)-approximation for (5.1) when g(x) = x2d1 + · · ·+ x2dn .
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6 Some discussions

For minimizing forms of an even degree 2d over the unit sphere Sn−1, we basically prove
that the SOS relaxation (1.2) has an approximation bound O(nd) for any fixed d. A very
interesting question is whether this bound is tight or not. To the best knowledge of the
author, this question is open. The main difficulty is how to construct a nonnegative but non-
SOS form that maximizes the ratio fmax−fsos

fmax−fmin
. Actually, it is very tricky to explicitly find a

nonnegative form that is not SOS. It took about eighty years to construct such an explicit
example (Motzkin polynomial) after Hilbert showed the existence of nonnegative forms that
are not SOS. Thus it would be very difficult to tell the tightness of an approximation bound
for SOS relaxation.

We would like to remark that there is no finite approximation bound when we apply SOS
relaxation to find a lower bound for the minimum of a polynomial in the whole space Rn.
For example, for f(x) = x41x

2
2 + x21x

4
2 + x63 − 3x21x

2
2x

3
3 (Motzkin polynomial), its minimum

fmin = 0, but the standard SOS relaxation (see [5, 9, 10])

max γ s.t. f(x)− γ is SOS

is not feasible and fsos = −∞. So there is no guaranteed upper bound for fmin − fsos.
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