An Introduction to the f-invariant

Nov. 17, 2020

Setting and notation:

- G countably infinite group
- (X, μ) standard probability space
- $G \curvearrowright(X, \mu)$ measure-preserving
- Write n for $\{0,1,2, \ldots, n-1\}$
- For a finite set A write u_{A} for uniform prob measure on A

Setting and notation:

- G countably infinite group
- (X, μ) standard probability space
- $G \curvearrowright(X, \mu)$ measure-preserving
- Write n for $\{0,1,2, \ldots, n-1\}$
- For a finite set A write u_{A} for uniform prob measure on A

Definition / Example

The Bernoulli n-shift over G is $G \curvearrowright\left(n^{G}, u_{n}^{G}\right)$

Definition

$G \curvearrowright(X, \mu)$ factors onto $G \curvearrowright(Y, \nu)$ if there is a measurable map $\phi: X \rightarrow Y$ satisfying:

- $\phi_{*}(\mu)=\nu$
- $\phi(g \cdot x)=g \cdot \phi(x)$ for almost-every x and every g If additionally ϕ is injective on a conull set then it is an isomorphism.

Strange Example (Ornstein-Weiss, 1987)

Let $F_{2}=\langle a, b\rangle$ be rank 2 free group

Strange Example (Ornstein-Weiss, 1987)

Let $F_{2}=\langle a, b\rangle$ be rank 2 free group Define $\phi: \mathbb{Z}_{2}^{F_{2}} \rightarrow\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)^{F_{2}}$ by

$$
\phi(x)(g)=(x(g)+x(g a), x(g)+x(g b))
$$

Strange Example (Ornstein-Weiss, 1987)

Let $F_{2}=\langle a, b\rangle$ be rank 2 free group Define $\phi: \mathbb{Z}_{2}^{F_{2}} \rightarrow\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)^{F_{2}}$ by

$$
\phi(x)(g)=(x(g)+x(g a), x(g)+x(g b))
$$

Then

- ϕ is a continuous everywhere 2-to-1 surjection
- ϕ commutes with the action of F_{2}
- ϕ pushes $u_{\mathbb{Z}_{2}}^{F_{2}}$ forward to $u_{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}^{F_{2}}$

Strange Example (Ornstein-Weiss, 1987)

Let $F_{2}=\langle a, b\rangle$ be rank 2 free group Define $\phi: \mathbb{Z}_{2}^{F_{2}} \rightarrow\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)^{F_{2}}$ by

$$
\phi(x)(g)=(x(g)+x(g a), x(g)+x(g b))
$$

Then

- ϕ is a continuous everywhere 2 -to- 1 surjection
- ϕ commutes with the action of F_{2}
- ϕ pushes $u_{\mathbb{Z}_{2}}^{F_{2}}$ forward to $u_{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}^{F_{2}}$

Question (Ornstein-Weiss, 1987)

Are the Bernoulli shifts $F_{2} \curvearrowright\left(2^{F_{2}}, u_{2}^{F_{2}}\right)$ and $F_{2} \curvearrowright\left(4^{F_{2}}, u_{4}^{F_{2}}\right)$ isomorphic?

Question (von Neumann, 1930's)

Question (von Neumann, 1930's)
Are the Bernoulli shifts $\mathbb{Z} \curvearrowright\left(2^{\mathbb{Z}}, u_{2}^{\mathbb{Z}}\right)$ and $\mathbb{Z} \curvearrowright\left(3^{\mathbb{Z}}, u_{3}^{\mathbb{Z}}\right)$ isomorphic?

Question (von Neumann, 1930's)

Are the Bernoulli shifts $\mathbb{Z} \curvearrowright\left(2^{\mathbb{Z}}, u_{2}^{\mathbb{Z}}\right)$ and $\mathbb{Z} \curvearrowright\left(3^{\mathbb{Z}}, u_{3}^{\mathbb{Z}}\right)$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$
\mathrm{H}(\mathcal{P})=\sum_{P \in \mathcal{P}}-\mu(P) \log \mu(P)
$$

Question (von Neumann, 1930's)

Are the Bernoulli shifts $\mathbb{Z} \curvearrowright\left(2^{\mathbb{Z}}, u_{2}^{\mathbb{Z}}\right)$ and $\mathbb{Z} \curvearrowright\left(3^{\mathbb{Z}}, u_{3}^{\mathbb{Z}}\right)$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$
\mathrm{H}(\mathcal{P})=\sum_{P \in \mathcal{P}}-\mu(P) \log \mu(P)
$$

Let $\mathbb{Z} \curvearrowright^{\top}(X, \mu)$.

Question (von Neumann, 1930's)

Are the Bernoulli shifts $\mathbb{Z} \curvearrowright\left(2^{\mathbb{Z}}, u_{2}^{\mathbb{Z}}\right)$ and $\mathbb{Z} \curvearrowright\left(3^{\mathbb{Z}}, u_{3}^{\mathbb{Z}}\right)$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$
\mathrm{H}(\mathcal{P})=\sum_{P \in \mathcal{P}}-\mu(P) \log \mu(P)
$$

Let $\mathbb{Z} \curvearrowright^{\top}(X, \mu)$.Assume \mathcal{P} is a finite generating partition.

Question (von Neumann, 1930's)

Are the Bernoulli shifts $\mathbb{Z} \curvearrowright\left(2^{\mathbb{Z}}, u_{2}^{\mathbb{Z}}\right)$ and $\mathbb{Z} \curvearrowright\left(3^{\mathbb{Z}}, u_{3}^{\mathbb{Z}}\right)$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$
\mathrm{H}(\mathcal{P})=\sum_{P \in \mathcal{P}}-\mu(P) \log \mu(P)
$$

Let $\mathbb{Z} \curvearrowright^{T}(X, \mu)$.Assume \mathcal{P} is a finite generating partition. The Kolmogorov-Sinai entropy is average information per unit time:

$$
h_{\mathbb{Z}}(X, \mu)=\lim _{n \rightarrow \infty} \frac{1}{2 n+1} \mathrm{H}\left(\bigvee_{i=-n}^{n} T^{i}(\mathcal{P})\right)
$$

Question (von Neumann, 1930's)

Are the Bernoulli shifts $\mathbb{Z} \curvearrowright\left(2^{\mathbb{Z}}, u_{2}^{\mathbb{Z}}\right)$ and $\mathbb{Z} \curvearrowright\left(3^{\mathbb{Z}}, u_{3}^{\mathbb{Z}}\right)$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$
\mathrm{H}(\mathcal{P})=\sum_{P \in \mathcal{P}}-\mu(P) \log \mu(P)
$$

Let $\mathbb{Z} \curvearrowright^{T}(X, \mu)$.Assume \mathcal{P} is a finite generating partition. The Kolmogorov-Sinai entropy is average information per unit time:

$$
h_{\mathbb{Z}}(X, \mu)=\lim _{n \rightarrow \infty} \frac{1}{2 n+1} \mathrm{H}\left(\bigvee_{i=-n}^{n} T^{i}(\mathcal{P})\right)
$$

Theorem (Kolmogorov-Sinai, 1958)

$h_{\mathbb{Z}}$ is an isomorphism invariant, it is non-increasing under factors, and $h_{\mathbb{Z}}\left(n^{\mathbb{Z}}, u_{n}^{\mathbb{Z}}\right)=\log (n)$

Fix an action $G \curvearrowright(X, \mu)=G \curvearrowright(X, \mathcal{B}, \mu)$
Definition
A partition \mathcal{P} is generating if $\sigma-\operatorname{alg}(\{g \cdot P: g \in G, P \in \mathcal{P}\})=\mathcal{B}$

Fix an action $G \curvearrowright(X, \mu)=G \curvearrowright(X, \mathcal{B}, \mu)$

Definition

A partition \mathcal{P} is generating if $\sigma-\operatorname{alg}(\{g \cdot P: g \in G, P \in \mathcal{P}\})=\mathcal{B}$

Basic Fact

For every countable set A, there is a 1-to-1 correspondence between

- A-labeled generating partitions $\mathcal{P}=\left\{P_{a}: a \in A\right\}$
- isomorphisms ϕ mapping to $G \curvearrowright\left(A^{G}, \phi_{*}(\mu)\right)$

Proof Sketch

(\rightarrow) Set $\phi(x)(g)=a$ when $g^{-1} \cdot x \in P_{a}$
(\leftarrow) Define $P_{a}=\left\{x \in X: \phi(x)\left(1_{G}\right)=a\right\}$

Fix a rank r free group $G=\langle S\rangle,|S|=r$, and fix $G \curvearrowright(X, \mu)$
How to formulate a quantity similar to "average information"?

Fix a rank r free group $G=\langle S\rangle,|S|=r$, and fix $G \curvearrowright(X, \mu)$
How to formulate a quantity similar to "average information"?
The quantity

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \mathrm{H}\left(\bigvee_{g \in B_{n}} g \cdot \mathcal{P}\right)
$$

does not work (here B_{n} is radius n ball centered at 1_{G})

Fix a rank r free group $G=\langle S\rangle,|S|=r$, and fix $G \curvearrowright(X, \mu)$
How to formulate a quantity similar to "average information"?
The quantity

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \mathrm{H}\left(\bigvee_{g \in B_{n}} g \cdot \mathcal{P}\right)
$$

does not work (here B_{n} is radius n ball centered at 1_{G})
The mutual information of two finite partitions \mathcal{P}, \mathcal{Q} is

$$
I(\mathcal{P}, \mathcal{Q})=\mathrm{H}(\mathcal{P})+\mathrm{H}(\mathcal{Q})-\mathrm{H}(\mathcal{P} \vee \mathcal{Q})
$$

For a finite partition \mathcal{P} set

$$
F(\mathcal{P})=\mathrm{H}(\mathcal{P})-\sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})
$$

For a finite partition \mathcal{P} set

$$
F(\mathcal{P})=\mathrm{H}(\mathcal{P})-\sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})
$$

Definition

If $\mathcal{Q} \leq \mathcal{P}$ and $t \in S \cup S^{-1}$, call $\mathcal{P} \vee t \cdot \mathcal{Q}$ a simple splitting of \mathcal{P}
Notice $F(\mathcal{P} \vee t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

For a finite partition \mathcal{P} set

$$
F(\mathcal{P})=\mathrm{H}(\mathcal{P})-\sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})
$$

Definition

If $\mathcal{Q} \leq \mathcal{P}$ and $t \in S \cup S^{-1}$, call $\mathcal{P} \vee t \cdot \mathcal{Q}$ a simple splitting of \mathcal{P}
Notice $F(\mathcal{P} \vee t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

- for all $s, I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \vee t \cdot \mathcal{Q}, s \cdot \mathcal{P} \vee s t \cdot \mathcal{Q})$

For a finite partition \mathcal{P} set

$$
F(\mathcal{P})=\mathrm{H}(\mathcal{P})-\sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})
$$

Definition

If $\mathcal{Q} \leq \mathcal{P}$ and $t \in S \cup S^{-1}$, call $\mathcal{P} \vee t \cdot \mathcal{Q}$ a simple splitting of \mathcal{P}
Notice $F(\mathcal{P} \vee t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

- for all $s, I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \vee t \cdot \mathcal{Q}, s \cdot \mathcal{P} \vee s t \cdot \mathcal{Q})$
- (when $t \in S$)

$$
\mathrm{H}(\mathcal{P} \vee t \cdot \mathcal{Q})-\mathrm{H}(\mathcal{P})+I(\mathcal{P}, t \cdot \mathcal{P}) \leq I\left(\mathcal{P} \vee t \cdot \mathcal{Q}, t \cdot \mathcal{P} \vee t^{2} \cdot \mathcal{Q}\right)
$$

For a finite partition \mathcal{P} set

$$
F(\mathcal{P})=\mathrm{H}(\mathcal{P})-\sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})
$$

Definition

If $\mathcal{Q} \leq \mathcal{P}$ and $t \in S \cup S^{-1}$, call $\mathcal{P} \vee t \cdot \mathcal{Q}$ a simple splitting of \mathcal{P}
Notice $F(\mathcal{P} \vee t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

- for all $s, I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \vee t \cdot \mathcal{Q}, s \cdot \mathcal{P} \vee s t \cdot \mathcal{Q})$
- (when $t \in S)$

$$
\mathrm{H}(\mathcal{P} \vee t \cdot \mathcal{Q})-\mathrm{H}(\mathcal{P})+I(\mathcal{P}, t \cdot \mathcal{P}) \leq I\left(\mathcal{P} \vee t \cdot \mathcal{Q}, t \cdot \mathcal{P} \vee t^{2} \cdot \mathcal{Q}\right)
$$

- $\left(\right.$ when $\left.t^{-1} \in S\right)$
$\mathrm{H}(\mathcal{P} \vee t \cdot \mathcal{Q})-\mathrm{H}(\mathcal{P})+I\left(\mathcal{P}, t^{-1} \cdot \mathcal{P}\right) \leq I\left(\mathcal{P} \vee t \cdot \mathcal{Q}, t^{-1} \cdot \mathcal{P} \vee \mathcal{Q}\right)$

For a finite partition \mathcal{P} set

$$
F(\mathcal{P})=\mathrm{H}(\mathcal{P})-\sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})
$$

Definition

If $\mathcal{Q} \leq \mathcal{P}$ and $t \in S \cup S^{-1}$, call $\mathcal{P} \vee t \cdot \mathcal{Q}$ a simple splitting of \mathcal{P}
Notice $F(\mathcal{P} \vee t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

- for all $s, I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \vee t \cdot \mathcal{Q}, s \cdot \mathcal{P} \vee s t \cdot \mathcal{Q})$
- (when $t \in S)$

$$
\mathrm{H}(\mathcal{P} \vee t \cdot \mathcal{Q})-\mathrm{H}(\mathcal{P})+I(\mathcal{P}, t \cdot \mathcal{P}) \leq I\left(\mathcal{P} \vee t \cdot \mathcal{Q}, t \cdot \mathcal{P} \vee t^{2} \cdot \mathcal{Q}\right)
$$

- $\left(\right.$ when $\left.t^{-1} \in S\right)$
$\mathrm{H}(\mathcal{P} \vee t \cdot \mathcal{Q})-\mathrm{H}(\mathcal{P})+I\left(\mathcal{P}, t^{-1} \cdot \mathcal{P}\right) \leq I\left(\mathcal{P} \vee t \cdot \mathcal{Q}, t^{-1} \cdot \mathcal{P} \vee \mathcal{Q}\right)$

Definition

\mathcal{P}^{\prime} is a splitting of \mathcal{P} if there are $\mathcal{P}_{i}(1 \leq i \leq n)$ with $\mathcal{P}_{1}=\mathcal{P}$, $\mathcal{P}_{n}=\mathcal{P}^{\prime}$, and \mathcal{P}_{i+1} a simple splitting of \mathcal{P}_{i}

Definition (Bowen, 2010)

The f-invariant of a finite partition \mathcal{P} is

$$
f(\mathcal{P})=\inf _{n \in \mathbb{N}} F\left(\bigvee_{g \in B_{n}} g \cdot \mathcal{P}\right)
$$

where B_{n} is the radius n ball in G centered at the identity

Definition (Bowen, 2010)

The f-invariant of a finite partition \mathcal{P} is

$$
f(\mathcal{P})=\inf _{n \in \mathbb{N}} F\left(\bigvee_{g \in B_{n}} g \cdot \mathcal{P}\right)
$$

where B_{n} is the radius n ball in G centered at the identity

Theorem (Bowen 2010)

If \mathcal{P} and \mathcal{Q} are generating partitions then $f(\mathcal{P})=f(\mathcal{Q})$. The common value (when defined) is called the f-invariant of the action and denoted $f(X, \mu)$.

Definition (Bowen, 2010)

The f-invariant of a finite partition \mathcal{P} is

$$
f(\mathcal{P})=\inf _{n \in \mathbb{N}} F\left(\bigvee_{g \in B_{n}} g \cdot \mathcal{P}\right)
$$

where B_{n} is the radius n ball in G centered at the identity

Theorem (Bowen 2010)

If \mathcal{P} and \mathcal{Q} are generating partitions then $f(\mathcal{P})=f(\mathcal{Q})$. The common value (when defined) is called the f-invariant of the action and denoted $f(X, \mu)$.

Proof Outline

- If \mathcal{P} and \mathcal{P}^{\prime} share a common splitting then $f(\mathcal{P})=f\left(\mathcal{P}^{\prime}\right)$
- Prove \mathcal{Q} can be approximated by such \mathcal{P}^{\prime} above
- f is upper-semicontinuous, so $f(\mathcal{Q}) \geq f(\mathcal{P})$

Theorem (Bowen 2010)
$f\left(n^{G}, u_{n}^{G}\right)=\log (n)$. In particular $\left(2^{G}, u_{2}^{G}\right) \neq\left(4^{G}, u_{4}^{G}\right)$

Theorem (Bowen 2010)
$f\left(n^{G}, u_{n}^{G}\right)=\log (n)$. In particular $\left(2^{G}, u_{2}^{G}\right) \neq\left(4^{G}, u_{4}^{G}\right)$
Let A be a finite set and let μ be a G-invariant probability measure on A^{G}.

Definition

Theorem (Bowen 2010)

$f\left(n^{G}, u_{n}^{G}\right)=\log (n)$. In particular $\left(2^{G}, u_{2}^{G}\right) \not \neq\left(4^{G}, u_{4}^{G}\right)$
Let A be a finite set and let μ be a G-invariant probability measure on A^{G}.

Definition

For $s \in S \cup S^{-1}$ set
$G_{s}=\{$ words $g \in G$ that don't start with $s\}$
μ is Markov if for every $s \in S \cup S^{-1}$
the distribution of $x(s)$ conditioned on $x \upharpoonright G_{s}$ is equal to the distribution of $x(s)$ conditioned on $x\left(1_{G}\right)$

Theorem (Bowen 2010)

$f\left(n^{G}, u_{n}^{G}\right)=\log (n)$. In particular $\left(2^{G}, u_{2}^{G}\right) \not \approx\left(4^{G}, u_{4}^{G}\right)$
Let A be a finite set and let μ be a G-invariant probability measure on A^{G}.

Definition

For $s \in S \cup S^{-1}$ set
$G_{s}=\{$ words $g \in G$ that don't start with $s\}$
μ is Markov if for every $s \in S \cup S^{-1}$
the distribution of $x(s)$ conditioned on $x \upharpoonright G_{s}$ is equal to the distribution of $x(s)$ conditioned on $x\left(1_{G}\right)$

Theorem (Bowen 2010)

Let $\mathcal{P}=\left\{P_{a}: a \in A\right\}$ where $P_{a}=\left\{x \in A^{G}: x\left(1_{G}\right)=a\right\}$.
If μ is Markov then $f\left(A^{G}, \mu\right)=F(\mathcal{P})=\mathrm{H}(\mathcal{P})-\sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$

The f-invariant has many nice properties...

- Does not depend on the choice of generating set S of G (Bowen 2010)
- There is a notion of relative f -invariant satisfying $f(\mathcal{P})=f(\mathcal{Q})+f(\mathcal{P} \mid \mathcal{Q})$ (Bowen 2010)
- When you restrict an action to a finite-index subgroup the f-invariant scales by the index (S 2014)
- The f-invariant satisfies an ergodic decomposition formula (S 2016)
- The f-invariant (Bowen 2010) and relative f-invariant (Shriver 2020) can be defined using sequences of finite random graphs
- Is related to sofic entropy, and when $G=\mathbb{Z}$, $f(X, \mu)=h_{\mathbb{Z}}(X, \mu)$
- In some cases satisfies the Juzvinskii addition formula (Bowen-Gutman 2014)

And a few strange features

- Can increase under factor maps (Ornstein-Weiss example)
- Can be negative If X finite and $G \curvearrowright X$ transitive then $f(X, \mu)=(1-r) \log |X|$
- Can be $-\infty$.

In fact, every action on a compact Riemannian manifold by diffeomorphisms has f-invariant $-\infty$ (Bowen-Gutman 2014)

Thank you!

$$
4 \square>4 \text { 吕 } \downarrow 4 \equiv \stackrel{\equiv}{ }
$$

