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Setting and notation:

◮ G countably infinite group

◮ (X , µ) standard probability space

◮ G ↷ (X , µ) measure-preserving

◮ Write n for {0, 1, 2, . . . , n − 1}
◮ For a finite set A write uA for uniform prob measure on A

Definition / Example

The Bernoulli n-shift over G is G ↷ (nG , uGn )
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Definition

G ↷ (X , µ) factors onto G ↷ (Y , ν) if there is a measurable map
φ : X → Y satisfying:

◮ φ∗(µ) = ν

◮ φ(g · x) = g · φ(x) for almost-every x and every g

If additionally φ is injective on a conull set then it is an
isomorphism.



Strange Example (Ornstein–Weiss, 1987)

Let F2 = 〈a, b〉 be rank 2 free group

Define φ : ZF2
2 → (Z2 × Z2)

F2 by

φ(x)(g) = (x(g) + x(ga), x(g) + x(gb))

Then

◮ φ is a continuous everywhere 2-to-1 surjection

◮ φ commutes with the action of F2
◮ φ pushes uF2

Z2
forward to uF2

Z2×Z2

Question (Ornstein–Weiss, 1987)

Are the Bernoulli shifts F2 ↷ (2F2 , uF2
2 ) and F2 ↷ (4F2 , uF2

4 )
isomorphic?
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Question (von Neumann, 1930’s)

Are the Bernoulli shifts Z ↷ (2Z, uZ2 ) and Z ↷ (3Z, uZ3 )
isomorphic?

The Shannon entropy (information) of a countable partition P of
(X , µ) is:

H(P) =
!

P∈P
−µ(P) logµ(P)

Let Z ↷T (X , µ).Assume P is a finite generating partition.The
Kolmogorov–Sinai entropy is average information per unit time:

hZ(X , µ) = lim
n→∞

1

2n + 1
H

"
n#

i=−n

T i (P)

$

Theorem (Kolmogorov–Sinai, 1958)

hZ is an isomorphism invariant, it is non-increasing under factors,
and hZ(n

Z, uZn ) = log(n)
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Fix an action G ↷ (X , µ) = G ↷ (X ,B, µ)

Definition

A partition P is generating if σ-alg({g · P : g ∈ G , P ∈ P}) = B

Basic Fact

For every countable set A, there is a 1-to-1 correspondence
between

• A-labeled generating partitions P = {Pa : a ∈ A}
• isomorphisms φ mapping to G ↷ (AG ,φ∗(µ))

Proof Sketch

(→) Set φ(x)(g) = a when g−1 · x ∈ Pa

(←) Define Pa = {x ∈ X : φ(x)(1G ) = a}
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Fix a rank r free group G = 〈S〉, |S | = r , and fix G ↷ (X , µ)

How to formulate a quantity similar to ”average information”?

The quantity

lim
n→∞

1

|Bn|
H(

%
g∈Bn

g · P)

does not work (here Bn is radius n ball centered at 1G )

The mutual information of two finite partitions P, Q is

I (P,Q) = H(P) +H(Q)−H(P ∨Q)
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For a finite partition P set

F (P) = H(P)−
&

s∈S I (P, s · P)

Definition

If Q ≤ P and t ∈ S ∪ S−1, call P ∨ t · Q a simple splitting of P

Notice F (P ∨ t · Q) ≤ F (P) since:

• for all s, I (P, s · P) ≤ I (P ∨ t · Q, s · P ∨ st · Q)

• (when t ∈ S)
H(P ∨ t · Q)−H(P) + I (P, t · P) ≤ I (P ∨ t · Q, t · P ∨ t2 · Q)

• (when t−1 ∈ S)
H(P ∨ t ·Q)−H(P)+ I (P, t−1 · P) ≤ I (P ∨ t ·Q, t−1 · P ∨Q)

Definition

P ′ is a splitting of P if there are Pi (1 ≤ i ≤ n) with P1 = P,
Pn = P ′, and Pi+1 a simple splitting of Pi
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Definition (Bowen, 2010)

The f-invariant of a finite partition P is

f (P) = inf
n∈N

F (
%

g∈Bn
g · P),

where Bn is the radius n ball in G centered at the identity

Theorem (Bowen 2010)

If P and Q are generating partitions then f (P) = f (Q). The
common value (when defined) is called the f-invariant of the action
and denoted f (X , µ).

Proof Outline

◮ If P and P ′ share a common splitting then f (P) = f (P ′)

◮ Prove Q can be approximated by such P ′ above

◮ f is upper-semicontinuous, so f (Q) ≥ f (P)
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Theorem (Bowen 2010)

f (nG , uGn ) = log(n). In particular (2G , uG2 ) ∕∼= (4G , uG4 )

Let A be a finite set and let µ be a G -invariant probability measure
on AG .

Definition

For s ∈ S ∪ S−1 set
Gs = {words g ∈ G that don’t start with s}
µ is Markov if for every s ∈ S ∪ S−1

the distribution of x(s) conditioned on x ↾ Gs is equal to
the distribution of x(s) conditioned on x(1G )

Theorem (Bowen 2010)

Let P = {Pa : a ∈ A} where Pa = {x ∈ AG : x(1G ) = a}.
If µ is Markov then f (AG , µ) = F (P) = H(P)−

&
s∈S I (P, s · P)
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The f-invariant has many nice properties...

◮ Does not depend on the choice of generating set S of G
(Bowen 2010)

◮ There is a notion of relative f-invariant satisfying
f (P) = f (Q) + f (P|Q) (Bowen 2010)

◮ When you restrict an action to a finite-index subgroup the
f-invariant scales by the index (S 2014)

◮ The f-invariant satisfies an ergodic decomposition formula (S
2016)

◮ The f-invariant (Bowen 2010) and relative f-invariant (Shriver
2020) can be defined using sequences of finite random graphs

◮ Is related to sofic entropy, and when G = Z,
f (X , µ) = hZ(X , µ)

◮ In some cases satisfies the Juzvinskii addition formula
(Bowen–Gutman 2014)



And a few strange features

◮ Can increase under factor maps (Ornstein–Weiss example)

◮ Can be negative
If X finite and G ↷ X transitive then
f (X , µ) = (1− r) log |X |

◮ Can be −∞.
In fact, every action on a compact Riemannian manifold by
diffeomorphisms has f-invariant −∞ (Bowen–Gutman 2014)



Thank you!


