An Introduction to the f-invariant

Nov. 17, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Setting and notation:

- G countably infinite group
- (X, μ) standard probability space
- $G \curvearrowright (X, \mu)$ measure-preserving
- Write *n* for $\{0, 1, 2, ..., n-1\}$
- For a finite set A write u_A for uniform prob measure on A

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Setting and notation:

- ► G countably infinite group
- (X, μ) standard probability space
- $G \curvearrowright (X, \mu)$ measure-preserving
- Write *n* for $\{0, 1, 2, ..., n-1\}$
- For a finite set A write u_A for uniform prob measure on A

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition / Example

The Bernoulli n-shift over G is $G \curvearrowright (n^G, u_n^G)$

Definition

 $G \curvearrowright (X, \mu)$ factors onto $G \curvearrowright (Y, \nu)$ if there is a measurable map $\phi : X \to Y$ satisfying:

•
$$\phi_*(\mu) = \nu$$

• $\phi(g \cdot x) = g \cdot \phi(x)$ for almost-every x and every g

If additionally ϕ is injective on a conull set then it is an $\mathit{isomorphism}.$

Let $F_2 = \langle a, b \rangle$ be rank 2 free group

Let $F_2 = \langle a, b \rangle$ be rank 2 free group Define $\phi : \mathbb{Z}_2^{F_2} \to (\mathbb{Z}_2 \times \mathbb{Z}_2)^{F_2}$ by

 $\phi(x)(g) = (x(g) + x(ga), x(g) + x(gb))$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Let $F_2 = \langle a, b \rangle$ be rank 2 free group Define $\phi : \mathbb{Z}_2^{F_2} \to (\mathbb{Z}_2 \times \mathbb{Z}_2)^{F_2}$ by

 $\phi(x)(g) = (x(g) + x(ga), x(g) + x(gb))$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Then

- $\blacktriangleright \phi$ is a continuous everywhere 2-to-1 surjection
- ϕ commutes with the action of F_2
- ϕ pushes $u_{\mathbb{Z}_2}^{F_2}$ forward to $u_{\mathbb{Z}_2 \times \mathbb{Z}_2}^{F_2}$

Let $F_2 = \langle a, b \rangle$ be rank 2 free group Define $\phi : \mathbb{Z}_2^{F_2} \to (\mathbb{Z}_2 \times \mathbb{Z}_2)^{F_2}$ by

 $\phi(x)(g) = (x(g) + x(ga), x(g) + x(gb))$

Then

 $\blacktriangleright \phi$ is a continuous everywhere 2-to-1 surjection

• ϕ commutes with the action of F_2

• ϕ pushes $u_{\mathbb{Z}_2}^{F_2}$ forward to $u_{\mathbb{Z}_2 \times \mathbb{Z}_2}^{F_2}$

Question (Ornstein–Weiss, 1987)

Are the Bernoulli shifts $F_2 \curvearrowright (2^{F_2}, u_2^{F_2})$ and $F_2 \curvearrowright (4^{F_2}, u_4^{F_2})$ isomorphic?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

(ロト (個) (E) (E) (E) (E) (O) (O)

Are the Bernoulli shifts $\mathbb{Z} \curvearrowright (2^{\mathbb{Z}}, u_2^{\mathbb{Z}})$ and $\mathbb{Z} \curvearrowright (3^{\mathbb{Z}}, u_3^{\mathbb{Z}})$ isomorphic?

Are the Bernoulli shifts
$$\mathbb{Z} \curvearrowright (2^{\mathbb{Z}}, u_2^{\mathbb{Z}})$$
 and $\mathbb{Z} \curvearrowright (3^{\mathbb{Z}}, u_3^{\mathbb{Z}})$ isomorphic?

The *Shannon entropy* (information) of a countable partition \mathcal{P} of (X, μ) is:

$$\operatorname{H}(\mathcal{P}) = \sum_{\mathcal{P} \in \mathcal{P}} -\mu(\mathcal{P}) \log \mu(\mathcal{P})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Are the Bernoulli shifts
$$\mathbb{Z} \curvearrowright (2^{\mathbb{Z}}, u_2^{\mathbb{Z}})$$
 and $\mathbb{Z} \curvearrowright (3^{\mathbb{Z}}, u_3^{\mathbb{Z}})$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$\mathrm{H}(\mathcal{P}) = \sum_{\mathcal{P} \in \mathcal{P}} -\mu(\mathcal{P}) \log \mu(\mathcal{P})$$

Let $\mathbb{Z} \curvearrowright^{\mathcal{T}} (X, \mu)$.

Are the Bernoulli shifts
$$\mathbb{Z} \curvearrowright (2^{\mathbb{Z}}, u_2^{\mathbb{Z}})$$
 and $\mathbb{Z} \curvearrowright (3^{\mathbb{Z}}, u_3^{\mathbb{Z}})$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$\operatorname{H}(\mathcal{P}) = \sum_{\mathcal{P} \in \mathcal{P}} -\mu(\mathcal{P}) \log \mu(\mathcal{P})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\mathbb{Z} \curvearrowright^{\mathcal{T}} (X, \mu)$. Assume \mathcal{P} is a finite generating partition.

Are the Bernoulli shifts
$$\mathbb{Z} \curvearrowright (2^{\mathbb{Z}}, u_2^{\mathbb{Z}})$$
 and $\mathbb{Z} \curvearrowright (3^{\mathbb{Z}}, u_3^{\mathbb{Z}})$ isomorphic?

The Shannon entropy (information) of a countable partition \mathcal{P} of (X, μ) is:

$$\operatorname{H}(\mathcal{P}) = \sum_{\mathcal{P} \in \mathcal{P}} -\mu(\mathcal{P}) \log \mu(\mathcal{P})$$

Let $\mathbb{Z} \curvearrowright^{\mathcal{T}} (X, \mu)$. Assume \mathcal{P} is a finite generating partition. The *Kolmogorov–Sinai entropy* is average information per unit time:

$$h_{\mathbb{Z}}(X,\mu) = \lim_{n \to \infty} \frac{1}{2n+1} \operatorname{H}\left(\bigvee_{i=-n}^{n} T^{i}(\mathcal{P})\right)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Are the Bernoulli shifts
$$\mathbb{Z} \curvearrowright (2^{\mathbb{Z}}, u_2^{\mathbb{Z}})$$
 and $\mathbb{Z} \curvearrowright (3^{\mathbb{Z}}, u_3^{\mathbb{Z}})$ isomorphic?

The *Shannon entropy* (information) of a countable partition \mathcal{P} of (X, μ) is:

$$\operatorname{H}(\mathcal{P}) = \sum_{\mathcal{P} \in \mathcal{P}} -\mu(\mathcal{P}) \log \mu(\mathcal{P})$$

Let $\mathbb{Z} \curvearrowright^{\mathcal{T}} (X, \mu)$. Assume \mathcal{P} is a finite generating partition. The *Kolmogorov–Sinai entropy* is average information per unit time:

$$h_{\mathbb{Z}}(X,\mu) = \lim_{n \to \infty} \frac{1}{2n+1} \operatorname{H}\left(\bigvee_{i=-n}^{n} T^{i}(\mathcal{P})\right)$$

Theorem (Kolmogorov–Sinai, 1958)

 $h_{\mathbb{Z}}$ is an isomorphism invariant, it is non-increasing under factors, and $h_{\mathbb{Z}}(n^{\mathbb{Z}}, u_n^{\mathbb{Z}}) = \log(n)$

Fix an action
$$G \curvearrowright (X, \mu) = G \curvearrowright (X, \mathcal{B}, \mu)$$

Definition

A partition \mathcal{P} is generating if σ -alg $(\{g \cdot P : g \in G, P \in \mathcal{P}\}) = \mathcal{B}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Fix an action
$$G \curvearrowright (X, \mu) = G \curvearrowright (X, \mathcal{B}, \mu)$$

Definition

A partition \mathcal{P} is generating if σ -alg $(\{g \cdot P : g \in G, P \in \mathcal{P}\}) = \mathcal{B}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Basic Fact

For every countable set A, there is a 1-to-1 correspondence between

- A-labeled generating partitions $\mathcal{P} = \{P_a : a \in A\}$
- isomorphisms ϕ mapping to $G \curvearrowright (A^G, \phi_*(\mu))$

Proof Sketch

$$(\rightarrow)$$
 Set $\phi(x)(g) = a$ when $g^{-1} \cdot x \in P_a$
 (\leftarrow) Define $P_a = \{x \in X : \phi(x)(1_G) = a\}$

Fix a rank r free group $G = \langle S \rangle$, |S| = r, and fix $G \curvearrowright (X, \mu)$

How to formulate a quantity similar to "average information"?

Fix a rank r free group $G = \langle S \rangle$, |S| = r, and fix $G \curvearrowright (X, \mu)$

How to formulate a quantity similar to "average information"?

The quantity

$$\lim_{n\to\infty}\frac{1}{|B_n|}\mathrm{H}(\bigvee_{g\in B_n}g\cdot\mathcal{P})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

does not work (here B_n is radius *n* ball centered at 1_G)

Fix a rank r free group $G = \langle S \rangle$, |S| = r, and fix $G \curvearrowright (X, \mu)$

How to formulate a quantity similar to "average information"?

The quantity

$$\lim_{n\to\infty}\frac{1}{|B_n|}\mathrm{H}(\bigvee_{g\in B_n}g\cdot\mathcal{P})$$

does not work (here B_n is radius *n* ball centered at 1_G)

The mutual information of two finite partitions \mathcal{P} , \mathcal{Q} is

$$I(\mathcal{P},\mathcal{Q}) = \mathrm{H}(\mathcal{P}) + \mathrm{H}(\mathcal{Q}) - \mathrm{H}(\mathcal{P} \lor \mathcal{Q})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$F(\mathcal{P}) = \mathrm{H}(\mathcal{P}) - \sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

$$F(\mathcal{P}) = \operatorname{H}(\mathcal{P}) - \sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$$

Definition

If $Q \leq P$ and $t \in S \cup S^{-1}$, call $P \lor t \cdot Q$ a simple splitting of P

Notice $F(\mathcal{P} \lor t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

$$F(\mathcal{P}) = \operatorname{H}(\mathcal{P}) - \sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$$

Definition

If $Q \leq P$ and $t \in S \cup S^{-1}$, call $P \lor t \cdot Q$ a simple splitting of P

Notice $F(\mathcal{P} \lor t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

• for all s,
$$I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, s \cdot \mathcal{P} \lor st \cdot \mathcal{Q})$$

$$F(\mathcal{P}) = \operatorname{H}(\mathcal{P}) - \sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$$

Definition

If $Q \leq P$ and $t \in S \cup S^{-1}$, call $P \lor t \cdot Q$ a simple splitting of P

Notice $F(\mathcal{P} \lor t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

- for all s, $I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, s \cdot \mathcal{P} \lor st \cdot \mathcal{Q})$
- (when $t \in S$) $H(\mathcal{P} \lor t \cdot \mathcal{Q}) - H(\mathcal{P}) + I(\mathcal{P}, t \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, t \cdot \mathcal{P} \lor t^2 \cdot \mathcal{Q})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$F(\mathcal{P}) = \operatorname{H}(\mathcal{P}) - \sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$$

Definition

If $Q \leq P$ and $t \in S \cup S^{-1}$, call $P \lor t \cdot Q$ a simple splitting of P

Notice $F(\mathcal{P} \lor t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

- for all s, $I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, s \cdot \mathcal{P} \lor st \cdot \mathcal{Q})$
- (when $t \in S$) $H(\mathcal{P} \lor t \cdot \mathcal{Q}) - H(\mathcal{P}) + I(\mathcal{P}, t \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, t \cdot \mathcal{P} \lor t^2 \cdot \mathcal{Q})$
- (when $t^{-1} \in S$) H($\mathcal{P} \lor t \cdot \mathcal{Q}$) - H(\mathcal{P}) + $I(\mathcal{P}, t^{-1} \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, t^{-1} \cdot \mathcal{P} \lor \mathcal{Q})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$F(\mathcal{P}) = \operatorname{H}(\mathcal{P}) - \sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$$

Definition

If $Q \leq P$ and $t \in S \cup S^{-1}$, call $P \lor t \cdot Q$ a simple splitting of P

Notice $F(\mathcal{P} \lor t \cdot \mathcal{Q}) \leq F(\mathcal{P})$ since:

- for all s, $I(\mathcal{P}, s \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, s \cdot \mathcal{P} \lor st \cdot \mathcal{Q})$
- (when $t \in S$) $H(\mathcal{P} \lor t \cdot \mathcal{Q}) - H(\mathcal{P}) + I(\mathcal{P}, t \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, t \cdot \mathcal{P} \lor t^2 \cdot \mathcal{Q})$
- (when $t^{-1} \in S$) H($\mathcal{P} \lor t \cdot \mathcal{Q}$) - H(\mathcal{P}) + $I(\mathcal{P}, t^{-1} \cdot \mathcal{P}) \leq I(\mathcal{P} \lor t \cdot \mathcal{Q}, t^{-1} \cdot \mathcal{P} \lor \mathcal{Q})$

Definition

 \mathcal{P}' is a *splitting* of \mathcal{P} if there are \mathcal{P}_i $(1 \le i \le n)$ with $\mathcal{P}_1 = \mathcal{P}$, $\mathcal{P}_n = \mathcal{P}'$, and \mathcal{P}_{i+1} a simple splitting of \mathcal{P}_i

Definition (Bowen, 2010)

The *f-invariant* of a finite partition \mathcal{P} is

$$f(\mathcal{P}) = \inf_{n \in \mathbb{N}} F(\bigvee_{g \in B_n} g \cdot \mathcal{P}),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where B_n is the radius n ball in G centered at the identity

Definition (Bowen, 2010)

The *f-invariant* of a finite partition \mathcal{P} is

$$f(\mathcal{P}) = \inf_{n \in \mathbb{N}} F(\bigvee_{g \in B_n} g \cdot \mathcal{P}),$$

where B_n is the radius n ball in G centered at the identity

Theorem (Bowen 2010)

If \mathcal{P} and \mathcal{Q} are generating partitions then $f(\mathcal{P}) = f(\mathcal{Q})$. The common value (when defined) is called the *f*-invariant of the action and denoted $f(X, \mu)$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Definition (Bowen, 2010)

The *f-invariant* of a finite partition \mathcal{P} is

$$f(\mathcal{P}) = \inf_{n \in \mathbb{N}} F(\bigvee_{g \in B_n} g \cdot \mathcal{P}),$$

where B_n is the radius n ball in G centered at the identity

Theorem (Bowen 2010)

If \mathcal{P} and \mathcal{Q} are generating partitions then $f(\mathcal{P}) = f(\mathcal{Q})$. The common value (when defined) is called the *f*-invariant of the action and denoted $f(X, \mu)$.

Proof Outline

- If \mathcal{P} and \mathcal{P}' share a common splitting then $f(\mathcal{P}) = f(\mathcal{P}')$
- Prove Q can be approximated by such P' above
- f is upper-semicontinuous, so $f(Q) \ge f(P)$

 $f(n^G, u_n^G) = \log(n)$. In particular $(2^G, u_2^G) \not\cong (4^G, u_4^G)$

 $f(n^G, u_n^G) = \log(n)$. In particular $(2^G, u_2^G) \not\cong (4^G, u_4^G)$

Let A be a finite set and let μ be a G-invariant probability measure on A^{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Definition

 $f(n^G, u_n^G) = \log(n)$. In particular $(2^G, u_2^G) \not\cong (4^G, u_4^G)$

Let A be a finite set and let μ be a G-invariant probability measure on A^{G} .

Definition

For $s \in S \cup S^{-1}$ set

 $G_s = \{ words \ g \in G \text{ that don't start with s} \}$

 μ is *Markov* if for every $s \in S \cup S^{-1}$

the distribution of x(s) conditioned on $x \upharpoonright G_s$ is equal to the distribution of x(s) conditioned on $x(1_G)$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 $f(n^G, u_n^G) = \log(n)$. In particular $(2^G, u_2^G) \not\cong (4^G, u_4^G)$

Let A be a finite set and let μ be a G-invariant probability measure on A^{G} .

Definition

For $s \in S \cup S^{-1}$ set

$$G_s = \{ words \ g \in G \ that \ don't \ start \ with \ s \}$$

 μ is *Markov* if for every $s \in S \cup S^{-1}$

the distribution of x(s) conditioned on $x \upharpoonright G_s$ is equal to the distribution of x(s) conditioned on $x(1_G)$

Theorem (Bowen 2010)

Let $\mathcal{P} = \{P_a : a \in A\}$ where $P_a = \{x \in A^G : x(1_G) = a\}$. If μ is Markov then $f(A^G, \mu) = F(\mathcal{P}) = \operatorname{H}(\mathcal{P}) - \sum_{s \in S} I(\mathcal{P}, s \cdot \mathcal{P})$

The f-invariant has many nice properties...

- Does not depend on the choice of generating set S of G (Bowen 2010)
- ► There is a notion of relative f-invariant satisfying f(P) = f(Q) + f(P|Q) (Bowen 2010)
- When you restrict an action to a finite-index subgroup the f-invariant scales by the index (S 2014)
- The f-invariant satisfies an ergodic decomposition formula (S 2016)
- The f-invariant (Bowen 2010) and relative f-invariant (Shriver 2020) can be defined using sequences of finite random graphs
- Is related to sofic entropy, and when G = Z, f(X, µ) = h_Z(X, µ)
- In some cases satisfies the Juzvinskii addition formula (Bowen–Gutman 2014)

And a few strange features

- Can increase under factor maps (Ornstein–Weiss example)
- Can be negative If X finite and $G \frown X$ transitive then $f(X, \mu) = (1 - r) \log |X|$

• Can be $-\infty$.

In fact, every action on a compact Riemannian manifold by diffeomorphisms has f-invariant $-\infty$ (Bowen–Gutman 2014)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Thank you!

・ロト・(四)・(三)・(三)・(ロ)・(ロ)