Practice Problems Final

Problem 1. Evaluate

$$
5(7+3)-2\left[(6-3)-4^{2}\right]+1
$$

Solution. We use PEMDAS here. First we evaluate the first bracket

$$
(7+3)=10
$$

So we have

$$
5 \times 10-2\left[(6-3)-4^{2}\right]+1
$$

We then evaluate the second bracket

$$
(6-3)-4^{2}=3-4^{2}=3-16=-13 .
$$

So we have

$$
\begin{gathered}
5 \times 10-2 \times(-13)+1 \\
=50-2 \times(-13)+1 \\
=50-(-26)+1 \\
=50+26+1 \\
=76+1=77 .
\end{gathered}
$$

Problem 2. Simplify and write your answer with positive exponents:

$$
\left(p^{-4} q^{3}\right)^{8}
$$

Solution. We use the property of exponents to get

$$
\left(p^{-4} q^{3}\right)^{8}=\left(p^{-4}\right)^{8}\left(q^{3}\right)^{8}=p^{-32} q^{24}=\frac{q^{24}}{p^{32}}
$$

Problem 3. Convert -8.05×10^{-12} into standard notation.

Solution.

$$
-8.05 \times 10^{-12}=-0.00000000000805
$$

Problem 4. Simplify

$$
\left(\frac{7}{8}\right)^{-\frac{1}{4}} \times\left(\frac{7}{8}\right)^{\frac{1}{2}} \times\left(\frac{7}{8}\right)^{\frac{3}{4}}
$$

Solution. By the property of exponents, we have

$$
\left(\frac{7}{8}\right)^{-\frac{1}{4}} \times\left(\frac{7}{8}\right)^{\frac{1}{2}} \times\left(\frac{7}{8}\right)^{\frac{3}{4}}=\left(\frac{7}{8}\right)^{-\frac{1}{4}+\frac{1}{2}+\frac{3}{4}}
$$

We have

$$
-\frac{1}{4}+\frac{1}{2}+\frac{3}{4}=\frac{1}{4}+\frac{3}{4}=1 .
$$

So

$$
\left(\frac{7}{8}\right)^{-\frac{1}{4}} \times\left(\frac{7}{8}\right)^{\frac{1}{2}} \times\left(\frac{7}{8}\right)^{\frac{3}{4}}=\left(\frac{7}{8}\right)^{1}=\frac{7}{8}
$$

Problem 5. What is the degree of the polynomial $q^{7}-2 q+3 q^{3}-9 q$? What is the coefficient of q^{6} in this polynomial?

Solution. This is a polynomial of degree 7. There is no q^{6} term here, so the coefficient of q^{6} is 0 .

Problem 6. Subtract

$$
\frac{3 x}{2(x-1)}-\frac{4}{(x-1)(x+2)}
$$

Solution. The denominators here are $2(x-1)$ and $(x-1)(x+2)$, and so the common denominator is $2(x-1)(x+2)$. Therefore we get

$$
\frac{3 x}{2(x-1)}=\frac{3 x}{2(x-1)} \times \frac{x+2}{x+2}=\frac{3 x(x+2)}{2(x-1)(x+2)}=\frac{3 x^{2}+6 x}{2(x-1)(x+2)}
$$

and

$$
\frac{4}{(x-1)(x+2)}=\frac{4}{(x-1)(x+2)} \times \frac{2}{2}=\frac{8}{2(x-1)(x+2)} .
$$

So we have

$$
\frac{3 x}{2(x-1)}-\frac{4}{(x-1)(x+2)}=\frac{3 x^{2}+6 x}{2(x-1)(x+2)}-\frac{8}{2(x-1)(x+2)}=\frac{3 x^{2}+6 x-8}{2(x-1)(x+2)}
$$

Problem 7. Find the distance between the points $(7,4)$ and $(3,1)$. Also, find the mid-point of the line joining these two points.

Solution. The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

So, the distance between $(7,4)$ and $(3,1)$ is

$$
\sqrt{(7-3)^{2}+(4-1)^{2}}=\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5 .
$$

The mid-point of the line joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

So, the mid-point of the line joining $(7,4)$ and $(3,1)$ is

$$
\left(\frac{7+3}{2}, \frac{4+1}{2}\right)=\left(5, \frac{5}{2}\right) .
$$

Problem 8. The difference in the age of two people is 20 years. If 5 years ago, the elder one of the two was 5 times as old as the younger one, then find their present ages.

Solution. This was done in lecture. Check the notes for Friday (12/8).

Problem 9. The perimeter of a tablet of graph paper is 48 in . The length is 6 in more than the width. Find the area of the graph paper.

Solution. Let us denote the length by L and the width by W. Then we know the following two facts:

- The perimeter is 48 , i.e.

$$
2 L+2 W=48
$$

Dividing by 2 , we can simplify this to get

$$
L+W=24
$$

- The length is 6 more than the width, i.e.

$$
L=W+6
$$

Substituting $W+6$ for L in the first equation, we get

$$
(W+6)+W=24
$$

i.e.

$$
2 W+6=24
$$

Solving this gives us

$$
W=9
$$

So

$$
L=W+6=9+6=15
$$

Therefore, the area of the graph paper is

$$
L . W=15 \times 6=90 \mathrm{in}^{2}
$$

Problem 10. Simplify:

$$
\frac{1+5 i}{-3 i}
$$

Solution. We multiply the numerator and denominator by the conjugate of $-3 i$, i.e. $3 i$.

$$
\frac{1+5 i}{-3 i}=\frac{1+5 i}{-3 i} \times \frac{3 i}{3 i}=\frac{(1+5 i)(3 i)}{(-3 i)(3 i)} .
$$

Using distribution, we get

$$
\frac{(1+5 i)(3 i)}{(-3 i)(3 i)}=\frac{3 i+15 i^{2}}{-9 i^{2}} .
$$

Since $i^{2}=1$, we get

$$
\frac{(1+5 i)(3 i)}{(-3 i)(3 i)}=\frac{3 i-15}{9}=-\frac{15}{9}+\frac{3}{9} i=-\frac{5}{3}+\frac{1}{3} i .
$$

Problem 11. The area of a rectangular plot is $528 \mathrm{~m}^{2}$. The length of the plot is one more than twice its breadth. Find the length and breadth of the plot.

Solution. Let us denote the length by L and the breadth by B. Then we know the following two facts:

- The area is 528 , i.e.

$$
L . B=528 .
$$

- The length is 1 more than twice the breadth, i.e.

$$
L=2 B+1 .
$$

Substituting $2 B+1$ for L in the first equation, we get

$$
(2 B+1) \cdot B=528,
$$

i.e.

$$
2 B^{2}+B-528=0
$$

This is a quadratic equation that can be factored as $2 B^{2}+B-528=(2 B+33)(B-16)$. So we have

$$
(2 B+33)(B-16)=0
$$

Solving this gives us

$$
B=-\frac{33}{2} \quad \text { or } \quad B=16 .
$$

Since the breadth is a positive number, we conclude that $B=16$. Also

$$
L=2 W+1=2 \times 16+1=33
$$

Therefore, the length of the plot is 16 m and the breadth of the plot is 33 m .

Problem 12. Solve for x :

$$
\sqrt{x}+2=x
$$

Solution. We take the 2 to the right hand side to get

$$
\sqrt{x}=x-2 .
$$

Squaring both sides, we get

$$
(\sqrt{x})^{2}=(x-2)^{2}
$$

which gives

$$
x=x^{2}-4 x+4 .
$$

Subtracting x from both sides, we get

$$
x^{2}-5 x+4=0
$$

This can be factored as $x^{2}-5 x+4=(x-1)(x-4)$. So

$$
(x-1)(x-4)=0 .
$$

So we get $x=1$ or $x=4$.
We have to check that these are actually solutions. Let us first check $x=1$. We have

$$
\sqrt{1}+2=3
$$

which is not equal to 1 . So $x=1$ is not a solution.
Now let us check $x=4$. We have

$$
\sqrt{4}+2=2+2=4
$$

Therefore, $x=4$ is the only solution to this equation.

Problem 13. Solve for x :

$$
|x-1| \geq 2
$$

Solution. $|x-1| \geq 2$ implies that either

$$
x-1 \geq 2
$$

or

$$
x-1 \leq-2 .
$$

The first inequality gives

$$
x \geq 3
$$

The second inequality gives

$$
x \leq-1
$$

So we have $x \geq 3$ or $x \leq-1$, i.e.

$$
x \in(-\infty,-1] \cup[3, \infty)
$$

Problem 14. Solve for r :

$$
\frac{|3+r|}{7} \leq 5
$$

Solution. Multiplying by 7 on both sides, we get

$$
|3+r| \leq 35
$$

This implies that

$$
-35 \leq 3+r \leq 35
$$

Subtracting by 3 on all sides, we get

$$
-38 \leq r \leq 32
$$

i.e.

$$
r \in[-38,32]
$$

Problem 15. Solve for a :

$$
5 a^{2}-5 a=35
$$

Solution. We can first divide both sides by 5 to get

$$
a^{2}-a=7
$$

Taking 7 to the left hand side, we get

$$
a^{2}-a-7=0 .
$$

We can check that this cannot be factored, and so we use the quadratic formula. We have

$$
a=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-7)}}{2}=\frac{1 \pm \sqrt{1+28}}{2}=\frac{1 \pm \sqrt{29}}{2} .
$$

Problem 16. Solve for x :

$$
\frac{x}{3}+\frac{3}{x}=\frac{17}{4} .
$$

Solution. The denominators involved are 3,4 and x. So the common denominator is $12 x$. Multiplying both sides of the equation by $12 x$, we get

$$
12 x\left(\frac{x}{3}+\frac{3}{x}\right)=12 x \times \frac{17}{4} .
$$

Distributing and canceling terms, we get

$$
4 x^{2}+36=51 x
$$

This gives us a quadratic equation

$$
4 x^{2}-51 x+36=0
$$

We can factorize this as

$$
4 x^{2}-51 x+36=(4 x-3)(x-12)
$$

So we have

$$
(4 x-3)(x-12)=0
$$

Therefore, we get two solutions, i.e. $x=\frac{3}{4}$ and $x=12$.

Problem 17. Evaluate:

$$
\frac{7-i}{2+10 i}
$$

Solution. We have to multiply the numerator and denominator by the conjugate of $2+10 i$, i.e. $2-10 i$.

$$
\frac{7-i}{2+10 i}=\frac{7-i}{2+10 i} \times \frac{2-10 i}{2-10 i}=\frac{(7-i)(2-10 i)}{(2+10 i)(2-10 i)}
$$

We use FOIL on the numerator and the $(a-b)(a+b)=a^{2}-b^{2}$ identity on the denominator to get

$$
\frac{7-i}{2+10 i}=\frac{(7-i)(2-10 i)}{(2+10 i)(2-10 i)}=\frac{14-70 i-2 i+10 i^{2}}{4-100 i^{2}}
$$

Since $i^{2}=-1$, we get

$$
\frac{7-i}{2+10 i}=\frac{14-70 i-2 i+10 i^{2}}{4-100 i^{2}}=\frac{14-72 i-10}{4+100}=\frac{4-72 i}{104}
$$

Canceling a factor of 4 from the numerator and denominator, we get

$$
\frac{7-i}{2+10 i}=\frac{1-18 i}{26}=\frac{1}{26}-\frac{9}{13} i
$$

Problem 18. Solve for x :

$$
9-2(x-5)=x+20
$$

Solution. Distributing $2(x-5)$, we get

$$
9-(2 x-10)=x+20
$$

Removing the bracket, we get

$$
9-2 x+10=x+20
$$

i.e.

$$
19-2 x=x+20 .
$$

Adding $2 x$ to both sides gives us

$$
19=3 x+20
$$

Subtracting 20 from both sides, we get

$$
-1=3 x
$$

which gives us

$$
x=-\frac{1}{3} .
$$

Problem 19. Suppose that L denotes the line passing through the points $(-9,-3)$ and $(11,4)$. Find the slope of a line perpendicular to L.

Solution. This was done in lecture. Check the notes for Friday (12/8).

Problem 20. Solve for b :

$$
\frac{1}{b^{2}-7 b+10}+\frac{1}{b-2}=\frac{2}{b^{2}-7 b+10} .
$$

Solution. We first factorize $b^{2}-7 b+10$. We want to find two integers p, q such that $p+q=-7$ and $p . q=10$. An easy check gives us that $p=-2$ and $q=-5$. So we have

$$
b^{2}-7 b+10=(b-2)(b-5)
$$

Therefore, we rewrite our original equation as

$$
\frac{1}{(b-2)(b-5)}+\frac{1}{b-2}=\frac{2}{(b-2)(b-5)} .
$$

The denominators involved are $(b-2)(b-5)$ and $b-2$, and hence the common denominator is $(b-2)(b-5)$. Multiplying both sides of the equation with $(b-2)(b-5)$, we get

$$
(b-2)(b-5)\left(\frac{1}{(b-2)(b-5)}+\frac{1}{b-2}\right)=(b-2)(b-5)\left(\frac{2}{(b-2)(b-5)}\right)
$$

Distributing and canceling terms, we get

$$
1+b-5=2
$$

This gives us

$$
b=6 .
$$

