LECTURE 17

References:
1) Section 7.3 of Nagle, Saff and Snider’s textbook
2) Section 4-2 of Paul’s notes

In the last lecture, we saw two examples, one where £{ f} is defined for s > 0 and
one where £{f} is defined for s > 4. Now, the following question arises: Let o > 0.
Can we give some condition on f to ensure that its Laplace transform will be defined
for all s > a? We can, and we will see that today. This lecture will be a bit more
theoretical in nature in the beginning.

Definition 0.1. A function f : [0,00) — R is said to be of exponential order « if
there exists positive constants M, T such that

|f(z)] < Me**
for all z > T.

In more informal terms, f is said to be of exponential order « if for x large enough,
f is bounded above by a constant multiple of e**.

Example 0.2. The function
2 #H0<z<h
flz)=<20 if5<z<10
e if10 <z
from last lecture clearly satisfies |f(x)| = €' < €' for x > 10 and so with M = 1

and T' = 10, we can see that f is of exponential order 4, and we saw that the Laplace
transform exists for s > 4.

Example 0.3. The function

e fo<z<15
flx)=qe% if5<z<100
e if 100 < x

is of exponential order 8, and the function

e’ ifo<z<15
g(z) =4 e if 5 <z <100
100e% if 100 < x
is of exponential order 6.

In general, we have the following result:

Theorem 0.4. If f : [0,00) — R is a piecewise continuous function of exponential

order o, then L{f}(s) is defined for all s > .
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Anyway, we shouldn’t get lost in all this technicality, and redo a calculation from
the last lecture: Suppose that f is a piecewise continuous function of exponential
order . Then, using integration by parts, we get

/oN e fl(x)de = e f () N . /ON(—s)e“f(m)dm

xr=

=e*Nf(N) — f(0) + S/O e "y (z)dx

Since s > a and |[f(N)] < Me*" for N large enough, we have |e " f(N)| <
Me=6=9N and since e~ ¢~ — 0 as N — oo, this shows that

lim e *Nf(N)=0
So we get that £{f'} also exists for s > « and
L{f'}(s) = s£{f}(s) — f(0)

In the previous lecture, we just gave a vague explanation as to why we can ignore
the e *N f(N) but now we have proof that it becomes 0 when f satisfies some nice
conditions (exponential order «).

To conclude, we should just keep in mind that all the f that we see in this course
will be nice enough to have a Laplace transform for s > « for some «, and not get
bogged down by all these technical details.

Now, the question is: What happens for higher derivatives of f7 Let us first tr
g y
f”. Using the above with f’, we have

L{f"Hs) = sL{f'}s) — f'(0)
and again replacing £{f’} with the above expression, we get
LLf"YH(s) = s(sL{f}(s) = £(0)) = f(0) = s>L{f}(s) — s£(0) — f'(0)
Example 0.5. Let us see another example. Let f(x) = sinbz, where b is any real

number. Then f' = bcosbr and f” = —b?sinbz = —b*f. So we have —0*L{f} =
£{f"}. By the above property, we have

—V"L{f} = L{f"} = "L{f} = sf(0) = f'(0) = S"L{f} - b

Solving this, we get
b
£ = —
{7} s2 + b?

This method to find £{sinbz} does not involve calculations involving integrals.

Example 0.6. We know that the Laplace transform of sinbx is ﬁ We can use
this to calculate the Laplace transform of cosbx. If f = sinbx, then f' = bcosbx
(both are of exponential order 0), and so, for s > 0,

sb

bL{cosbr}(s) = sL{sinbr}(s) —sin0 = 2 4 |2
Dividing by b, we get
s

b£L{cosbr}(s) = s
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Similarly, we can extend this result to higher derivatives (try to prove it yourself):

LY (s) = " L{fH(s) = 8" (0) = s"2f(0) — .. = f7D(0)

We now see another property. Let f be a function whose Laplace transform exists
for s > a. Let us put F(s) = £{f}(s). Let a be a real number. Then we calculate
the Laplace transform of e** f(x) :

2{e ) o) = [ e s = [0 @)de = 2{1H(s-a) = Fls—a)
0 0
and this exists when s —a > «, i.e. s > a + «. Let us see an example:

Example 0.7. Find £{e?® sin3x}(s). We have, for s > 0,
3
s24+9
Then using the property above with a = 2, we have, for s > 2,
3
(s—2)2+9

F(s) = £{sin3z}(s) =

L{e* sin3r}(s) = F(s — 2) =



