LECTURE 17

References:

1) Section 7.3 of Nagle, Saff and Snider's textbook
2) Section 4-2 of Paul's notes

In the last lecture, we saw two examples, one where $\mathscr{L}\{f\}$ is defined for $s>0$ and one where $\mathscr{L}\{f\}$ is defined for $s>4$. Now, the following question arises: Let $\alpha>0$. Can we give some condition on f to ensure that its Laplace transform will be defined for all $s>\alpha$? We can, and we will see that today. This lecture will be a bit more theoretical in nature in the beginning.

Definition 0.1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is said to be of exponential order α if there exists positive constants M, T such that

$$
|f(x)| \leq M e^{\alpha x}
$$

for all $x \geq T$.
In more informal terms, f is said to be of exponential order α if for x large enough, f is bounded above by a constant multiple of $e^{\alpha x}$.
Example 0.2. The function

$$
f(x)= \begin{cases}2 & \text { if } 0 \leq x<5 \\ 0 & \text { if } 5 \leq x<10 \\ e^{4 x} & \text { if } 10 \leq x\end{cases}
$$

from last lecture clearly satisfies $|f(x)|=e^{4 x} \leq e^{4 x}$ for $x>10$ and so with $M=1$ and $T=10$, we can see that f is of exponential order 4 , and we saw that the Laplace transform exists for $s>4$.

Example 0.3. The function

$$
f(x)= \begin{cases}e^{2 x} & \text { if } 0 \leq x<15 \\ e^{6 x} & \text { if } 5 \leq x<100 \\ e^{8 x} & \text { if } 100 \leq x\end{cases}
$$

is of exponential order 8 , and the function

$$
g(x)= \begin{cases}e^{2 x} & \text { if } 0 \leq x<15 \\ e^{8 x} & \text { if } 5 \leq x<100 \\ 100 e^{6 x} & \text { if } 100 \leq x\end{cases}
$$

is of exponential order 6 .
In general, we have the following result:
Theorem 0.4. If $f:[0, \infty) \rightarrow \mathbb{R}$ is a piecewise continuous function of exponential order α, then $\mathscr{L}\{f\}(s)$ is defined for all $s>\alpha$.

Anyway, we shouldn't get lost in all this technicality, and redo a calculation from the last lecture: Suppose that f is a piecewise continuous function of exponential order α. Then, using integration by parts, we get

$$
\begin{gathered}
\int_{0}^{N} e^{-s x} f^{\prime}(x) d x=\left.e^{-s x} f(x)\right|_{x=0} ^{N}-\int_{0}^{N}(-s) e^{-s x} f(x) d x \\
=e^{-s N} f(N)-f(0)+s \int_{0}^{N} e^{-s x} y(x) d x
\end{gathered}
$$

Since $s>\alpha$ and $|f(N)| \leq M e^{\alpha N}$ for N large enough, we have $\left|e^{-s N} f(N)\right| \leq$ $M e^{-(s-\alpha) N}$ and since $e^{-(s-\alpha) N} \rightarrow 0$ as $N \rightarrow \infty$, this shows that

$$
\lim _{N \rightarrow \infty} e^{-s N} f(N)=0
$$

So we get that $\mathscr{L}\left\{f^{\prime}\right\}$ also exists for $s>\alpha$ and

$$
\mathscr{L}\left\{f^{\prime}\right\}(s)=s \mathscr{L}\{f\}(s)-f(0)
$$

In the previous lecture, we just gave a vague explanation as to why we can ignore the $e^{-s N} f(N)$ but now we have proof that it becomes 0 when f satisfies some nice conditions (exponential order α).
To conclude, we should just keep in mind that all the f that we see in this course will be nice enough to have a Laplace transform for $s>\alpha$ for some α, and not get bogged down by all these technical details.

Now, the question is: What happens for higher derivatives of f ? Let us first try $f^{\prime \prime}$. Using the above with f^{\prime}, we have

$$
\mathscr{L}\left\{f^{\prime \prime}\right\}(s)=s \mathscr{L}\left\{f^{\prime}\right\}(s)-f^{\prime}(0)
$$

and again replacing $\mathscr{L}\left\{f^{\prime}\right\}$ with the above expression, we get

$$
\mathscr{L}\left\{f^{\prime \prime}\right\}(s)=s(s \mathscr{L}\{f\}(s)-f(0))-f^{\prime}(0)=s^{2} \mathscr{L}\{f\}(s)-s f(0)-f^{\prime}(0)
$$

Example 0.5. Let us see another example. Let $f(x)=\sin b x$, where b is any real number. Then $f^{\prime}=b \cos b x$ and $f^{\prime \prime}=-b^{2} \sin b x=-b^{2} f$. So we have $-b^{2} \mathscr{L}\{f\}=$ $\mathscr{L}\left\{f^{\prime \prime}\right\}$. By the above property, we have

$$
-b^{2} \mathscr{L}\{f\}=\mathscr{L}\left\{f^{\prime \prime}\right\}=s^{2} \mathscr{L}\{f\}-s f(0)-f^{\prime}(0)=s^{2} \mathscr{L}\{f\}-b
$$

Solving this, we get

$$
\mathscr{L}\{f\}=\frac{b}{s^{2}+b^{2}}
$$

This method to find $\mathscr{L}\{\sin b x\}$ does not involve calculations involving integrals.

Example 0.6. We know that the Laplace transform of $\sin b x$ is $\frac{b}{s^{2}+b^{2}}$. We can use this to calculate the Laplace transform of $\cos b x$. If $f=\sin b x$, then $f^{\prime}=b \cos b x$ (both are of exponential order 0), and so, for $s>0$,

$$
b \mathscr{L}\{\cos b x\}(s)=s \mathscr{L}\{\sin b x\}(s)-\sin 0=\frac{s b}{s^{2}+b^{2}}
$$

Dividing by b, we get

$$
b \mathscr{L}\{\cos b x\}(s)=\frac{s}{s^{2}+b^{2}}
$$

Similarly, we can extend this result to higher derivatives (try to prove it yourself):

$$
\mathscr{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathscr{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)
$$

We now see another property. Let f be a function whose Laplace transform exists for $s>\alpha$. Let us put $F(s)=\mathscr{L}\{f\}(s)$. Let a be a real number. Then we calculate the Laplace transform of $e^{a x} f(x)$:
$\mathscr{L}\left\{e^{a x} f(x)\right\}(s)=\int_{0}^{\infty} e^{-s x} e^{a x} f(x) d x=\int_{0}^{\infty} e^{-(s-a) x} f(x) d x=\mathscr{L}\{f\}(s-a)=F(s-a)$ and this exists when $s-a>\alpha$, i.e. $s>a+\alpha$. Let us see an example:
Example 0.7. Find $\mathscr{L}\left\{e^{2 x} \sin 3 x\right\}(s)$. We have, for $s>0$,

$$
F(s)=\mathscr{L}\{\sin 3 x\}(s)=\frac{3}{s^{2}+9}
$$

Then using the property above with $a=2$, we have, for $s>2$,

$$
\mathscr{L}\left\{e^{2 x} \sin 3 x\right\}(s)=F(s-2)=\frac{3}{(s-2)^{2}+9}
$$

