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Abstract. Let xn×n be a matrix of n × n variables, and let C[xn×n] be the polynomial ring on
these variables. Let Sn,r be the group of colored permutations, consisting of n×n complex matrices
with exactly one nonzero entry in each row and column, and each nonzero entry is a r-th root of
unity. We associate an ideal ISn,r ⊆ C[xn×n] with the group Sn,r, and use orbit harmonics to give
an ideal-theoretic extension of the Viennot shadow line construction to Sn,r. This extension gives a
standard monomial basis of C[xn×n]/ISn,r , and gives an analogous definition of “longest increasing
subsequence” to the group Sn,r. We examine the extension of Chen’s conjecture to this analogy.
We also study the structure of C[xn×n]/ISn,r as a graded Sn,r ×Sn,r module, which then induces
a graded Sn,r ×Sn,r module structure on the C-algebra C[Sn,r].

1. Introduction

Longest increasing subsequences in the symmetric group Sn have been a well-studied object
in combinatorics. In this paper, we will use orbit harmonics and ideal-theoretical extensions of
Viennot’s shadow line construction to give an analogous definition of longest increasing subsequence
for the colored permutation group Sn,r.

Let x be a finite set of variables, and let C be the field of complex numbers. Let C[x] be the
polynomial ring with variable set x. If I is a graded ideal in C[x], the Hilbert series of C[x]/I is

(1.1) Hilb(C[x]/I; q) :=
∑
d≥0

dimC(C[x]/I)d · qd.

Let Sn be the symmetric group on [n] = {1, 2, . . . , n}. Given w ∈ Sn, we write w in its one line
notation w = [w(1), w(2), . . . , w(n)]. An increasing subsequence of length l of w is a sequence of
integers 1 ≤ i1 < i2 < · · · < il ≤ n satisfying w(i1) < w(i2) < · · · < w(il). We write

(1.2) lis(w) = max{k : w has an increasing subsequence of length k}
for the length of the longest increasing subsequence of w. Let an,k denote the number of permuta-
tions w ∈ Sn with lis(w) = k. For any positive integer n, Chen [2] conjectured that the sequence
(an,1, an,2, . . . , an,n) is log-concave, that is,

(1.3) an,i · an,i+2 ≤ a2n,i+1 for 1 ≤ i ≤ n− 2.

In [4], Rhoades studied the following ideal:

Definition 1.1. Let xn×n = [xi,j ]1≤i,j≤n be an n × n matrix of variables, and let C[xn×n] be the
polynomial ring in these variables. The ideal In is the ideal generated by

• the square x2i,j for 1 ≤ i, j ≤ n of any variable;

• the product xi,j · xi,j′ for 1 ≤ i ≤ n and 1 ≤ j < j′ ≤ n of two distinct variables in the same
row;

• the product xi,j · xi′,j for 1 ≤ i < i′ ≤ n and 1 ≤ j ≤ n of two distinct variables in the same
column;

• the sum
∑n

j=1 xi,j for 1 ≤ i ≤ n of variables in the same row;
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• the sum
∑n

i=1 xi,j for 1 ≤ j ≤ n of variables in the same column.

As all the generators of In are homogeneous, C[xn×n]/In is a graded C-algebra. Let Sn × Sn

act on xn×n by permuting rows and columns. This induces an action on C[xn×n] which stabilizes
In, as the collection of generators of In is stable under this action. Thus, C[xn×n] has the structure
of a graded Sn ×Sn module.

Rhoades proved [4] that C[xn×n]/In has Hilbert series

(1.4) Hilb(C[xn×n/In; q) = an,n + an,n−1 · q + an,n−2 · q2 + · · ·+ an,1 · qn−1

with coefficients of qk being the number of permutations w in Sn with lis(w) = n − k. Using
Viennot’s shadow line construction, Rhoades attached a square-free monomial s(w) for each w ∈ Sn,
with the property that

(1.5) deg(s(w)) = n− lis(w),

and showed that (Theorem 3.7)

(1.6) {s(w) : w ∈ Sn}

is a spanning set of the vector space C[xn×n]/In, and proved that this is actually the standard
monomial basis with respect to the Toeplitz order (see Definition 3.5). Rhoades also studied the
graded and ungraded module structure of C[xn×n]/In, giving the isomorphism

(1.7) (C[xn×n/In)k ∼=
⊕
λ⊢n

λ1 =n−k

EndC(V
λ)

and gave insights on the Novak-Rhoades conjecture [3], which is a strengthening of Chen’s conjec-
ture.

We generalize Rhoades’s work to colored permutation groups Sn,r, which is the group of n× n
matrices with exactly one nonzero entry in each row or column, and all nonzero entries are r-th
roots of unity. We specifically emphasize on the case r = 2, where Sn,2 is denoted as Bn, the group
of signed permutations. In Section 2.4, we will give more detailed descriptions of the properties of
these groups. The following ideal is our object of study:

Definition 1.2. ISn,r is the ideal in C[xn×n] with generators:

• the (r + 1)-th power xr+1
i,j for 1 ≤ i, j ≤ n of any variable;

• the product xi,j · xi,j′ for 1 ≤ i ≤ n and 1 ≤ j < j′ ≤ n of two distinct variables in the same
row;

• the product xi,j · xi′,j for 1 ≤ i < i′ ≤ n and 1 ≤ j ≤ n of two distinct variables in the same
column;

• the sum
∑n

j=1 x
r
i,j for 1 ≤ i ≤ n of r-th powers of variables in the same row;

• the sum
∑n

i=1 x
r
i,j for 1 ≤ j ≤ n of r-th powers of variables in the same column.

In particular, when r = 2, we write ISn,2 = IBn.

Again, ISn,r is a homogeneous ideal, so C[xn×n]/ISn,r is a graded C-algebra. Let GLn(C) ×
GLn(C) act on C[xn×n], where the action is induced by the following action on xn×n: let A,A′ ∈
GLn(C),

(1.8) (A,A′) · xn×n = Axn×nA
′−1.

Then, treating Sn,r as a subgroup of GLn(C), we obtain an action of Sn,r ×Sn,r on C[xn×n]. The
ideal ISn,r is stable under this action, so C[xn×n]/ISn,r has the structure of a graded Sn,r ×Sn,r

module. Using representation theoretical tools including the Branching Rule (Equation (2.12)) and
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the Generalized Murnaghan-Nakayama Rule (Theorem 2.3), we give the graded module structure
(Theorem 4.3)

(1.9) (C[xn×n]/ISn,r)k
∼=

⊕
λ⊢rn

rλ0
1+

∑r−1
i=1 i|λi|=rn−k

V λ ⊗ V λ′
,

where V λ is the irreducible module ofSn,r labelled by the r-tuple of partitions λ = (λ0, λ1, . . . , λr−1)

such that
∑r

i=0 |λi| = n, and V λ′
is the dual module of V λ. See Section 2 for details of relevant

notations.
Focusing on the case of Bn, bn,k (first defined in Definition 3.12), which is analogous to an,k,

counts the number of signed permutations w in Bn with a property analogous to “having a longest
increasing subsequence of length k”. For n ≥ 2, the Hilbert series of C[xn×n]/IBn is

(1.10) Hilb(C[xn×n/IBn ; q) = bn,2n + bn,2n−1 · q + bn,2n−2 · q2 + · · ·+ bn,2 · q2n−2.

By testing n up tp 40, we observe that the sequence {bn,k}2≤k≤2n is “almost” log-concave: log-
concavity holds for n ≤ 8; and for larger n’s, log-concavity breaks for some small k’s and then holds
for the remaining majority of the sequence.

We also extend this notion of “having longest increasing subsequence of length k” to elements
of Sn,r, and we define (Definition 3.21) cn,r,k that counts number of elements in Sn,r with this
property. We proved (Theorem 3.23) that the Hilbert series of C[xn×n]/ISn,r is

(1.11) Hilb(C[xn×n]/ISn,r ; q) =
rn∑
k=1

cn,r,kq
rn−k,

and also give the conjecture (Conjecture 5.1) that the sequence {cn,r,k} is uni-modal, that is, there
exists k such that

(1.12) cn,r,d ≤ cn,r,d+1 for d < k and cn,r,d ≥ cn,r,d+1 for d ≥ k.

The rest of the paper is structured as follows. In Section 2, we introduce the background material
on Gröbner theory, orbit harmonics, group structure of Sn,r, the Schensted correspondence, and
representation theory. In Section 3, we generalize Viennot’s shadow line construction to the group
Sn,r, and use this construction to find a standard monomial basis of C[xn×n]/ISn,r . In Section 4
we give the graded Sn,r ×Sn,r module structure of C[xn×n]/ISn,r . And in Section 5, we examine
the generalization of Chen’s conjecture, and close with possible directions of future research.

2. Background

2.1. Gröbner Theory. Let xN = (x1, x2, . . . , xN ) be a finite list of variables, and let C[xN ] be
the polynomial ring over these variables. A total order < on the set of monomials in C[xN ] is called
a monomial order if

• 1 ≤ m for any monomial m,
• for any monomials m1,m2,m3, we have that m1 < m2 implies m1m3 < m2m3.

Given any polynomial f in C[xN ], the initial monomial in<f of f is defined to be the largest
monomial term in f with respect to <. And given I an ideal in C[xN ], the initial ideal of I is
defined to be the ideal generated by the initial monomials of all polynomials in I, i.e.

(2.1) in<I = ⟨in<f : f ∈ I⟩
A monomial in C[xn×n] which is not an element of in<I is called a standard monomial. It is

known that

(2.2) {m+ I : m is a standard monomial}
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forms a basis of the vector space C[xN ]/I, and this is called the standard monomial basis.

2.2. Orbit Harmonics. Given Z a finite collection of points in CN , the vanishing ideal I(Z) ⊆
C[xN ] is the collection of all polynomials f satisfying f(x) = 0 for all x in Z. It is known that we
have the isomorphism of vector spaces

(2.3) C[xN ]/I(Z) ∼= C[Z],

where we see C[Z] as the vector space of functions from Z to C. Note that the vector space
C[xN ]/I(Z) is usually ungraded.

Given a polynomial f in C[xN ], we can write f = f0 + f1 + · · ·+ fd where fi is homogeneous of
degree i and fd is nonzero. Denote τ(f) as the highest degree homogeneous part of f , i.e. τ(f) = fd.
Given an ideal I, the associated graded ideal grI is defined to be

(2.4) grI = ⟨τ(f) : f ∈ I⟩.
The isomorphism (2.3) of ungraded vector spaces above can be further extended to

(2.5) C[xN ]/I(Z) ∼= C[Z] ∼= C[xN ]/grI(Z),

and since τ(f) is homogeneous for all f , C[xN ]/grI has an additional structure as a graded vector
space.

2.3. The Schensted Correspondence. Let n be any positive integer. A partition λ of n is a
weakly decreasing sequence of positive integers λ = (λ1, λ2, . . . , λr) such that

∑r
i=1 λi = n. We use

the notation λ ⊢ n to indicate that λ is a partition of n.
A Young diagram of shape λ is a diagram of boxes with λi boxes in the i-th row. A standard

Young tableau of shape λ is a filling of {1, 2, . . . n} into the Young diagram of λ such that each
number appears exactly once, and that the entries are increasing across rows and down columns.
For example, given λ = (4, 2, 1) ⊢ 7, we give the Young diagram of λ and one standard Young
tableau of shape λ.

1 3 6 7

2 5

4

We write SYT(λ) to denote the collection of standard Young tableaux of shape λ. The Schensted
correspondence [6] is a bijection:

(2.6) Sn
∼−−−−→

⊔
λ⊢n

{(P,Q) : P,Q ∈ SYT(λ)},

that is, the Schensted correspondence associates to each w ∈ Sn an ordered pair (P,Q) of standard
Young tableaux of the same shape. The explicit bijection is usually given by an insertion algorithm,
and details of the it can be found in [5].

2.4. Signed and Colored Permutation Groups. Recall that the group Sn,r consists of all n×n
complex matrices with exactly one nonzero entry in each row and column, and each nonzero entry
is a r-th root of unity. We introduce a more combinatorial interpretation of the the group in this
section:

The r-colored permutation group Sn,r is defined to be the wreath product (Z/rZ) ≀ Sn. In
particular, when r = 2, the group is called the signed permutation group, and we denote the
group as Bn. An element w of Sn,r can be viewed as a pair (σ, κ), where σ is a permutation
in Sn, and κ : [n] → 0, 1, . . . , r − 1 is a coloring of elements in [n]. Writing [n]r for the set
{ij : i ∈ [n], j ∈ 0, 1, . . . , r − 1}, we can see w = (σ, κ) as a function [n]r → [n]r via the rule

(2.7) (w)(ij) = σ(i)κ(σ(i))+j ,
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where addition is modulo r. An example is when n = 5, r = 3,, w = (σ, κ) where σ = [4, 2, 5, 3, 1] =
(1435)(2), κ = (2, 1, 1, 2, 0), then we have w(10) = 42, w(20) = 21, w(30) = 50, w(40) = 32, w(50) =
12. In one-line notation, we denote w = [42, 21, 50, 32, 12], and we write the cycle notation of w as
(12, 42, 32, 50)(21). For a cycle in the cycle decomposition of w, we refer to the color of the cycle to
be the sum of colors of elements in it, reduced modulo r. For example, the color of (12, 42, 32, 50)
is 2 + 2 + 2 = 0 mod 3, and the color of (21) is 1.

Definition 2.1. Given integers n ≥ 0, r ≥ 1, a r-partition of n is a collection of r partitions
λ = (λ0, λ1, . . . , λr−1), such that

∑r−1
i=0 |λi| = n. We write λ ⊢r n for λ being a r-partition of n.

In particular, when r = 2, we call such r-partitions bipartitions.

Definition 2.2. The cycle type of an element w = (σ, κ) ∈ S(n, r) is the r-partition λ =
(λ0, λ1, . . . , λr−1), such that λi consists of lengths of cycles in w of color i.

Two elements in Sn,r are conjugates if and only if they have the same cycle type. Thus, the
conjugacy classes of Sn,r are labelled by r-partitions of n.

2.5. Representation Theory.

2.5.1. Sn Representations. Let Sn be the symmetric group. As the conjugacy classes of Sn are
labelled by partitions of n, there is a bijection between partitions of n and irreducible representations
of Sn over C. For λ ⊢ n, we denote V λ as the irreducible representation of Sn associated to λ.
The dimension of V λ is given by |SYT(λ)|, the number of standard Young tableau of shape λ.

2.5.2. Representations of Signed and Colored Permutations. Let λ = (λ0, λ2, . . . , λr−1) ⊢r n. A
standard Young tableau of shape λ is a bijection from [n] to the collection of boxes in the disjoint
union of Young diagrams of λ0, λ1, . . . ,λr−1, such that the entries in each diagram are increasing
across rows and down columns. Below is an example of a standard Young tableau for bipartition
((2, 1), (4, 2)) ⊢ 9.

1 5

7

2 4 8 9

3 6

Specht constructed [8] a bijection between the irreducible representations of Sn,r and r-partitions
of n, such that the dimension of the irreducible representation labelled by λ is the number of
standard Young tableaux of shape λ.

2.6. Branching Rule and Muranghan-Nakayama Rule. Let λ ⊢ n1 and µ ⊢ n2, with the
property that λi ≥ µi for all i, and let n = n1 − n2. The skew partition λ/µ has diagram obtained
by deleting the diagram of µ from the diagram of λ. For example, when λ = (4, 3, 2) ⊢ 9 and
µ = (2, 1) ⊢ 3, the skew partition λ/µ has diagram drawn below.

The Sn character χλ/µ is defined to be

(2.8) χλ/µ =
∑
|ν|=n

cλµ,νχ
ν

where the sum is over all partitions ν of n = n1 − n2 and cλµ,ν is the Littlewoord-Richardson
coefficient.

More generally, if λ = (λ0, λ1, . . . , λr−1) and µ = (µ0, µ1, . . . , µr−1) are r-partitions, such that
λi/µi are all well-defined skew partitions, the r-skew partition λ/µ is then

(2.9) λ/µ = (λ0/µ0, λ1/µ1, . . . , λr−1/µr−1).
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The size of λ/µ is |λ/µ| =
∑r−1

i=0 |λi| − |µi|.
Given a r-skew partition λ/µ such that |λ/µ| = n, we also have a character χλ/µ of Sn,r

associated to it. It is defined to be

(2.10) χλ/µ =
∑
ν⊢rn

cλµ,νχ
ν

where the sum is over all r-partitions ν = (ν1, ν2, . . . , νr) ⊢r n, and cλµ,ν is the generalized
Littlewood-Richardson coefficient, defined as

(2.11) cλµ,ν =
r∏

i=1

cλ
i

µi,νi ,

which is the product of Littlewood-Richardson coefficients.

2.6.1. Branching Rule. The characters labelled by r-skew partitions play an important role in the
branching rule of Sn,r representations. Let λ be a r-partition of Sn,r. For k < n, Sk,r ×Sn−k,r is
a natural subgroup of Sn,r, and we have the branching rule

(2.12) Res
Sn,r

Sk,r×Sn−k,r
χλ =

∑
µ

χµ × χλ/µ

where the sum is over all r-partitions µ ⊢r k such that λ/µ is well defined. The proof of the
branching rule can be found in [9].

2.6.2. Generalized Murnaghan-Nakayama Rule. We then introduce how to evaluate χλ/µ on Sn,r.
A ribbon is a skew partition with a rookwise connected diagram that does not contain a 2×2 square
as a sub-diagram, and the height of a ribbon is defined as the number of rows in it minus 1. The
diagram at the beginning of the section is an example of a ribbon of height 2. We say that a r-skew
partition λ/µ is a r-ribbon if only one of the skew partitions λi/µi is non-empty the non-empty
skew partition is a ribbon. If λ/µ is a r-ribbon with λj/µj non-empty, we say θ is the character of
λ/µ, where θ is the irreducible character of Z/rZ

(2.13) θ : Z/rZ → GL1(C) θ(z) = e2jπiz/r.

A decomposition of λ/µ into r-ribbons is a nested sequence of r-partitions

(2.14) µ = λ0 ⊆ λ1 ⊆ · · · ⊆ λl = λ

where λi/λi−1 is a r-ribbon for 1 ≤ i ≤ l. Let βi = |λi/λi−1| and β = (β1, β2, . . . , βl), we call
the decomposition in (2.14) a β-decomposition. With this definition, we introduce the generalzied
Murnaghan-Nakayama rule.

Theorem 2.3. Let w be an element of Sn,r, and suppose the cycles of x have length β1, β2, . . . , βl,

and the cycles have colors c1, c2, . . . , cl. Then, we have the evaluation of χλ/µ on w:

(2.15) χλ/µ(w) =
∑
λ′

l∏
i=1

(−1)hiθi(ci)

where the sum is over λ′ of β-decompositions of λ/µ, hi is the height of the r-ribbon in the i-th
step of the β-decomposition, and θi is the character of the r-ribbon in the i-th step as defined above.

The proof of Theorem 2.3 can also be found in [9].
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3. Standard Monomial Basis

3.1. Viennot Shadow. Given a permutation w ∈ Sn, we associate to it a diagram on a n × n
grid, labelling all points (i, w(i)) on the grid. Below is the diagram of w = [5, 1, 3, 6, 7, 2, 4] ∈ S7.

Viennot proved [10] that the diagram can be used to construct the pair of standard Young tableau
in the Schensted correspondence. Imagine a light source at the bottom left corner which shines
northeast. Each point (i, w(i)) in the diagram blocks light to its northeast. Consider the boundary
of the shadow region, and call it the first shadow line. The first shadow line for the permutation
w above is depicted in the leftmost diagram below. Then, remove all points on the first shadow
line and iterate the process, we get the second shadow line, the third shadow line, and so on. The
diagram below in the middle depicts all shadow lines of permutation w = [5, 1, 3, 6, 7, 2, 4].

Suppose the shadow lines of w are L1, L2, . . . , Lk, and we have w → (P (w), Q(w)) under the
Schensted correspondence, Viennot proved [10] the y coordinates of the infinite horizontal rays
of L1, L2, . . . Lk form the first row of P (w), and the x coordinates of the infinite vertical rays of
L1, L2, . . . Lk for the first row of Q(w). In the example above, we have the first row of P (w) is
1, 2, 4, 7; and the first row of Q(w) is 1, 3, 4, 5.

Definition 3.1. Given the permutation w ∈ Sn, the shadow set S(w) of w is the collection of
points that lie on the northeast corners of the shadow lines.

Remark 3.2. From the construction of shadow lines, we can see that the shadow set of w will
contain no two points in the same row or column, which will induce the following definition.

Definition 3.3. A subset R of points in the n× n diagram is a (non-attacking) rook placement if
it contains at most one point in each row or column.

As mentioned in the remark, the shadow set of any permutation is a rook placement. However,
not every rook placement is the shadow set of a permutation. An algorithm for identifying whether
a rook placement is the shadow set of a permutation is specified in [4].

After obtaining the shadow set of a permutation, we can iterate the shadow line construction on
S(w), as depicted in the diagram below on the left. Viennot proved [10] that the y coordinates of
the infinite horizontal rays of the new shadow lines correspond to the second row of P (w), and the
x coordinates of the the infinite vertical rays correspond to the second row of Q(w). Keep iterating
this process on the new shadow set, and we will get the third row of the pair of tableau. The
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process ends when the new shadow set is empty, and we would have the complete pair of tableaux
(P (w), Q(w)).

Given the connections between the shadow sets and the Schensted correspondence, the following
lemma is immediate:
Lemma 3.4. Let w ∈ Sn, the size of the shadow set is |S(w)| = n − lis(w), where lis(w) is the
length of the longest increasing subsequence of w, as defined in the introduction.

3.2. Shadow monomials. Given a collection of points S ∈ [n] × [n], we denote m(S) to be the
square-free monomial

∏
(i,j)∈S xi,j . Let In be defined as in the introduction. It is straightforward

that
{m(R) : R is a rook placement}

is a spanning set of C[xn×n]/In, since the product of any two variables in the same row or column
is in In.

Recall that given a set of variables y1, y2, . . . , yN , the lexicographical order is defined such that

y1 > y2 > · · · > yN and ya11 ya22 . . . yanN < yb11 yb22 . . . ybNN if and only if there exists j ≤ n such that
ai = bi for all i < j, and aj < bj . The standard monomial basis of C[xn×n]/In was computed in [4]
with respect to the monomial order defined as follows.

Definition 3.5. The Toeplitz order, denoted by <Top, is the lexicographical order with respect the
following ordering on the variables:

(3.1) x1,1 > x2,1 > x1,2 > x3,1 > x2,2 > x1,3 > · · · > xn,n−1 > xn−1,n > xn,n.

Rhoades defined the shadow monomials as follows:

Definition 3.6. Given a permutation w ∈ Sn, the shadow monomial of w, is the square-free
monomial

(3.2) s(w) = m(S(w)).

Rhoades then proved the theorem:
Theorem 3.7. [4] The monomials {s(w) : w ∈ Sn} span the vector space C[xn×n]/In.

Then, identifying Sn as the group of n × n permutation matrices (i.e. matrices such that all
entries are 0 and 1, with exactly one 1 in each row and column), we have that the vanishing ideal
of Sn is generated by

• x2i,j − xi,j for 1 ≤ i, j ≤ n;

• xi,j · xi,j′ for 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ n;
• xi,j · xi′,j for 1 ≤ j ≤ n, 1 ≤ i < i′ ≤ n;
• xi,1 + xi,2 + · · ·+ xi,n for 1 ≤ i ≤ n;
• x1,j + x2,j + · · ·+ xn,j for 1 ≤ j ≤ n.

A quick observation is that In ⊆ grI(Pn), since In is generated by the highest degree homogeneous
parts of the generators of IPn . The orbit harmonics (2.5) gives

(3.3) C[Sn] ∼= C[Pn] ∼= C[xn×n]/I(Pn) ∼= C[xn×n]/grI(Pn).
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Using a argument on the dimensions of the vector spaces, Rhoades showed [4] that the ideals In
and grI(Pn) are actually the same, and showed that

{s(w) : w ∈ Sn}

is the standard monomial basis of C[xn×n]/In with respect to the Toeplitz order. Thus, let an,k be
the number of permutations w in Sn with lis(w) = k, the Hilbert series of C[xn×n]/In is

(3.4) Hilb(C[xn×n]/In; q) = an,n + an,n−1 · q + an,n−2 · q2 + · · ·+ an,1 · qn−1.

3.3. Generalization to Signed Permutations.

3.3.1. Spanning Set. Given a signed permutation w = (σ, κ), we define its diagram on the n × n
grid. A point (i, j) on the grid is colored red if σ(i) = j and κ(j) = 1. It is colored blue if σ(i) = j
and κ(j) = 0. For example, when n = 6 and the one-line notation of w is [21, 50, 30, 10, 60, 41], the
diagram is below on the left:

We define the negative set of w as

(3.5) neg(w) = {(i, j) : σ(i) = j and κ(j) = 1 }.

or equivalently, it’s the collection of points colored red in the diagram. Similarly, we define the
positive set of w to be

(3.6) pos(w) = {(i, j) : σ(i) = j and κ(j) = 0}.

Remark 3.8. It is immediate result that neg(w) is a rook placement, and for any rook placement
R, there is w ∈ Bn such that neg(w) = R.

Then, we do the shadow line construction on the positive set of w, and obtain the shadow set
S(pos(w)), as depicted in the above on the right. The shadow lines are drawn in brown, and the
points in the shadow set are labelled in green. With this construction, we associate to the signed
permutation w a monomial

(3.7) s(w) = m(neg(w)) ·m(S(pos(w)))2.

In the example above, the monomial is x1,2x6,4x
2
3,5x

2
4,3, and we can introduce one of the main

results:

Theorem 3.9. The monomials {s(w) : w ∈ Bn} form a spanning set of C[xn×n]/IBn.

Before presenting the proof of Theorem 3.9, we first introduce the following lemma:

Lemma 3.10. The following set descends to a spanning set of C[xn×n]/IBn:

(3.8) {m(R1)m(R2)
2 : R1,R2 ∈ [n]× [n],R = R1 ∪R2 is a rook placement}.

Proof. Since the ideal IBn contains the cubes of all variables, as well as the products of any two
variables in the same row or column, the result is immediate. □

With the lemma, we present the proof of Theorem 3.9.
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Proof. (of Theorem 3.9) According to Lemma 3.10, we can fix a rook-placementR1. By Remark 3.8,
the set of w ∈ Bn with neg(w) = R1 is nonempty, so it suffices to show

(3.9) {m(R1)m(R2)
2 : R = R1 ∪R2 is a rook placement}

lies, modulo the ideal IBn , in the linear span of

(3.10) {s(w) : w ∈ Bn, neg(w) = R1}.
Let

(3.11) I = {i : there exists j such that (i, j) ∈ R1},
and

(3.12) J = {j : there exists i such that (i, j) ∈ R1}.
Fixing i ∈ [n] \ I, since the sum of squares of all variables in the same row is in Bn, we have

(3.13)
∑

j∈[n]\J

x2i,j ≡ −
∑
j∈J

x2i,j mod IBn .

Similarly, fixing j ∈ [n] \ J , we also have the equation

(3.14)
∑

i∈[n]\I

x2i,j ≡ −
∑
i∈I

x2i,j mod IBn .

Thus, since IBn contains the products of any two variables in the same row or column, we obtain
the following relations:

• m(R1) ·
∑

j∈[n]\J x
2
i,j ≡ 0 mod IBn

• m(R1) ·
∑

i∈[n]\I x
2
i,j ≡ 0 mod IBn

We also have the following relations directly from the definition of IBn :

• (x2i,j)
2 ≡ 0 mod IBn for i ∈ [n] \ I, j ∈ [n] \ J ;

• x2i,j · x2i,j′ ≡ 0 mod IBn for i ∈ [n] \ I, j, j′ ∈ [n] \ J ;
• x2i,j · x2i′,j ≡ 0 mod IBn for i, i′ ∈ [n] \ I, j ∈ [n] \ J .

Then, if we look at the (n − |R1|) × (n − |R1|) matrix of variables, where each variable is x2i,j
for i ∈ [n] \ I, j ∈ [n] \ J , the collection of relations are exactly the ones we used to define In in
Definition 1.1. For a signed permutation w with neg(w) = R1, if we delete the rows and columns
that R1 appears in, pos(w) will form a permutation in the remaining (n−|I|)× (n−|J |) grid. And
since

(3.15) {pos(w) : w ∈ Bn,neg(w) = R1}
ranges over all possible permutations in the grid labelled by ([n] \ I) × ([n] \ J), according to
Theorem 3.7, the proof is complete. □

3.3.2. Standard Monomial Basis. Viewing Bn as n× n matrices with exactly one nonzero entry in
each row or column, where the nonzero entries can be ±1, we have the vanishing ideal I(Bn) being
generated by

• x3i,j − xi,j for 1 ≤ i, j ≤ n;

• xi,j · xi,j′ for 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ n;
• xi,j · xi′,j for 1 ≤ j ≤ n, 1 ≤ i < i′ ≤ n;
• x2i,1 + x2i,2 + · · ·+ x2i,n for 1 ≤ i ≤ n;

• x21,j + x22,j + · · ·+ x2n,j for 1 ≤ j ≤ n.

Comparing these generators with the generators of IBn , it immediately follows that IBn ⊆ grI(Bn).
We further improve this containment to an equality.
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Theorem 3.11. We have the equality of ideals IBn = grI(Bn). Moreover, the collection of mono-
mials {s(w) : w ∈ Bn} descends to a basis of the vector space C[xn×n]/IBn. This is the standard
monomial basis with respect to the Toeplitz order.

Proof. By the results from orbit harmonics, we have the following sequence of isomorphisms

(3.16) C[Bn] ∼= C[xn×n]/I(Bn) ∼= C[xn×n]/grI(Bn).

With IBn ⊆ grI(Bn), we have

(3.17) dim(C[xn×n]/grI(Bn)) = 2nn! ≤ dim(C[xn×n]/IBn).

since there is a unique pair (neg(w),S(pos(w)) for each signed permutation w , the spanning set
{s(w) : w ∈ Bn} in Theorem 3.9 has size 2nn!. This forces the last inequality in (3.17) to be an
equality. This proves that {s(w) : w ∈ Bn} descends to a basis of C[xn×n]/IBn .

To prove that this is actually the standard monomial basis with respect to the Toeplitz order, let
R1 be any rook placement, and let f be a monomial with square-free part m(R1). We claim that
if f is in the standard monomial basis then f is of the form s(w) for some w ∈ Bn. To see this,
recall that f is in the standard monomial basis means that f is not the initial monomial of any
polynomial in IBn . Then, using the notation in the end of the proof of Theorem 3.9, the perfect
square part f/m(R1) of f must not be the initial monomial of any polynomial in In−|R1|, where

the variables are x2i,j with i ∈ [n] \ I and j ∈ [n] \ J . Then, according to the result on the standard

monomial basis of In by Rhoades in [4], the claim is proved, and since the vector space C[xn×n]/IBn

has dimension 2nn!, all monomials of the form s(w) for w ∈ Bn must be in the standard monomial
basis. □

With the following two definitions, we will be able to find the Hilbert series of C[xn×n]/IBn .

Definition 3.12. Given w ∈ Bn, we define lis(pos(w)) to be the the size of the largest subset L of
pos(w), such that given (i, j) and (i′, j′) in L, i < i′ implies j < j′.

Example 3.13. Let w ∈ B7 with one-line notation w = [30, 11, 60, 40, 70, 21, 51], we have pos(w) =
{(1, 3), (3, 6), (4, 4), (5, 7)}, and lis(pos(w)) = 3.
Definition 3.14. For any pair of integers n, k, we define

(3.18) bn,k = |{w ∈ Bn : 2lis(pos(w)) + |neg(w)| = k}|

From the definition, it is immediate that bn,1 = 0 for n ≥ 2, as |neg(w)| ≥ 2 or lis(pos(w)) ≥ 1.
Then, we have the following corollary.
Corollary 3.15. We have the Hilbert series of C[xn×n]/IBn:

(3.19) Hilb(C[xn×n]/IBn ; q) = bn,2n + bn,2n−1 · q + · · ·+ bn,1 · q2n−1.

Proof. Follows directly from Theorem 3.11. □

Example 3.16. When n = 3, the Hilbert series of C[xn×n]/IB3 is

(3.20) Hilb(C[xn×n]/IB3 ; q) = 1 + 9q + 22q2 + 9q3 + q4.

3.4. Generalization to Sn,r. Given a r-colored permutation w = (σ, κ), we also draw it on the
n × n grid. A point (i, j) is labelled in color cl if σ(i) = j and κ(j) = l, where l ranges over
0, 1, . . . , r−1. We define the sets Cl(w) to be the collection of points colored in cl. Then, we do the
shadow set construction on the set C0(w) and obtain the shadow set S(C0(w)), and we associate a
monomial s(w) to w, defined as

(3.21) s(w) = m(C1(w)) ·m(C2(w))
2 · · · · ·m(Cr−1(w))

r−1 ·m(S(C0(w)))
r.

With this construction, we give the following theorem:

Theorem 3.17. The monomials {s(w) : w ∈ Sn,r} descends to a spanning set of C[xn×n]/ISn,r .
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The proof of Theorem 3.17 is similar to Theorem 3.9, and we also need the following lemma
which is similar to Lemma 3.10.

Lemma 3.18. The following set of monomials descends to a spanning set of C[xn×n]/ISn,r :

(3.22)

{
r∏

l=1

m(Rl)
l : Rl ⊂ [n]× [n],R =

r⋃
l=1

Rl is a rook placement

}
Proof. Since the ideal ISn,r contains the r + 1-th power of all variables, as well as the products of
any two variables in the same row or column, the result is immediate. □

With Lemma 3.18, we give the proof of Theorem 3.17.

Proof. (of Theorem 3.17) According to Lemma 3.18, we can fix a collection of rook placements
R1,R2, . . . ,Rr−1, such that

(3.23)

r−1⋃
l=1

Rl

is also a rook placement. Let f be the monomial

(3.24) f =

r−1∏
l=1

m(Rl)
l,

it suffices to show

(3.25) {f ·m(Rr)
r :

r⋃
l=1

Rl is a rook placement}

lies, modulo ISn,r , in the linear span of

(3.26) {s(w) : w ∈ Sn,r, Cl(w) = Rl for 1 ≤ l ≤ r − 1}.
Let

(3.27) I = {i : there exists j, l such that (i, j) ∈ Rl},
and

(3.28) J = {j : there exists i, l such that (i, j) ∈ Rl}.
Note that we have

(3.29) |I| = |J | = |
r−1⋃
l=1

Rl|.

Fixing i ∈ [n] \ I, since the sum of r-th powers of all variables in the same row is in ISn,r , we have

(3.30)
∑

j∈[n]\J

xri,j ≡ −
∑
j∈J

xri,j mod ISn,r .

Similarly, fixing j ∈ [n] \ J , we also have the equation

(3.31)
∑

i∈[n]\I

xri,j ≡ −
∑
i∈I

xri,j mod IBn .

Thus, since ISn,r contains the products of any two variables in the same row or column, we obtain
the following relations:

• f ·
∑

j∈[n]\J x
r
i,j ≡ 0 mod ISn,r ;

• f ·
∑

i∈[n]\I x
r
i,j ≡ 0 mod ISn,r .

We also have the following relations directly from the definition of ISn,r :
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• (xri,j)
r ≡ 0 mod ISn,r for i ∈ [n] \ I, j ∈ [n] \ J ;

• xri,j · xri,j′ ≡ 0 mod ISn,r for i ∈ [n] \ I, j, j′ ∈ [n] \ J ;
• xri,j · xri′,j ≡ 0 mod ISn,r for i, i′ ∈ [n] \ I, j ∈ [n] \ J .

If we look at the (n−|I|)×(n−|J |) matrix of variables, where each variable is xri,j for i ∈ [n]\I, j ∈
[n] \ J , the collection of relations are exactly the ones we used to define In in Definition 1.1. For a
colored permutation w with Cl(w) = Rl for 1 ≤ l ≤ r − 1, if we delete the rows and columns with
labels I and J respectively, C0(w) will form a permutation in the remaining (n − |I|) × (n − |J |)
grid. And since

(3.32) {C0(w) : w ∈ Bn;Cl(w) = Rl}
ranges over all possible permutations in the grid labelled by ([n] \ I) × ([n] \ J), according to
Theorem 3.7, the proof is complete. □

Viewing Sn,r as n × n matrices with exactly one nonzero entry in each row and column, and
every nonzero entry is a r-th root of unity, we have that the vanishing ideal I(Sn,r) being generated
by

• xr+1
i,j − xi,j for 1 ≤ i, j ≤ n;

• xi,j · xi,j′ for 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ n;
• xi,j · xi′,j for 1 ≤ j ≤ n, 1 ≤ i < i′ ≤ n;
• xri,1 + xri,2 + · · ·+ xri,n for 1 ≤ i ≤ n;
• xr1,j + xr2,j + · · ·+ xrn,j for 1 ≤ j ≤ n.

Thus, we have a theorem that is an analogy to Theorem 3.11.

Theorem 3.19. We have the equality of ideals ISn,r = grI(Sn,r). Moreover, the collection of
monomials {s(w) : w ∈ Sn,r} descends to a basis of the vector space C[xn×n]/ISn,r . This is the
standard monomial basis with respect to the Toeplitz order.

Proof. By the results from orbit harmonics, we have the following sequence of isomorphisms

(3.33) C[Sn,r] ∼= C[xn×n]/I(Sn,r) ∼= C[xn×n]/grI(Sn,r).

With ISn,r ⊆ grI(Sn,r), we have

(3.34) dim(C[xn×n]/grI(Sn,r)) = rnn! ≤ dim(C[xn×n]/ISn,r).

since there is a unique tuple (C1(w), . . . Cr−1(w),S(Cr(w)) for each colored permutation w, the
spanning set {s(w) : w ∈ Sn,r} in Theorem 3.17 has size rnn!. This forces the last inequality
in (3.34) to be an equality. This proves that {s(w) : w ∈ Sn,r} descends to a basis of C[xn×n]/ISn,r .
The proof that this is actually the standard monomial basis with respect to the Toeplitz order is
very similar to the proof of Theorem 3.11. □

We also generalize the notion of longest increasing subsequence to the colored permutation group.
We first give the following two definitions:

Definition 3.20. Given w ∈ Sn,r, we define lis(C0(w)) to be the size of the largest subset L of
C0(w), such that given (i, j) and (i′, j′) in w, i < i′ implies j < j′.

Definition 3.21. For integers n, r, k, we define

(3.35) cn,r,k =

∣∣∣∣∣
{
w ∈ Sn,r : r · lis(C0(w)) +

r−1∑
i=1

i · |Ci(w)| = k

}∣∣∣∣∣
Example 3.22. Let n = 6, r = 4, and w = [42, 10, 52, 63, 21, 30]. We have C0(w) = {(2, 1), (5, 3)},
so lis(C0(w)) = 2, and we have

(3.36) r · lis(C0(w)) + |C1(w)|+ 2|C1(w)|+ 3|C3(w)| = 4× 2 + 1 + 2× 2 + 3× 1 = 16,
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so w would contribute to c6,4,16.

With these two definitions, we give the Hilbert series of C[xn×n]/ISn,r :

Theorem 3.23. The Hilbert series of C[xn×n]/ISn,r is

(3.37) Hilb(C[xn×n]/ISn,r ; q) =
rn∑
k=1

cn,r,kq
rn−k

Proof. The result is immediate from the proof of Theorem 3.17 and Theorem 3.19. □

4. Module Structure

As mentioned in the Introduction, treating Sn,r as the group of n×n matrices with exactly one
nonzero entry in each row and column, we can let Sn,r×Sn,r act on C[xn×n], induced by its action
on the matrix of variables

(4.1) (A,A′) · xn×n = Axn×nA
′−1.

Since the collection of generators of ISn,r are stable under this action, we have that C[xn×n]/ISn,r

is a Sn,r ×Sn,r module. By Theorem 3.19, we have an isomorphism and an equality of ideals

(4.2) C[Sn,r] ∼= C[xn×n]/grI(Sn,r) = C[xn×n]/ISn,r ,

and since C[Sn,r] is semi-simple, (4.2) upgrades to an isomorphism and an equality of ungraded
Sn,r ×Sn,r modules.

To investigate the graded structure of C[xn×n]/ISn,r , we first introduce a lemma, which is a
crucial part in orbit harmonics. Let x be a collection of variables and C[x] be the polynomial ring.

Given a graded C-algebra A =
⊕

i≥0Ai, let A≤d =
⊕d

i=0Ai be the direct sum of degree less than
or equal to d parts of it.
Lemma 4.1. Let I be an ideal in C[x] and grI be the associated graded ideal of it. Let B ⊆ C[x]≤d

be a collection of homogeneous polynomials with degree at most d. If B descends to a basis of the
vector space (C[x]/grI)≤d, then B descends to a basis of the vector space C[x]≤d/(I ∩ C[x]≤d).

Proof. The proof can be found in [4], Lemma 3.15. □

4.1. Graded Module Structure of C[xn×n]/IBn. We first work on the case when r = 2. In

this case, the irreducible Bn ×Bn modules are of form V (λ,µ) ⊗ V (λ̃,µ̃), where (λ, µ) and (λ̃, µ̃) are
bipartitions of n. Equation (4.2) now reads:

(4.3) C[Bn]/ ∼= C[xn×n]grI(Bn) = C[xn×n]/IBn .

We give the main theorem of this section:

Theorem 4.2. For any k ≥ 0, the degree k piece (C[xn×n]/IBn)k has graded Bn ×Bn structure

(4.4) (C[xn×n]/IBn)k
∼=

⊕
(λ,µ)⊢2n

2λ1+|µ|=2n−k

V (λ,µ) ⊗ V (λ,µ)

Proof. If W be any Bn ×Bn module, EndC(W ) is also a Bn ×Bn module with the action

(4.5) ((u, v) · φ)(w) = u · φ(v−1 · w) for all u, v ∈ Bn, φ ∈ EndC(W ), w ∈ W.

We also have that EndC(W ) is isomorphic to W ⊗ W ∗ as Bn × Bn modules, where W ∗ is the
dual module of W , via the isomorphism

(4.6) W ⊗W ∗ → EndC(W ), u⊗ x 7→ φ, with φ(w) = x(w) · u,
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where u,w ∈ W and x ∈ W ∗. Then, since all matrix representations of Bn can be realized over the
real numbers, we have that W is isomorphic to W ∗. So we have isomorphism of Bn ×Bn modules

(4.7) EndC(W ) ∼= W ⊗W.

Since the algebra C[BN ] is semi-simple, the Artin-Wedderburn Theorem gives the isomorphism
of C-algebras

(4.8) Ψ : C[Bn]
∼−−→

⊕
(λ,µ)⊢2n

EndC(V
(λ,µ)),

where the (λ, µ)-piece of Ψ(a) maps v to a · v for a ∈ C[Bn], v ∈ V (λ,µ). Since C[Bn] is a Bn ×Bn

module via left and right action, (4.7) and (4.8) imply that we have the isomorphism of ungraded
Bn ×Bn modules

(4.9) C[Bn] ∼=
⊕

(λ,µ)⊢2n

EndC(V
(λ,µ)) ∼=

⊕
(λ,µ)⊢2n

V (λ,µ) ⊗ V (λ,µ).

Returning to the statement of the theorem, by an inductive argument, it suffices to prove that
for any k, we have the isomorphism of ungraded Bn ×Bn modules:

(4.10) (C[xn×n]/IBn)≤k
∼=

⊕
(λ,µ)⊢2n

2λ1+|µ|≥2n−k

EndC(V
(λ,µ)).

With Theorem 3.11, we have a chain of isomorphisms and an equality of ungraded Bn×Bn modules:

(4.11) C[Bn] ∼= C[xn×n]/I(Bn) ∼= C[xn×n]/grI(Bn) = C[xn×n]/IBn .

Then, consider the image of C[xn×n]≤k in C[xn×n]/I(Bn), denoted by Lk, i.e.

(4.12) Lk = Image(C[xn×n]≤k ↪→ C[xn×n] ↠ C[xn×n]/I(Bn))

By Lemma 3.10 and Lemma 4.1, we have that

(4.13) Lk = spanC{m(R1)m(R2)
2 + I(Bn) : R1 ∪R2 is a rook placement and |R1|+ 2|R2| ≤ k}.

Then, Lemma 4.1 implies that we have the isomorphism of Bn ×Bn modules

(4.14) Lk
∼= (C[xn×n]/IBn)≤k.

So we are reduced to showing that

(4.15) Lk
∼=

⊕
(λ,µ)⊢2n

2λ1+|µ|≥2n−k

EndC(V
(λ,µ)).

For any j ≤ k, consider the collection of monomials

(4.16) M j =
{
mj

i = x21,1x
2
2,2 · · ·x2i,ixi+1,i+1xi+2,i+2 · · ·xj−i,j−i : 0 ≤ i ≤ ⌊j/2⌋

}
.

For example, when j = 4, the collection of monomials is

(4.17) M j =
{
x21,1x

2
2,2, x

2
1,1x2,2x3,3, x1,1x2,2x3,3x4,4

}
.

Since nonzero monomials in C[xn×n]/IBn are cube-free, the degree j monomials in C[xn×n]/IBn

are generated by the action of Bn ×Bn on M j . Thus, Lk is generated by the action of Bn ×Bn on⋃
j≤k M

j .

Then, fix 0 ≤ j ≤ k, for all i satisfying 0 ≤ i ≤ ⌊j/2⌋, embed Bn−j+i ⊆ Bn by letting it act on

the last n− j + i letters. Let ϵji be the group algebra element

(4.18) ϵji = (e+ t1,−1)(e+ t2,−2) · · · (e+ ti,−i)(e− ti+1,−i−1) · · · (e− tj−i,−j+i)

 ∑
w∈Bn−j+i

w

 ,
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where e denotes the identity element and tl,−l denotes the transposition in Bn that interchanges l
and −l, and fixing all other elements. Identifying C[xn×n] with the collection of functions from Bn

to C, via the rule

(4.19)
∑
w∈Bn

aww 7→ f : f(w) = aw,

and since C[xn×n]/I(Bn) is naturally identified with functions from Bn to C, we can identify ϵji
with mj

i . Let Σ
j = {ϵji : 0 ≤ i ≤ ⌊j/2⌋}, and let Jk be the two-sided ideal generated by

⋃
0≤j≤k Σ

j .
We have the identification

(4.20) Jk = Lk.

So we are now reduced to find the image of Jk under the Artin-Wedderburn map in (4.8). Note
that the image of Jk would be direct sum of endomorphisms of irreducible modules such that not
all elements of Jk act as the 0 operator. So fix j ≤ k, we need to find the irreducible modules such
that not all elements of Σj act as 0.

Since ϵji is naturally an element of the group algebra C[Bj−i×Bn−j+i], given V (λ,µ) an irreducible
character of Bn labelled by bipartition (λ, µ), it suffices to analyze the character of

(4.21) ResBn
Bj−i×Bn−j+i

V (λ,µ),

evaluated on ϵji . By the Branching Rule (2.12),

(4.22) ResBn
Bj−i×Bn−j+i

χ(λ,µ) =
∑
(λ̃,µ̃)

χ(λ̃,µ̃) × χ(λ/λ̃,µ/µ̃),

where the sum is over all (λ̃, µ̃) that are bipartiions of j − i and that (λ/λ̃, µ/λ̃) is well-defined.
Then, denote

(4.23) ηji = (e+ t1,−1)(e+ t2,−2) . . . (e+ ti,−i)(e− ti+1,−i−1) . . . (e− tj−i,−j+i),

that is, ϵji = ηji
∑

w∈Bn−k+i
w, we need to analyze

(4.24)
∑
(λ̃,µ̃)

χ(λ̃,µ̃)(ηji )χ
(λ/λ̃,µ/µ̃)

 ∑
w∈Bn−j+i

w

 .

Let θ be an irreducible character of Z/2Z ∼= B1, we have that θ(e + tl,−l) ̸= 0 if and only if θ
is the trivial character; on the other hand, θ(e− tl,−l) ̸= 0 if and only if θ is the signed character,

i.e. θ(tl,l) = −1. By the Generalized Murnaghan-Nakayama Rule (2.15), we have that χ(λ̃,µ̃)(ηji ) is

nonzero if and only if |λ̃| = i and |µ̃| = j − 2i. On the other hand,

(4.25) χ(λ/λ̃,µ/µ̃)

 ∑
w∈Bn−j+i

w


is nonzero if and only if the trivial representation χ((n−j+i),∅) has non-zero multiplicity in χ(λ/λ̃,µ/µ̃).
This forces µ/µ̃ = ∅, and the diagram of λ/λ̃ has no two boxes in the same row. Combining this,

we have that ϵji acts as a nonzero operator on V (λ,µ) if and only if the following holds:

• |µ| = j − 2i, thus |λ| = n− j + 2i;

• there exists λ̃ ⊢ i, such that the diagram of λ/λ̃ has no two boxes in the same column.

Note that the second condition is equivalent to

• the diagram of λ has less than i boxes beyond the first row, i.e. λ1 ≥ |λ| − i = n− j + i.
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Since the first condition is an equality, the two condition can be combined to

(4.26) 2λ1 + |µ| ≥ 2n− j.

Since j ≤ k is arbitrary, we can conclude that elements of Jk act as nonzero operators on all V (λ,µ)

satisfying

(4.27) 2λ1 + |µ| ≥ 2n− k.

This gives the isomorphism of Bn ×Bn modules

(4.28) Jk ∼=
⊕

(λ,µ)⊢2n
2λ1+|µ|≥2n−k

EndC(V
(λ,µ)),

which completes the proof. □

4.2. Graded Module Structure of C[xn×n]/ISn,r . We now investigate the graded module struc-

ture of C[xn×n]/ISn,r for general r. Given λ = (λ0, λ1, . . . , λr−1) a r-partition of n, let λ =

(λ0, λr−1, λr−2, . . . λ1) be the dual r-partition of λ, obtained by fixing λ0 and interchanging λi with
λr−i. As the dual module of a unitary matrix representation is its conjugate, then by the gen-
eral Murnaghan-Nakayama (2.15), the dual module of V λ is then V λ′

, and we have the following
theorem:

Theorem 4.3. For any k ≥ 0, the degree k piece (C[xn×n]/ISn,r)k has graded Sn,r×Sn,r structure

(4.29) (C[xn×n]/ISn,r)k
∼=

⊕
λ⊢rn

rλ0
1+

∑r−1
i=1 i|λi|=rn−k

V λ ⊗ V λ′

Proof. Similar to the proof of Theorem 4.2, we have that for any Sn,r ×Sn,r module W ,

(4.30) EndC(W ) ∼= W ⊗W ∗.

Then, similar to (4.9), we have the isomorphisms of Sn,r ×Sn,r modules

(4.31) C[Sn,r] ∼=
⊕
λ⊢rn

EndC(V
λ) ∼=

⊕
λ⊢rn

V λ ⊗ (V λ)∗ ∼=
⊕
λ⊢rn

V λ ⊗ V λ′
.

By Theorem 3.19, we have a chain of isomorphisms and an equality of ungradedSn,r×Sn,r modules:

(4.32) C[Sn,r] ∼= C[xn×n]/I(Sn,r) ∼= C[xn×n]/grI(Sn,r) = C[xn×n]/ISn,r .

Again, let Lk be the image of C[xn×n]≤k to C[xn×n]/I(Sn,r), that is,

(4.33) Lk = Image(C[xn×n]≤k ↪→ C[xn×n] ↠ C[xn×n]/I(Sn,r)).

By Lemma 4.1, we have that

(4.34) Lk = spanC

{(
r∏

i=1

m(Ri)
i

)
+ I(Sn,r) :

r⋃
i=1

Ri is a rook placement and
r∑

i=1

i · |Ri| ≤ k

}
.

Applying Lemma 4.1 again, we have the isomorphism of Sn,r ×Sn,r modules

(4.35) Lk
∼= (C[xn×n]/ISn,r)≤k.

And we are reduced to showing that

(4.36) Lk
∼=

⊕
λ⊢rn

rλ0
1+

∑r−1
i=1 i|λi|≥rn−k

EndC(V
λ).
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Let Mk be the subset of the spanning set in (4.34), containing all monomials

(4.37)

r∏
i=1

m(Ri)
i

where the rook placements {Ri}ri=1 satisfy the criteria in (4.34), and for all j ≤ r,

(4.38)

j⋃
i=1

Ri = {(a, a) : 1 ≤ a ≤
j∑

i=1

|Ri|}.

In other words, in the n × n grid, the rook placements {Ri} are arranged on the diagonals, from
bottom left to top right. For example, when k = 5 and r = 3, we have

(4.39) Mk = {x1,1x2,2x3,3x4,4x5,5, x1,1x2,2x3,3x24,4, x1,1x2,2x33,3, x1,1x22,2x23,3, x21,1x32,2}.

Monomials in Lk are generated by monomials in Mk by two sided action of Sn,r ×Sn,r.

Again, identifying C[Sn,r] and C[xn×n]/ISn,r with functions from Sn,r to C, we can identify xj
i,i

in C[xn×n]/ISn,r with the group algebra element

(4.40) (e+ ωj(i0, i1) + ω2j(i0, i2) + · · ·+ ω(r−1)j(i0, ir−1))
∑

w∈Sn−1,r

w,

where Sn−1,r is embedded in Sn,r by acting on the last n−1 letters, e denotes the identity in Sn,r,

ω is the primitive r-th root of unity in C, and (i0, il) denotes the element in Sn,r that maps i0 to il,
while fixing all other elements. Let Σk be the collection of group algebra elements identified with
monomials in Mk, and let Jk be the two-sided ideal generated by Jk. We have identification

(4.41) Lk = Jk.

So we are reduced to finding r-partitions λ such that not all elements of Jk acts as zero operator.

Denote ϵji as

(4.42) ϵji = e+ ωj(i0, i1) + ω2j(i0, i2) + · · ·+ ω(r−1)j(i0, ir−1),

For rook placements {Rj}rj=1 satisfying the criteria in (4.34) and (4.38), let R =
⋃r

j=1Rj , we have

that the group algebra element that is identified with
∏r

j=1m(Rj)
i is

(4.43) ϵ =

 r∏
j=1

∏
(i,i)∈Rj

ϵji

 ∑
w∈Sn−|R|,r

w.

Let η =
∏r

j=1

∏
(i,i)∈Rj

ϵji , we can embed Sn−|R|,r in Sn,r by letting it act on the last n − |R|
letters. Then, by the Branching Rule (2.12), we have

(4.44)
∑

µ⊢r|R|

χµ(η)χλ/µ

 ∑
w∈Sn−|R|,r

w

 .

Let θ be any irreducible C-character of S1,r
∼= Z/rZ, note that we have θ(ϵji ) ̸= 0 if and only

if θ((i0, i1)) = ω−j . Thus, by the generalized Murnaghan-Nakayama Rule (2.15), we have that for
µ = (µ0, µ1, . . . µr−1) ⊢r |R|, χµ(η) is nonzero if and only if |µj | = |Rr−j |. On the other hand,

(4.45) χλ/µ

 ∑
w∈Sn−|R|,r

w





VIENNOT SHADOWS AND GRADED MODULE STRUCTURE IN COLORED PERMUTATION GROUPS 19

is nonzero if and only if the trivial character has nonzero multiplicity in χλ/µ, which indicates that
|µj | = |λj | for 1 ≤ j ≤ r − 1, and there are no two boxes in the same column in the diagram of
λ0/µ0, that is, there are less than |µ0| = |Rr| boxes beyond the first row in the diagram of λ0.

Let d =
∑r

j=1 j · |Rj | be the degree of the monomial
∏r

j=1m(Rj)
i. combining these conditions,

we have that ϵ acts as a nonzero operator on V λ if there exists µ = (µ0, µ1, . . . , µr−1) such that
the following holds:

(1) r|µ0|+ (r − 1)|µ1|+ · · ·+ |µr−1| = d;
(2) λj = µj for j ̸= 0;
(3) diagram of λ0/µ0 has no two boxes in the same column.

Note that the third condition is equivalent to

(4.46) λ0
1 ≥ |λ0| − |µ0| = n− |λ1| − |λ2| − · · · − |λr−1| − |µ0|.

Multiplying both side by r, we get

(4.47) rλ1
0 ≥ rn− r|λ1| − r|λ2| − · · · − r|λr−1| − r|µ0|.

Then, the first and second condition combined gives that

(4.48) r|µ0| = d− (r − 1)|λ1| − (r − 2)|λ2| − · · · − |λr−1|.
Substituting this into the inequality (4.47), we have

(4.49) rλ0
1 + |λ1|+ 2|λ2|+ · · ·+ (r − 1)|λr−1| ≥ rn− d.

This shows the isomorphism of Sn,r ×Sn,r modules

(4.50) Jk ∼=
⊕
λ⊢rn

rλ0
1+

∑r−1
i=1 i|λi|≥rn−k

EndC(V
λ),

which completes the proof.
□

5. Conclusions and Conjectures

Given a (possibly infinite) sequence ai of positive real numbers, we say that the sequence is
log-concave if for all positive integer i, we have

(5.1) ai · ai+2 ≤ a2i+1;

and we say the sequence is uni-modal if there exists a positive integer k such that

(5.2) ai ≤ a+i+1 for i < k; ai ≥ ai+1 for i ≥ k.

In the case of Hilbert series, we say a Hilbert series is log-concave or uni-modal if its sequence of
coefficients is log-concave or uni-modal. Recall that the Hilbert series of C[xn×n]/In is

(5.3) Hilb(C[xn×n/In; q) = an,n + an,n−1 · q + an,n−2 · q2 + · · ·+ an,1 · qn−1,

where an, k counts the number of permutations w ∈ Sn with lis(w) = k. Chen conjectured [2] that
the sequence {an,k} is log-concave, that is, fixing an integer n, for all k such that 2 ≤ k ≤ n− 1,

(5.4) a2n,k ≥ an,k−1 · an,k+1.

We found some interesting patterns when we tried to generalize this to the Hilbert series of
C[xn×n]/IBn . Recall that we showed in Corollary 3.15 that the Hilbert series of C[xn×n]/IBn is

(5.5) Hilb(C[xn×n]/IBn ; q) = bn,2n + bn,2n−1 · q + · · ·+ bn,1 · q2n−1,

where {bn,k}2n−2
k=1 is defined in Definition 3.14. By testing n up to 40, we found that

• for n ≤ 8, the sequence {bn,k} is log-concave;
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Figure 1. an,k when n = 65

• for 9 ≤ n ≤ 17, we have b2n,k < bn,k−1 · bn+1 when k = 3, and log-concavity holds for the
remaining of the sequence;

• for 18 ≤ n ≤ 27, we have b2n,k < bn,k−1 · bn+1 when k = 3 and 5, and log-concavity holds for
the remaining of the sequence;

• for 27 ≤ n ≤ 40, we have b2n,k < bn,k−1 · bn+1 when k = 3, 5, and 7, and log-concavity holds
for the remaining of the sequence.

From this observation, we conclude that the Hilbert series of C[xn×n]/IBn is “almost log-concave”:
log-concavity breaks for some small k’s, but holds for the majority of the sequence.

In [1], Baik, Deift, and Johansson proved that as n → ∞, the distribution function for lis on Sn,
with proper rescaling and recentering, converges to the Tracey-Widom distribution of the largest
eigenvalue of a random GUE matrix. That is, as n → ∞, the histogram of {an,k} for a fixed n
will converge in distribution (with rescaling and recentering) to the Tracey-Widom distribution. In
Figure 1, we give the histogram of {an,k} when = 65. The horizontal axis corresponds to values of
k, and the height of each bar represents the corresponding an,k.

One possible direction for future studies is to study the limit of the probability distributions
corresponding to {bn,k} as n → ∞. In analogy with the case of {an,k}, one could hope that we
have convergence to a natural probability distribution. In Figure 2, we give the histogram of {bn,k}
when n = 40. The horizontal axis corresponds to values of k, and the height of each bar represents
the corresponding bn,k.

Our testing on unimodality also yields a very nice pattern, and we give the following conjecture:

Conjecture 5.1. For any integers n, r, the Hilbert series of C[xn×n]/ISn,r is unimodal, that is,
there exists k such that

(5.6) cn,r,d ≤ cn,r,d+1 for d < k, and cn,r,d ≥ cn,r,d+1 for d ≥ k.

Conjecture 5.1 was tested to be true for r ≤ 4 and n ≤ 20.
As mentioned in [4], orbit harmonics played a key tool in our analysis. We treated the colored

permutation group Sn,r as a collection of n × n matrices, and proved that ISn,r = grI(Sn,r). We
provide one possible direction for future studies below:

A complex reflection on a finite-dimensional vector space V is an element of finite order in GL(V )
which fixes a hyperplane pointwise. A complex reflection group W is a finite group generated by
complex reflections. Shepherd and Todd showed in [7] that any complex reflection group is either
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Figure 2. bn,k when n = 40

one of the 34 exceptional cases, or in the form G(r, p, n), where r, p, n are integers with p divides r,
and the group G(r, p, n) consists of n× n matrices with

• exactly one nonzero entry in each row or column;
• each nonzero entry is a r-th root of unity;
• the product of all the nonzero-entries is a r/p-th root of unity.

When p = 1, G(r, 1, n) is the colored permutation group Sn,r, and we calculated grI(G(r, 1, n)) =
ISn,r in this paper. It may be interesting to study grI(G(r, p, n)) for different p’s that divides r.
For example, G(2, 2, n) coincides with the Coexter group of type D, and it would be a good object
for future study.

Another possible direction is on the equivariant log-concavity of C[xn×n]/ISn,r . In [4], Rhoades
conjectured that with Sn × Sn acting on (C[xn×n])d by independent row and column operation,
there exists an injection

(5.7) (C[xn×n]/In)d+1 ⊗ (C[xn×n]/In)d−1
ϕ
↪−→ (C[xn×n]/In)d ⊗ (C[xn×n]/In)d

such that given (w, v) ∈ Sn ×Sn, f ∈ (C[xn×n]/In)d+1, g ∈ (C[xn×n]/In)d−1,

(5.8) ϕ ((w, v) · (f ⊗ g)) = (w, v) · (ϕ(f ⊗ g)) .

This conjecture would imply both Chen’s Conjecture [2] and the Novak-Rhoades Conjecture [3].
As the Hilbert series of C[xn×n]/ISn,r is not always log-concave, it would be interesting to study
given Sn,r, for which d’s we can have an injection

(5.9) (C[xn×n]/ISn,r)d+1 ⊗ (C[xn×n]/ISn,r)d−1 ↪−→ (C[xn×n]/ISn,r)d ⊗ (C[xn×n]/ISn,r)d

that commutes with the diagonal action of Sn,r ×Sn,r. Our calculation shows that when n = 1,
such an injection exists for any r, d.
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