Interpolation and Approximation: Hermite Interpolation

Martin Licht
UC San Diego
Winter Quarter 2021

Background

Hermite Interpolation

Background

Suppose we have pairwise distinct nodal points $x_{0}, x_{1}, \ldots, x_{m} \in \mathbb{R}$.

Background

Lemma

The Newton polynomials $p_{k}(x)$ with

$$
p_{k}(x)=\prod_{i=0}^{k-1}\left(x-x_{i}\right), \quad 0 \leq k \leq m
$$

are a basis of \mathcal{P}_{m}.

Background

Proof.

Let $p(x) \in \mathcal{P}_{m}$ be a degree m polynomial with

$$
p(x)=a_{0} p_{0}(x)+a_{1} p_{1}(x)+\cdots+a_{m} p_{m}(x)
$$

Assume that $p(x)=0$. Then obviously

$$
p\left(x_{0}\right)=p\left(x_{1}\right)=\cdots=p\left(x_{m}\right)=0 .
$$

We show step by step that all coefficients $a_{0}, a_{1}, \ldots, a_{m}$ are equal zero.
First, since by the definition of the Newton polynomials

$$
p_{0}\left(x_{0}\right)=1, \quad p_{1}\left(x_{0}\right)=p_{2}\left(x_{0}\right)=\cdots=p_{m}\left(x_{0}\right)=0
$$

so we get that $0=p\left(x_{0}\right)=a_{0} p_{0}\left(x_{0}\right)=a_{0}$, which implies $a_{0}=0$.

Background

Proof.

Next, since by the definition of the Newton polynomials

$$
p_{1}\left(x_{1}\right)=x_{1}-x_{0}, \quad p_{2}\left(x_{1}\right)=p_{3}\left(x_{1}\right)=\cdots=p_{m}\left(x_{1}\right)=0
$$

so we get that $0=p\left(x_{1}\right)=a_{1} p_{1}\left(x_{1}\right)=a_{1}\left(x_{1}-x_{0}\right)$, which implies $a_{1}=0$.
Next, since by the definition of the Newton polynomials

$$
p_{2}\left(x_{2}\right)=\left(x_{2}-x_{1}\right)\left(x_{2}-x_{0}\right), \quad p_{3}\left(x_{2}\right)=\cdots=p_{m}\left(x_{2}\right)=0,
$$

so we get that $0=p\left(x_{2}\right)=a_{2} p_{2}\left(x_{2}\right)=a_{2}\left(x_{2}-x_{1}\right)\left(x_{2}-x_{0}\right)$, which implies $a_{2}=0$.

Repeating this shows $a_{0}, a_{1}, \ldots, a_{m}$ are all equal zero, and so the polynomials are linearly independent.

Background

Lemma

The Lagrange polynomials $L_{k}(x)$ with

$$
L_{k}(x)=\prod_{\substack{0 \leq j \leq m \\ k \neq j}} \frac{x-x_{j}}{x_{k}-x_{j}}, \quad 0 \leq k \leq m
$$

are a basis of \mathcal{P}_{m}.

Background

Proof.

Let $p(x) \in \mathcal{P}_{m}$ be a degree m polynomial with

$$
p(x)=a_{0} L_{0}(x)+a_{1} L_{1}(x)+\cdots+a_{m} L_{m}(x)
$$

Assume that $p(x)=0$. Then obviously

$$
p\left(x_{0}\right)=p\left(x_{1}\right)=\cdots=p\left(x_{m}\right)=0
$$

For any $0 \leq k \leq m$ we have

$$
\begin{aligned}
0=p\left(x_{k}\right) & =a_{0} L_{0}\left(x_{k}\right)+a_{1} L_{1}\left(x_{k}\right)+\cdots+a_{m} L_{m}\left(x_{k}\right) \\
& =a_{k} L_{k}\left(x_{k}\right)=a_{k}
\end{aligned}
$$

So $a_{k}=0$. Since all the coefficients vanish, the polynomials are linearly independent, and thus they are a basis.

Background

Suppose we have nodal points $x_{0}, x_{1}, \ldots, x_{m} \in \mathbb{R}$, not necessarily pairwise distinct.

Having nodal points with duplicates corresponds to the case of interpolation that takes into account higher order derivatives. That is called Hermite interpolation.

Background

Hermite Interpolation

Hermite Interpolation

Suppose we have pairwise distinct nodal points $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{R}$ and non-negative integers $k_{0}, k_{1}, \ldots, k_{n} \geq 0$.

The Hermite interpolation problem seeks a polynomial $p \in \mathcal{P}_{m}$ of degree

$$
m=n+k_{0}+k_{1}+\cdots+k_{n} .
$$

with the property that for some fixed function f we have

$$
\begin{aligned}
& p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \quad \cdots \quad p^{\left(k_{0}\right)}\left(x_{0}\right)=f^{\left(k_{0}\right)}\left(x_{0}\right), \\
& p\left(x_{1}\right)=f\left(x_{1}\right), \quad p^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right), \quad \cdots \quad p^{\left(k_{1}\right)}\left(x_{1}\right)=f^{\left(k_{1}\right)}\left(x_{1}\right), \\
& p\left(x_{n}\right)=f\left(x_{n}\right), \quad p^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right), \quad \cdots \quad p^{\left(k_{n}\right)}\left(x_{n}\right)=f^{\left(k_{n}\right)}\left(x_{n}\right) .
\end{aligned}
$$

In the discussion of that problem, it will be helpful to interpret the k_{i} as multiplicities of the nodal points x_{i}.

Hermite Interpolation

Suppose we have pairwise distinct nodal points $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{R}$ and non-negative integers $k_{0}, k_{1}, \ldots, k_{n} \geq 0$.

The Hermite interpolation problem seeks a polynomial $p \in \mathcal{P}_{m}$ of degree

$$
m=n+k_{0}+k_{1}+\cdots+k_{n}
$$

with the property

$$
\begin{aligned}
& p\left(x_{0}\right)=y_{0}, \quad p^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \quad \ldots \quad p^{\left(k_{0}\right)}\left(x_{0}\right)=y_{0}^{\left(k_{0}\right)}, \\
& p\left(x_{1}\right)=y_{1}, \quad p^{\prime}\left(x_{1}\right)=y_{1}^{\prime}, \quad \ldots \quad p^{\left(k_{1}\right)}\left(x_{1}\right)=y_{1}^{\left(k_{1}\right)}, \\
& p\left(x_{n}\right)=y_{n}, \quad p^{\prime}\left(x_{n}\right)=y_{n}^{\prime}, \quad \ldots \quad p^{\left(k_{n}\right)}\left(x_{n}\right)=y_{n}^{\left(k_{n}\right)} .
\end{aligned}
$$

In the discussion of that problem, it will be helpful to interpret the k_{i} as multiplicities of the nodal points x_{i}.

Hermite Interpolation

The Hermite interpolation problem seeks a polynomial $p \in \mathcal{P}_{m}$ of degree

$$
m=n+k_{0}+k_{1}+\cdots+k_{n} .
$$

with the property

$$
p^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right), \quad 0 \leq k \leq k_{i}, \quad 0 \leq i \leq n .
$$

For later usage, we introduce nodal points with multiplicities:

$$
\underbrace{z_{0}, z_{1}, z_{2}, \ldots, z_{k_{0}}}_{k_{0}+1 \text { copies of } x_{0}}, \underbrace{z_{k_{0}+1}, z_{k_{0}+2}, \ldots, z_{k_{0}+k_{1}}}_{k_{1}+1 \text { copies of } x_{1}}, \ldots,
$$

Hermite Interpolation

Example (Lagrange interpolation)

We search for a polynomial $p(x)$ of degree m such that

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p\left(x_{1}\right)=f\left(x_{1}\right), \quad \ldots \quad p\left(x_{m}\right)=f\left(x_{m}\right)
$$

where $x_{0}, x_{1}, \ldots, x_{m} \in \mathbb{R}$ are $m+1$ pairwise distinct points. Here,

$$
n=m, \quad k_{0}=k_{1}=\cdots=k_{n}=0,
$$

Example (Taylor interpolation)

We search for a polynomial p of degree m such that

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \quad \ldots \quad p^{(m)}\left(x_{0}\right)=f^{(m)}\left(x_{0}\right)
$$

for some point $x_{0} \in \mathbb{R}$. Here,

$$
n=0, \quad k_{0}=m
$$

Hermite Interpolation

Example

We search for a polynomial p of degree 3 such that

$$
p(1)=1, \quad p^{\prime}(1)=2, \quad p(2)=2, \quad p^{\prime}(2)=3 .
$$

We express these four constraints as a linear system of equations with invertible system matrix. We define

$$
\begin{gathered}
N_{0}(x)=1, \quad N_{1}(x)=(x-1) \\
N_{2}(x)=(x-1)^{2}, \quad N_{3}(x)=(x-2)(x-1)^{2}
\end{gathered}
$$

Observe

$$
\begin{gathered}
N_{0}^{\prime}(x)=0, \quad N_{1}^{\prime}(x)=1, \\
N_{2}^{\prime}(x)=2(x-1), \quad N_{3}^{\prime}(x)=(x-1)^{2}+2(x-2)(x-1)
\end{gathered}
$$

We will express the solution as

$$
p(x)=a_{0} N_{0}(x)+a_{1} N_{1}(x)+a_{2} N_{2}(x)+a_{3} N_{3}(x) .
$$

Hermite Interpolation

Example

The linear system in that form reads

$$
\begin{aligned}
& p(1)=a_{0} N_{0}(1)+a_{1} N_{1}(1)+a_{2} N_{2}(1)+a_{3} N_{3}(1)=1 . \\
& p^{\prime}(1)=a_{0} N_{0}^{\prime}(1)+a_{1} N_{1}^{\prime}(1)+a_{2} N_{2}^{\prime}(1)+a_{3} N_{3}^{\prime}(1)=2 \text {. } \\
& p(2)=a_{0} N_{0}(2)+a_{1} N_{1}(2)+a_{2} N_{2}(2)+a_{3} N_{3}(2)=2 \text {. } \\
& p^{\prime}(2)=a_{0} N_{0}^{\prime}(2)+a_{1} N_{1}^{\prime}(2)+a_{2} N_{2}^{\prime}(2)+a_{3} N_{3}^{\prime}(2)=3 \text {. }
\end{aligned}
$$

Evaluating the polynomials and their derivatives, and setting this matrix form reveals that

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\right) .
$$

We easily see that

$$
a_{0}=1, \quad a_{1}=2, \quad a_{2}=-1, \quad a_{3}=3
$$

Hermite Interpolation

We express the Hermite interpolation as a linear system of equations.

Lemma

The Hermite interpolation problem has got a unique solution.

Proof.

The idea is the following: we use a modification of the Newton basis for Lagrange interpolation.

That will provide a basis of \mathcal{P}_{m} with respect to which the Hermite interpolation problem can be expressed as an invertible triangular system.

Hermite Interpolation

Proof.

Consider the system

$$
\begin{array}{llll}
p\left(x_{0}\right)=y_{0}, & p^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, & \cdots & p^{\left(k_{0}\right)}\left(x_{0}\right)=y_{0}^{\left(k_{0}\right)} \\
p\left(x_{1}\right)=y_{1}, & p^{\prime}\left(x_{1}\right)=y_{1}^{\prime}, & \cdots & p^{\left(k_{1}\right)}\left(x_{1}\right)=y_{1}^{\left(k_{1}\right)} \\
\vdots & & \\
p\left(x_{n}\right)=y_{n}, & p^{\prime}\left(x_{n}\right)=y_{n}^{\prime}, & \cdots & p^{\left(k_{n}\right)}\left(x_{n}\right)=y_{n}^{\left(k_{n}\right)} .
\end{array}
$$

We will construct a basis for \mathcal{P}_{m}, with respect to which the system has a triangular form with non-zero diagonal.

Hermite Interpolation

Proof.

We define

$$
N_{p}(x)=\prod_{j=0}^{p-1}\left(z-z_{j}\right), \quad 0 \leq p \leq m
$$

Notice that these are linearly independent. From here, with $k<k_{i}$ we see

$$
N_{k_{0}+k_{1}+\cdots+k_{i-1}+k}(x)=\left(x-x_{i}\right)^{k} \prod_{j=0}^{i-1}\left(x-x_{j}\right)^{k_{j}+1} .
$$

We already see that $N_{k_{0}+k_{1}+\cdots+k_{i-1}+k}$ vanishes at $x_{0}, x_{1}, \ldots, x_{i-1}$. We generalize this observation to higher derivatives.

We recall the generalized product rule:

$$
\left(f_{0} f_{1} \cdots f_{n}\right)^{(l)}=\sum_{l_{0}+l_{1}+\cdots+l_{n}=l} \frac{n!}{l_{0}!l_{1}!\cdots l_{n}!} f_{0}^{\left(l_{0}\right)} f_{1}^{\left(l_{1}\right)} \cdots f_{n}^{\left(l_{n}\right)} .
$$

Furthermore, we know that

$$
\begin{aligned}
& \left(\left(x-x_{i}\right)^{k}\right)^{(l)}=k(k-1) \cdots(k-l)\left(x-x_{i}\right)^{k-l}, \quad l \leq k \\
& \left(\left(x-x_{i}\right)^{k}\right)^{(l)}=0, \quad l>k
\end{aligned}
$$

Hermite Interpolation

Proof.

Obviously,

$$
\begin{aligned}
& N_{k_{0}+k_{1}+\cdots+k_{i-1}+k}^{(l)}(x) \\
& \quad \sum_{\substack{l_{0}+l_{1}+\cdots+l_{i}=l \\
l_{0} \leq k_{0}, l_{1} \leq k_{1}, \ldots, l_{i} \leq k_{i} \\
l_{i} \leq k}} C\left(l_{0}, l_{1}, \ldots, l_{i}\right)\left(x-x_{i}\right)^{k-l_{i}} \prod_{0 \leq j<i}\left(x-x_{j}\right)^{k_{j}+1-l_{j}} .
\end{aligned}
$$

where $C\left(l_{0}, l_{1}, \ldots, l_{n}\right)$ is a positive integer.

- If $l \leq k_{j}$ for some $0 \leq j<i$, then in each summand $l_{j}<k_{j}+1$. We conclude that

$$
N_{k_{0}+k_{1}+\cdots+k_{i-1}+k}^{(l)}\left(x_{j}\right)=0, \quad 0 \leq l \leq k_{j}, \quad 0 \leq j<i .
$$

- If $l<k$, then in each summand $l_{i}<k$. We conclude that

$$
N_{k_{0}+k_{1}+\cdots+k_{i-1}+k}\left(x_{i}\right)^{(l)}=0, \quad 0 \leq l \leq k-1 .
$$

- Finally, if $l=k$, then all summands vanish except the one where $l_{i}=k$. Thus

$$
N_{k_{0}+k_{1}+\cdots+k_{i-1}+k}^{(k)}\left(x_{i}\right)=C\left(0,0, \ldots, 0, l_{i}\right) \prod_{0 \leq j<i}\left(x-x_{j}\right)^{k_{j}+1} \neq 0
$$

Hermite Interpolation

Proof.

Abbreviating

$$
N(x)=N_{k_{0}+k_{1}+\cdots+k_{i-1}+k}(x),
$$

we have for $0 \leq i \leq n$ and $0 \leq k \leq k_{i}$ that

$$
N\left(x_{0}\right)=0, \quad N^{\prime}\left(x_{0}\right)=0, \quad \ldots \quad N^{\left(k_{0}\right)}\left(x_{0}\right)=0
$$

$$
\begin{aligned}
N\left(x_{i-1}\right) & =0, \quad N^{\prime}\left(x_{i-1}\right)=0, \quad \ldots \quad N^{\left(k_{i-1}\right)}\left(x_{i-1}\right)=0 \\
N\left(x_{i}\right) & =0, \quad N^{\prime}\left(x_{i}\right)=0, \quad \ldots \quad N^{(k-1)}\left(x_{i}\right)=0, \quad N^{(k)}\left(x_{i}\right) \neq 0 .
\end{aligned}
$$

The linear problem of Hermite interpolation has got a triangular matrix with non-zero diagonal entries when expressed via Newton polynomials.

The system has got a unique solution.

Summary

- Lagrange and Taylor interpolation are special cases of Hermite interpolation.
- Possible expression in terms of Newton basis, other bases are possible.
- Error analysis more complicated, not part of this lecture.

