## Lagrange Polynomials

Interpolation and Approximation: Lagrange Interpolation

Martin Licht
UC San Diego
Winter Quarter 2021

Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

## Lagrange Interpolation

Given a function $f:[a, b] \rightarrow \mathbb{R}$ over some interval $[a, b]$, we would like to approximate $f$ by a polynomial.

How do we find a good polynomial?
We have already one example, namely the Taylor polynomial around a point a:

$$
T_{a}^{m} f(x)=\sum_{k=0}^{m} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Note that this can be written as

$$
T_{a}^{m} f(x)=\sum_{k=0}^{m} c_{k}(x-a)^{k}
$$

where

$$
c_{k}=\frac{f^{(k)}(a)}{k!}
$$

Evidently, we construct the Taylor polynomial by evaluating $f$ and its derivatives at a particular point $a \in \mathbb{R}$.

## Lagrange Interpolation

We recall some representations of the error:

## Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have continuous derivatives up to order $m+1$. Then

- We have

$$
R_{a}^{m} f(x)=\int_{a}^{x} \frac{f^{(m+1)}(t)}{m!}(t-a)^{m} d t .
$$

- For every $x \in \mathbb{R}$ there exists $\xi_{x}$ in the closed interval between a and $x$ with

$$
R_{a}^{m} f(x)=\frac{f^{(m+1)}\left(\xi_{x}\right)}{(m+1)!}(x-a)^{m+1}
$$

- For every $x \in \mathbb{R}$ there exists $\xi_{x}$ in the closed interval between a and $x$ with

$$
R_{a}^{m} f(x)=\frac{f^{(m+1)}\left(\xi_{x}\right)}{m!}(x-\xi)^{m}(x-a)
$$

## Lagrange Interpolation

From each of those representations of the error we can derive

$$
\left|f(x)-T_{a}^{m} f(x)\right|=\left|R_{a}^{m} f(x)\right| \leq \frac{1}{m!} \max _{\xi \in I}\left|f^{(m+1)}(\xi)\right| \cdot|x-a|^{m+1} .
$$

or even

$$
\left|f(x)-T_{a}^{m} f(x)\right|=\left|R_{a}^{m} f(x)\right| \leq \frac{1}{(m+1)!} \max _{\xi \in I}\left|f^{(m+1)}(\xi)\right| \cdot|x-a|^{m+1} .
$$

where $l$ is the interval between $a$ and $x$.

## Lagrange Interpolation

The basic principle of polynomial interpolation is that we "take measurements" of $f$ by looking at the values of the function (and its derivatives) at certain points. We then construct a polynomial that satisfies the same measurements.

In the case of the Taylor polynomial, we have a single number $x_{0} \in \mathbb{R}$ and take the derivatives up to order $m$, to construct a degree $m$ polynomial $p(x)$ with
$p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), \quad p^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right), \quad \ldots \quad p^{(m)}\left(x_{0}\right)=f^{(m)}\left(x_{0}\right)$.
A different way of interpolating a function is known as Lagrange interpolation.
In the case of Lagrange interpolation, we have $m$ different numbers $x_{0}, x_{1}, \ldots, x_{m} \in \mathbb{R}$ and take function evaluations up to order $m$, to construct a degree $m$ polynomial $p(x)$ with

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p\left(x_{1}\right)=f\left(x_{1}\right), \quad p\left(x_{2}\right)=f\left(x_{2}\right), \quad \ldots \quad p\left(x_{m}\right)=f\left(x_{m}\right) .
$$

## Lagrange Interpolation

## Example

Suppose we have got points $x_{0}, x_{1}, \ldots, x_{m}$ and values

$$
y_{0}=f\left(x_{0}\right), \quad y_{1}=f\left(x_{1}\right), \quad \ldots \quad y_{m}=f\left(x_{m}\right)
$$

of some function $f$ that is otherwise unknown. We want to reconstruct a polynomial that attains the same function values as $f$. For the sake of overview, we put this into a table:

| $x$ | $x_{0}$ | $x_{1}$ | $\ldots$ | $x_{m}$ |
| :--- | :--- | :--- | :--- | :--- |
| $y$ | $y_{0}$ | $y_{1}$ | $\ldots$ | $y_{m}$ |

For this example, let us consider the case $m=2$ and

$$
\begin{array}{rll}
x_{0}=-1, & x_{1}=0, & x_{2}=1, \\
y_{0}=6, & y_{1}=2, & y_{2}=4 .
\end{array}
$$

## Lagrange Interpolation

## Example

The table is

$$
\begin{array}{c|c|c|c}
x & -1 & 0 & 1 \\
\hline y & 6 & 2 & 4
\end{array}
$$

We search for a polynomial $p$ of degree $m=2$ such that

$$
p(-1)=6, \quad p(0)=2, \quad p(1)=4 .
$$

The solution is the polynomial

$$
p(x)=2-x+3 x^{2}
$$

In these notes, we describe different ways to computing and representing such polynomials.

Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

## Monomial Basis

Suppose we have pairwise different points $x_{0}, x_{1}, \ldots, x_{m}$ and that we search for the coefficients $a_{0}, a_{1}, \ldots, a_{m}$ of a polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{m} x_{m}
$$

such that for some given values $y_{0}, y_{1}, \ldots, y_{m}$ we have

$$
p\left(x_{0}\right)=y_{0}, \quad p\left(x_{1}\right)=y_{1}, \quad \ldots \quad p\left(x_{m}\right)=y_{m} .
$$

That is, we search for $m$ unknown variables $a_{0}, a_{1}, \ldots, a_{m} \in \mathbb{R}$ such that the $m$ constraints given by the point evaluations are satisfied. This translates into a linear system of equations

$$
\begin{array}{r}
a_{0}+a_{1} x_{0}+a_{2} x_{0}^{2}+\cdots+a_{m} x_{0}^{m}=y_{0} \\
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\cdots+a_{m} x_{1}^{m}=y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\cdots+a_{m} x_{2}^{m}=y_{2} \\
\vdots \\
a_{0}+a_{1} x_{m}+a_{2} x_{m}^{2}+\cdots+a_{m} x_{m}^{m}=y_{m}
\end{array}
$$

## Monomial Basis

We can rewrite this in matrix notation as

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{m} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{m} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{m}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right) .
$$

The matrix in that system called the Vandermonde matrix associated to the points $x_{0}, x_{1}, \ldots, x_{m}$. We would like to understand the linear system of equations has got a solution, and for that purpose the Vandermonde matrix.

## Theorem

The determinant of the Vandermonde matrix $V$ is

$$
\operatorname{det}(V)=\prod_{0 \leq i<j \leq m}\left(x_{j}-x_{i}\right)
$$

## Monomial Basis

## Proof.

For the proof we use elementary properties of determinants. Let $x_{0}, x_{1}, \ldots, x_{m} \in \mathbb{R}$ be pairwise different. Since the determinant is invariant under row additions and subtractions, we get the identity
$\operatorname{det}\left(\begin{array}{ccccc}1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{m} \\ 1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{m} \\ 1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{m}\end{array}\right)=\operatorname{det}\left(\begin{array}{ccccc}1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{m} \\ 0 & x_{1}-x_{0} & x_{1}^{2}-x_{0}^{2} & \ldots & x_{1}^{m}-x_{0}^{m} \\ 0 & x_{2}-x_{0} & x_{2}^{2}-x_{0}^{2} & \ldots & x_{2}^{m}-x_{0}^{m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_{m}-x_{0} & x_{m}^{2}-x_{0}^{2} & \ldots & x_{m}^{m}-x_{0}^{m}\end{array}\right)$
Similarly, the determinat is invariant under additions of columns. We perform a number of column substractions: we subtract $x_{0}$-times the $m$-th column from the $(m+1)$-th column, subtract $x_{0}$-times the ( $m-1$ )-th column from the $m$-th column, subtract $x_{0}$-times the ( $m-2$ )-th column from the $(m-1)$-th column, and and so on, until we have subtracted $x_{0}$-times the first column from the second column.

## Monomial Basis

## Proof.

Consequently, we end up with the determinant

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & x_{1}-x_{0} & \left(x_{1}-x_{0}\right) x_{1} & \cdots & \left(x_{1}-x_{0}\right) x_{1}^{m-1} \\
0 & x_{2}-x_{0} & \left(x_{2}-x_{0}\right) x_{2} & \cdots & \left(x_{2}-x_{0}\right) x_{2}^{m-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & x_{m}-x_{0} & \left(x_{m}-x_{0}\right) x_{m} & \cdots & \left(x_{m}-x_{0}\right) x_{m}^{m-1}
\end{array}\right)
$$

The rows of this determinant have the common factors

$$
\left(x_{1}-x_{0}\right), \quad\left(x_{2}-x_{0}\right), \quad \ldots \quad\left(x_{m}-x_{0}\right) .
$$

## Monomial Basis

## Proof.

We can extract these common factors from the determinant and get the value

$$
\begin{aligned}
& \prod_{i=1}^{m}\left(x_{i}-x_{0}\right) \cdot \operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & x_{1} & \ldots & x_{1}^{m-1} \\
0 & 1 & x_{2} & \ldots & x_{2}^{m-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & x_{m} & \ldots & x_{m}^{m-1}
\end{array}\right) \\
& \quad=\prod_{i=1}^{m}\left(x_{i}-x_{0}\right) \cdot \operatorname{det}\left(\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{m-1} \\
1 & x_{2} & \ldots & x_{2}^{m-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & \ldots & x_{m}^{m-1}
\end{array}\right)
\end{aligned}
$$

The last term is the determinat of the Vandermonde matrix for the points $x_{1}, \ldots, x_{m}$.

## Monomial Basis

## Proof.

We can repeat this calculation recursively until we only need to compute the determinant of the Vandermonde matrix for the single point $x_{0}$, which is just equals 1 . Working up from there, the determinant becomes

$$
\prod_{i=1}^{m}\left(x_{i}-x_{0}\right) \cdot \prod_{1 \leq i<j \leq m}\left(x_{j}-x_{i}\right)=\prod_{0 \leq i<j \leq m}\left(x_{j}-x_{i}\right)
$$

This completes the proof.

## Monomial Basis

In particular, since $x_{0}, x_{1}, \ldots, x_{m}$ are pairwise different, the determinant of the Vandermonde matrix is non-zero, and hence that the matrix is invertible. We conclude that the interpolation problem has a got a unique solution.

## Theorem

Given pairwise distinct points $x_{0}, x_{1}, \ldots, x_{m} \in \mathbb{R}$ and values $y_{0}, y_{1}, \ldots, y_{m} \in \mathbb{R}$, there exists a unique polynomial $p$ of degree $m$ such that

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p\left(x_{1}\right)=f\left(x_{1}\right), \quad p\left(x_{2}\right)=f\left(x_{2}\right), \quad \ldots \quad p\left(x_{m}\right)=f\left(x_{m}\right)
$$

The polynomials of degree $m$ are a vector space of dimension $m+1$, with a basis being the monomials up to order $m$ :

$$
1, \quad x, \quad x^{2}, \quad \ldots \quad x^{m}
$$

In particular, if we express the interpolation problem using the monomial basis, then the basis does not depend on the interpolation points $x_{0}, x_{1}, \ldots, x_{m}$.

However, the Vandermonde matrix in the formulation has several disadvantageous properties, e.g., it is very dense.

## Monomial Basis

## Example

Consider again the quadratic interpolation problem with the following table:

$$
\begin{array}{c|c|c|c}
x & -1 & 0 & 1 \\
\hline y & 6 & 2 & 4
\end{array}
$$

The solution is

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{l}
6 \\
2 \\
4
\end{array}\right) .
$$

We check that the determinant of Vandermonde matrix is

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)=(1)(2)(1)=2
$$

## Monomial Basis

## Example

The inverse of that Vandermonde matrix is

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 2 & 0 \\
-1 & 0 & 1 \\
1 & -2 & 1
\end{array}\right)
$$

and we readily check that

$$
\frac{1}{2}\left(\begin{array}{ccc}
0 & 2 & 0 \\
-1 & 0 & 1 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
6 \\
2 \\
4
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)
$$

which is precisely the coefficients of the solution $p(x)=2-x+3 x^{2}$.

Lagrange Interpolation

## Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

## Newton Polynomials

We pose the same interpolation but with a different basis. This time, the basis incorporates the interpolation points $x_{0}, x_{1}, \ldots, x_{m} \in \mathbb{R}$. We define the Newton polynomials

$$
\begin{aligned}
& p_{0}(x)=1 \\
& p_{1}(x)=\left(x-x_{0}\right) \\
& p_{2}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& p_{3}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
\end{aligned}
$$

$$
p_{m}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots \cdot\left(x-x_{m-1}\right)
$$

So we have the form

$$
p_{k}(x)=\prod_{i=0}^{k-1}\left(x-x_{k}\right)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots \cdot\left(x-x_{k-1}\right) .
$$

Consequently,

$$
p_{k}\left(x_{0}\right)=\cdots=p_{k}\left(x_{k-1}\right)=0
$$

## Newton Polynomials

Using this basis lets us formulate the interpolation problem in a simplified manner. Using the Newton polynomials, we search coefficients $a_{0}, a_{1}, \ldots, a_{m} \in \mathbb{R}$ such that

$$
\begin{array}{r}
a_{0} p_{0}\left(x_{0}\right)+a_{1} p_{1}\left(x_{0}\right)+a_{2} p_{2}\left(x_{0}\right)+\cdots+a_{m} p_{m}\left(x_{0}\right)=y_{0}, \\
a_{0} p_{0}\left(x_{1}\right)+a_{1} p_{1}\left(x_{1}\right)+a_{2} p_{2}\left(x_{1}\right)+\cdots+a_{m} p_{m}\left(x_{1}\right)=y_{1}, \\
a_{0} p_{0}\left(x_{2}\right)+a_{1} p_{1}\left(x_{2}\right)+a_{2} p_{2}\left(x_{2}\right)+\cdots+a_{m} p_{m}\left(x_{2}\right)=y_{2}, \\
\vdots \\
a_{0} p_{0}\left(x_{m}\right)+a_{1} p_{1}\left(x_{m}\right)+a_{2} p_{2}\left(x_{m}\right)+\cdots+a_{m} p_{m}\left(x_{m}\right)=y_{m} .
\end{array}
$$

This can be written in matrix notation as

$$
\left(\begin{array}{ccccc}
p_{0}\left(x_{0}\right) & 0 & 0 & \ldots & 0 \\
p_{0}\left(x_{1}\right) & p_{1}\left(x_{1}\right) & 0 & \ldots & 0 \\
p_{0}\left(x_{2}\right) & p_{1}\left(x_{2}\right) & p_{2}\left(x_{2}\right) & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{0}\left(x_{m}\right) & p_{1}\left(x_{m}\right) & p_{2}\left(x_{m}\right) & \ldots & p_{m}\left(x_{m}\right)
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right) .
$$

## Newton Polynomials

The coefficients in that matrix have an explicit form:

$$
p_{i}\left(x_{j}\right)=\left(x_{j}-x_{0}\right)\left(x_{j}-x_{1}\right) \cdots\left(x_{j}-x_{i-1}\right)
$$

The system of equations is invertible because the matrix triangular and the diagonal entries are non-zero, hence the matrix is invertible. We recall that such systems can be solved via forward substitution.

$$
\begin{aligned}
a_{0} & =y_{0} \\
a_{1} & =p_{1}\left(x_{1}\right)^{-1}\left(y_{1}-a_{0} p_{0}\left(x_{1}\right)\right) \\
a_{2} & =p_{2}\left(x_{2}\right)^{-1}\left(y_{2}-a_{1} p_{1}\left(x_{2}\right)-a_{0} p_{0}\left(x_{1}\right)\right), \\
& \vdots \\
a_{m} & =p_{m}\left(x_{m}\right)^{-1}\left(y_{m}-a_{m-1} p_{m-1}\left(x_{m}\right)-\cdots-a_{1} p_{1}\left(x_{m}\right)-a_{0} p_{0}\left(x_{m}\right)\right) .
\end{aligned}
$$

In particular, the coefficient $a_{i}$ only depends on the points $x_{0}, x_{1}, \ldots, x_{i}$. This shows the following fact: we can keep adding points and incrementally construct the coefficients.

## Newton Polynomials

## Example

Once more, consider the quadratic interpolation problem with the following table:

$$
\begin{array}{c|c|c|c}
x & -1 & 0 & 1 \\
\hline y & 6 & 2 & 4
\end{array}
$$

The linear system corresponding to the Newton polynomials is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{l}
6 \\
2 \\
4
\end{array}\right)
$$

The inverse of the matrix is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 2
\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
2 & 2 & 0 \\
1 & -2 & 1
\end{array}\right)
$$

## Newton Polynomials

## Example

We readily check that

$$
\frac{1}{2}\left(\begin{array}{ccc}
2 & 0 & 0 \\
2 & 2 & 0 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
6 \\
2 \\
4
\end{array}\right)=\left(\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right)
$$

This means that the polynomial can be represented as

$$
\begin{aligned}
p(x) & =6+(-4)\left(x-x_{0}\right)+3\left(x-x_{1}\right)\left(x-x_{0}\right) \\
& =6+(-4)(x+1)+3(x)(x+1) \\
& =6+((-4) x+(-4))+\left(3 x^{2}+3 x\right) \\
& =6-4 x-4+3 x^{2}+3 x \\
& =3 x^{2}-x+2
\end{aligned}
$$

## Newton Polynomials

## Example

Instead of computing the inverse matrix, forward substitution is a quick way of getting the coefficients. We get

$$
\begin{aligned}
a_{0} & =6 \\
a_{1} & =2-1 a_{0}=2-6=-4 \\
2 a_{2} & =4-1 a_{0}-2 a_{1}=4-6-2(-4)=6 \Longrightarrow a_{2}=3
\end{aligned}
$$

Suppose we augment our table of input/output values with

$$
x_{3}=2, \quad y_{3}=6
$$

We have $p_{3}(x)=(x+1)(x)(x-1)$ being a cubic polynomial that vanishes on the first points $x_{0}, x_{1}, x_{2}$. The linear system of equations is extended by an additional line

$$
a_{0} p_{0}\left(x_{3}\right)+a_{1} p_{1}\left(x_{3}\right)+a_{2} p_{2}\left(x_{3}\right)+a_{3} p_{3}\left(x_{3}\right)=y_{3} .
$$

## Newton Polynomials

## Example

We reuse the coefficients $a_{0}, a_{1}, a_{2}$ found previously and get

$$
a_{0}+3 a_{1}+6 a_{2}+6 a_{3}=y_{3}
$$

so we calculate

$$
\begin{aligned}
6 a_{3} & =y_{3}-a_{0}-3 a_{1}-6 a_{2} \\
& =y_{3}-6-3(-4)-6(6)=y_{3}-6+12-6(6) \\
\Longrightarrow \quad a_{3} & =\frac{1}{6} y_{3}-1+2-6=4
\end{aligned}
$$

Consequently, the cubic polynomial $q(x)$ solving the interpolation problem is

$$
\begin{aligned}
q(x) & =6+(-4)\left(x-x_{0}\right)+3\left(x-x_{1}\right)\left(x-x_{0}\right)+4\left(x-x_{2}\right)\left(x-x_{1}\right)\left(x-x_{0}\right) \\
& =6+(-4)(x+1)+3(x)(x+1)+4(x-1)(x)(x+1)
\end{aligned}
$$

Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

## Lagrange Polynomials

We define the Lagrange polynomials as follows:

$$
I_{k}(x)=\prod_{\substack{0 \leq i \leq m \\ i \neq k}} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

The Lagrange polynomials are polynomials of degree $m$ : they are the product of $m$ different factors each of which has the form $\left(x-x_{i}\right)\left(x_{k}-x_{i}\right)$. Furthermore, the Lagrange polynomials satisfy the property

$$
I_{k}\left(x_{j}\right)=\prod_{\substack{0 \leq i \leq m \\ i \neq k}} \frac{x_{j}-x_{i}}{x_{k}-x_{i}}= \begin{cases}1 & \text { if } k=j \\ 0 & \text { if } k \neq j\end{cases}
$$

The linear system associated with the interpolation problem ...

$$
\begin{array}{r}
a_{0} I_{0}\left(x_{0}\right)+a_{1} l_{1}\left(x_{0}\right)+a_{2} I_{2}\left(x_{0}\right)+\cdots+a_{m} I_{m}\left(x_{0}\right)=y_{0}, \\
a_{0} I_{0}\left(x_{1}\right)+a_{1} l_{1}\left(x_{1}\right)+a_{2} I_{2}\left(x_{1}\right)+\cdots+a_{m} I_{m}\left(x_{1}\right)=y_{1}, \\
a_{0} I_{0}\left(x_{2}\right)+a_{1} l_{1}\left(x_{2}\right)+a_{2} I_{2}\left(x_{2}\right)+\cdots+a_{m} I_{m}\left(x_{2}\right)=y_{2}, \\
\vdots \\
a_{0} I_{0}\left(x_{m}\right)+a_{1} l_{1}\left(x_{m}\right)+a_{2} I_{2}\left(x_{m}\right)+\cdots+a_{m} I_{m}\left(x_{m}\right)=y_{m} .
\end{array}
$$

## Lagrange Polynomials

... can thus be rewritten in matrix notation as

$$
\left(\begin{array}{ccccc}
I_{0}\left(x_{0}\right) & 0 & 0 & \ldots & 0 \\
0 & I_{1}\left(x_{1}\right) & 0 & \ldots & 0 \\
0 & 0 & I_{2}\left(x_{2}\right) & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & I_{m}\left(x_{m}\right)
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

But this is just the identity matrix! In other words, $a_{i}=y_{i}$ is the solution. Hence

$$
p(x)=y_{0} I_{0}(x)+y_{1} l_{1}(x)+\cdots+y_{m} I_{m}(x)
$$

is the unique polynomial satisfying the Lagrange interpolation property.

## Lagrange Polynomials

## Example

One more time, we consider the quadratic interpolation problem

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | 6 | 2 | 4 |

We only need to calculate the Lagrange polynomials:

$$
\begin{aligned}
& I_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \frac{x-x_{2}}{x_{0}-x_{2}}=\frac{x}{-1} \frac{x-1}{-2} \\
& I_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}} \frac{x-x_{2}}{x_{1}-x_{2}}=\frac{x+1}{1} \frac{x-1}{-1} \\
& I_{2}(x)=\frac{x-x_{0}}{x_{2}-x_{0}} \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{x+1}{2} \frac{x}{1}
\end{aligned}
$$

The solution is the quadratic polynomial

$$
p(x)=6 I_{0}(x)+2 I_{1}(x)+4 I_{2}(x)
$$

## Lagrange Interpolation

## Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

## Error Analysis for Lagrange Polynomials

We have seen different ways of computing and writing the solution to the interpolation problem. Suppose we have a found a polynomial $p(x)$ of degree $m$ such that

$$
p\left(x_{0}\right)=y_{0}, \quad p\left(x_{1}\right)=y_{1}, \quad \ldots \quad p\left(x_{m}\right)=y_{m} .
$$

In many cases, the output values $y_{i}$ are values assumed by some function $f$,

$$
f\left(x_{0}\right)=y_{0}, \quad f\left(x_{1}\right)=y_{1}, \quad \ldots \quad f\left(x_{m}\right)=y_{m} .
$$

Hence the polynomial $p$ interpolates the function $f$ at the points $x_{0}, x_{1}, \ldots, x_{m}$ and can be seen as an approximation of $f$.

We ask whether the interpolation polynomial is a good approximation of $f$. This is answered by the following result.

## Error Analysis for Lagrange Polynomials

## Theorem

Let $[a, b]$ containing the pairwise distinct points $x_{0}, x_{1}, \ldots, x_{m}$. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function with $m+1$ continuous derivatives over $[a, b]$, and let $p(x)$ be the $m$-th degree polynomial which solves

$$
p\left(x_{0}\right)=y_{0}, \quad p\left(x_{1}\right)=y_{1}, \quad \ldots \quad p\left(x_{m}\right)=y_{m} .
$$

Then for all $x \in[a, b]$ there exists $\xi(x) \in[a, b]$ such that

$$
f(x)-p(x)=\frac{\omega(x)}{(m+1)!} f^{(m+1)}(\xi(x)), \quad \omega_{m+1}(x)=\prod_{i=0}^{m}\left(x-x_{i}\right)
$$

## Error Analysis for Lagrange Polynomials

## Proof.

Let $x \in[a, b]$. The result is certainly true if $x$ is one of the data points $x_{0}, x_{1}, \ldots, x_{m}$. Consider the case that $x$ is any other point in $[a, b]$, so $\omega(x) \neq 0$ We define the function

$$
g_{x}:[a, b] \rightarrow \mathbb{R}, \quad t \mapsto f(x)-p(x)-\frac{f(x)-p(x)}{\omega(x)} \omega(t)
$$

We observe that $g_{x}$ has at least $m+2$ zeroes over $[a, b]$, namely the pairwise distinct points $x, x_{0}, x_{1}, \ldots, x_{m}$. By Rolle's theorem, $g_{x}^{\prime}$ has at least $m+1$ zeroes over $[a, b]$, since between two consecutive zeroes of $g_{x}$ there must be a zero of $g_{x}^{\prime}$.

## Error Analysis for Lagrange Polynomials

## Proof.

By similar reasoning, $g_{x}^{\prime \prime}$ has at least $m$ zeroes, and repeating this argument shows that the $k$-th derivative of $g_{x}$ has at least $m+2-k$ zeroes. In particular, $g_{x}^{(m+1)}$ has at least one zero, which we call $\xi_{x} \in[a, b]$.

Hence

$$
\begin{aligned}
0 & =g_{\xi_{x}}^{(m+1)} \\
& =f^{(m+1)}(x)-p^{(m+1)}(x)-\frac{f(x)-p(x)}{\omega(x)}(m+1)! \\
& =f^{(m+1)}(x)-\frac{f(x)-p(x)}{\omega(x)}(m+1)!
\end{aligned}
$$

Rearranging gives the desired result.

## Error Analysis for Lagrange Polynomials

As a consequence, if the function $f$ has $m+1$ continuous derivatives over $[a, b]$, then for any $x \in[a, b]$ we can estimate

$$
|f(x)-p(x)| \leq \frac{1}{(m+1)!} \cdot \prod_{i=0}^{m}\left|x-x_{i}\right| \cdot \max _{\xi \in[a, b]}\left|f^{(m+1)}(\xi)\right| .
$$

