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Lagrange Interpolation

Given a function f : [a, b]→ R over some interval [a, b], we would like to
approximate f by a polynomial.

How do we find a good polynomial?

We have already one example, namely the Taylor polynomial around a point a:

Tm
a f(x) =

m∑
k=0

f(k)(a)
k!

(x− a)k

Note that this can be written as

Tm
a f(x) =

m∑
k=0

ck(x− a)k,

where

ck =
f(k)(a)

k!
.

Evidently, we construct the Taylor polynomial by evaluating f and its
derivatives at a particular point a ∈ R.



Lagrange Interpolation

We recall some representations of the error:

Theorem
Let f : R→ R have continuous derivatives up to order m+ 1. Then
I We have

Rm
a f(x) =

∫ x

a

f(m+1)(t)
m!

(t− a)m dt.

I For every x ∈ R there exists ξx in the closed interval between a and x with

Rm
a f(x) =

f(m+1)(ξx)

(m+ 1)!
(x− a)m+1.

I For every x ∈ R there exists ξx in the closed interval between a and x with

Rm
a f(x) =

f(m+1)(ξx)

m!
(x− ξ)m(x− a).



Lagrange Interpolation

From each of those representations of the error we can derive∣∣f(x)− Tm
a f(x)

∣∣ = ∣∣Rm
a f(x)

∣∣ ≤ 1
m!

max
ξ∈I

∣∣∣f(m+1)(ξ)
∣∣∣ · |x− a|m+1.

or even∣∣f(x)− Tm
a f(x)

∣∣ = ∣∣Rm
a f(x)

∣∣ ≤ 1
(m+ 1)!

max
ξ∈I

∣∣∣f(m+1)(ξ)
∣∣∣ · |x− a|m+1.

where I is the interval between a and x.



Lagrange Interpolation

The basic principle of polynomial interpolation is that we “take
measurements” of f by looking at the values of the function (and its
derivatives) at certain points. We then construct a polynomial that satisfies
the same measurements.

In the case of the Taylor polynomial, we have a single number x0 ∈ R and take
the derivatives up to order m, to construct a degree m polynomial p(x) with

p(x0) = f(x0), p′(x0) = f′(x0), p′′(x0) = f′′(x0), . . . p(m)(x0) = f(m)(x0).

A different way of interpolating a function is known as Lagrange interpolation.

In the case of Lagrange interpolation, we have m different numbers
x0, x1, . . . , xm ∈ R and take function evaluations up to order m, to construct a
degree m polynomial p(x) with

p(x0) = f(x0), p(x1) = f(x1), p(x2) = f(x2), . . . p(xm) = f(xm).



Lagrange Interpolation

Example
Suppose we have got points x0, x1, . . . , xm and values

y0 = f(x0), y1 = f(x1), . . . ym = f(xm)

of some function f that is otherwise unknown. We want to reconstruct a
polynomial that attains the same function values as f. For the sake of
overview, we put this into a table:

x x0 x1 . . . xm
y y0 y1 . . . ym

For this example, let us consider the case m = 2 and

x0 = −1, x1 = 0, x2 = 1,
y0 = 6, y1 = 2, y2 = 4.



Lagrange Interpolation

Example
The table is

x −1 0 1
y 6 2 4

We search for a polynomial p of degree m = 2 such that

p(−1) = 6, p(0) = 2, p(1) = 4.

The solution is the polynomial

p(x) = 2− x + 3x2.

In these notes, we describe different ways to computing and representing
such polynomials.
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Monomial Basis

Suppose we have pairwise different points x0, x1, . . . , xm and that we search
for the coefficients a0, a1, . . . , am of a polynomial

p(x) = a0 + a1x + · · ·+ amxm

such that for some given values y0, y1, . . . , ym we have

p(x0) = y0, p(x1) = y1, . . . p(xm) = ym.

That is, we search for m unknown variables a0, a1, . . . , am ∈ R such that the m
constraints given by the point evaluations are satisfied. This translates into a
linear system of equations

a0 + a1x0 + a2x2
0 + · · ·+ amxm

0 = y0,

a0 + a1x1 + a2x2
1 + · · ·+ amxm

1 = y1,

a0 + a1x2 + a2x2
2 + · · ·+ amxm

2 = y2,
...

a0 + a1xm + a2x2
m + · · ·+ amxm

m = ym.



Monomial Basis

We can rewrite this in matrix notation as
1 x0 x2

0 . . . xm
0

1 x1 x2
1 . . . xm

1
1 x2 x2

2 . . . xm
2

...
...

...
. . .

...
1 xm x2

m . . . xm
m




a0
a1
a2
...
am

 =


y0
y1
y2
...
ym

 .

The matrix in that system called the Vandermonde matrix associated to the
points x0, x1, . . . , xm. We would like to understand the linear system of
equations has got a solution, and for that purpose the Vandermonde matrix.

Theorem
The determinant of the Vandermonde matrix V is

det(V) =
∏

0≤i<j≤m

(xj − xi).



Monomial Basis

Proof.
For the proof we use elementary properties of determinants. Let
x0, x1, . . . , xm ∈ R be pairwise different. Since the determinant is invariant
under row additions and subtractions, we get the identity

det


1 x0 x2

0 . . . xm
0

1 x1 x2
1 . . . xm

1
1 x2 x2

2 . . . xm
2

...
...

...
. . .

...
1 xm x2

m . . . xm
m

 = det


1 x0 x2

0 . . . xm
0

0 x1 − x0 x2
1 − x2

0 . . . xm
1 − xm

0
0 x2 − x0 x2

2 − x2
0 . . . xm

2 − xm
0

...
...

...
. . .

...
0 xm − x0 x2

m − x2
0 . . . xm

m − xm
0


Similarly, the determinat is invariant under additions of columns. We perform
a number of column substractions: we subtract x0-times the m-th column
from the (m+ 1)-th column, subtract x0-times the (m− 1)-th column from the
m-th column, subtract x0-times the (m− 2)-th column from the (m− 1)-th
column, and and so on, until we have subtracted x0-times the first column
from the second column.



Monomial Basis

Proof.
Consequently, we end up with the determinant

det


1 0 0 . . . 0
0 x1 − x0 (x1 − x0)x1 . . . (x1 − x0)xm−1

1
0 x2 − x0 (x2 − x0)x2 . . . (x2 − x0)xm−1

2
...

...
...

. . .
...

0 xm − x0 (xm − x0)xm . . . (xm − x0)xm−1
m


The rows of this determinant have the common factors

(x1 − x0), (x2 − x0), . . . (xm − x0).



Monomial Basis

Proof.
We can extract these common factors from the determinant and get the value

m∏
i=1

(xi − x0) · det


1 0 0 . . . 0
0 1 x1 . . . xm−1

1
0 1 x2 . . . xm−1

2
...

...
...

. . .
...

0 1 xm . . . xm−1
m



=
m∏
i=1

(xi − x0) · det


1 x1 . . . xm−1

1
1 x2 . . . xm−1

2
...

...
. . .

...
1 xm . . . xm−1

m


The last term is the determinat of the Vandermonde matrix for the points
x1, . . . , xm.



Monomial Basis

Proof.
We can repeat this calculation recursively until we only need to compute the
determinant of the Vandermonde matrix for the single point x0, which is just
equals 1. Working up from there, the determinant becomes

m∏
i=1

(xi − x0) ·
∏

1≤i<j≤m

(xj − xi) =
∏

0≤i<j≤m

(xj − xi)

This completes the proof.



Monomial Basis

In particular, since x0, x1, . . . , xm are pairwise different, the determinant of the
Vandermonde matrix is non-zero, and hence that the matrix is invertible. We
conclude that the interpolation problem has a got a unique solution.

Theorem
Given pairwise distinct points x0, x1, . . . , xm ∈ R and values y0, y1, . . . , ym ∈ R,
there exists a unique polynomial p of degree m such that

p(x0) = f(x0), p(x1) = f(x1), p(x2) = f(x2), . . . p(xm) = f(xm).

The polynomials of degree m are a vector space of dimension m+ 1, with a
basis being the monomials up to order m:

1, x, x2, . . . xm,

In particular, if we express the interpolation problem using the monomial
basis, then the basis does not depend on the interpolation points
x0, x1, . . . , xm.

However, the Vandermonde matrix in the formulation has several
disadvantageous properties, e.g., it is very dense.



Monomial Basis

Example
Consider again the quadratic interpolation problem with the following table:

x −1 0 1
y 6 2 4

The solution is 1 −1 1
1 0 0
1 1 1


a0

a1
a2

 =

6
2
4

 .

We check that the determinant of Vandermonde matrix is

det

1 −1 1
1 0 0
1 1 1

 = (1)(2)(1) = 2.



Monomial Basis

Example
The inverse of that Vandermonde matrix is1 −1 1

1 0 0
1 1 1


−1

=
1
2

 0 2 0
−1 0 1
1 −2 1

 ,

and we readily check that

1
2

 0 2 0
−1 0 1
1 −2 1


6

2
4

 =

 2
−1
3

 ,

which is precisely the coefficients of the solution p(x) = 2− x + 3x2.
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Newton Polynomials

We pose the same interpolation but with a different basis. This time, the
basis incorporates the interpolation points x0, x1, . . . , xm ∈ R. We define the
Newton polynomials

p0(x) = 1
p1(x) = (x− x0)

p2(x) = (x− x0)(x− x1)

p3(x) = (x− x0)(x− x1)(x− x2)

...
pm(x) = (x− x0)(x− x1)(x− x2) · · · · · (x− xm−1)

So we have the form

pk(x) =
k−1∏
i=0

(x− xk) = (x− x0)(x− x1) · · · · · (x− xk−1).

Consequently,

pk(x0) = · · · = pk(xk−1) = 0.



Newton Polynomials

Using this basis lets us formulate the interpolation problem in a simplified
manner. Using the Newton polynomials, we search coefficients
a0, a1, . . . , am ∈ R such that

a0p0(x0) + a1p1(x0) + a2p2(x0) + · · ·+ ampm(x0) = y0,
a0p0(x1) + a1p1(x1) + a2p2(x1) + · · ·+ ampm(x1) = y1,
a0p0(x2) + a1p1(x2) + a2p2(x2) + · · ·+ ampm(x2) = y2,

...
a0p0(xm) + a1p1(xm) + a2p2(xm) + · · ·+ ampm(xm) = ym.

This can be written in matrix notation as
p0(x0) 0 0 . . . 0
p0(x1) p1(x1) 0 . . . 0
p0(x2) p1(x2) p2(x2) . . . 0

...
...

...
. . .

...
p0(xm) p1(xm) p2(xm) . . . pm(xm)




a0
a1
a2
...
am

 =


y0
y1
y2
...
ym

 .



Newton Polynomials

The coefficients in that matrix have an explicit form:

pi(xj) = (xj − x0)(xj − x1) · · · · · (xj − xi−1).

The system of equations is invertible because the matrix triangular and the
diagonal entries are non-zero, hence the matrix is invertible. We recall that
such systems can be solved via forward substitution.

a0 = y0,

a1 = p1(x1)
−1(y1 − a0p0(x1)),

a2 = p2(x2)
−1(y2 − a1p1(x2)− a0p0(x1)),

...

am = pm(xm)−1(ym − am−1pm−1(xm)− · · · − a1p1(xm)− a0p0(xm)).

In particular, the coefficient ai only depends on the points x0, x1, . . . , xi. This
shows the following fact: we can keep adding points and incrementally
construct the coefficients.



Newton Polynomials

Example
Once more, consider the quadratic interpolation problem with the following
table:

x −1 0 1
y 6 2 4

The linear system corresponding to the Newton polynomials is1 0 0
1 1 0
1 2 2


a0

a1
a2

 =

6
2
4

 .

The inverse of the matrix is1 0 0
1 1 0
1 2 2


−1

=
1
2

2 0 0
2 2 0
1 −2 1

 .



Newton Polynomials

Example
We readily check that

1
2

2 0 0
2 2 0
1 −2 1


6

2
4

 =

 6
−4
3

 .

This means that the polynomial can be represented as

p(x) = 6+ (−4)(x− x0) + 3(x− x1)(x− x0)

= 6+ (−4)(x + 1) + 3(x)(x + 1)

= 6+ ((−4)x + (−4)) + (3x2 + 3x)

= 6− 4x− 4+ 3x2 + 3x

= 3x2 − x + 2.



Newton Polynomials

Example
Instead of computing the inverse matrix, forward substitution is a quick way
of getting the coefficients. We get

a0 = 6,
a1 = 2− 1a0 = 2− 6 = −4,

2a2 = 4− 1a0 − 2a1 = 4− 6− 2(−4) = 6 =⇒ a2 = 3.

Suppose we augment our table of input/output values with

x3 = 2, y3 = 6.

We have p3(x) = (x + 1)(x)(x− 1) being a cubic polynomial that vanishes on
the first points x0, x1, x2. The linear system of equations is extended by an
additional line

a0p0(x3) + a1p1(x3) + a2p2(x3) + a3p3(x3) = y3.



Newton Polynomials

Example
We reuse the coefficients a0, a1, a2 found previously and get

a0 + 3a1 + 6a2 + 6a3 = y3,

so we calculate

6a3 = y3 − a0 − 3a1 − 6a2

= y3 − 6− 3(−4)− 6(6) = y3 − 6+ 12− 6(6)

=⇒ a3 =
1
6
y3 − 1+ 2− 6 = 4.

Consequently, the cubic polynomial q(x) solving the interpolation problem is

q(x) = 6+ (−4)(x− x0) + 3(x− x1)(x− x0) + 4(x− x2)(x− x1)(x− x0)

= 6+ (−4)(x + 1) + 3(x)(x + 1) + 4(x− 1)(x)(x + 1).
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Lagrange Polynomials

We define the Lagrange polynomials as follows:

lk(x) =
∏

0≤i≤m
i6=k

x− xi
xk − xi

.

The Lagrange polynomials are polynomials of degree m: they are the product
of m different factors each of which has the form (x− xi)(xk − xi).
Furthermore, the Lagrange polynomials satisfy the property

lk(xj) =
∏

0≤i≤m
i6=k

xj − xi
xk − xi

=

{
1 if k = j
0 if k 6= j

The linear system associated with the interpolation problem ...

a0l0(x0) + a1l1(x0) + a2l2(x0) + · · ·+ amlm(x0) = y0,
a0l0(x1) + a1l1(x1) + a2l2(x1) + · · ·+ amlm(x1) = y1,
a0l0(x2) + a1l1(x2) + a2l2(x2) + · · ·+ amlm(x2) = y2,

...
a0l0(xm) + a1l1(xm) + a2l2(xm) + · · ·+ amlm(xm) = ym.



Lagrange Polynomials

... can thus be rewritten in matrix notation as
l0(x0) 0 0 . . . 0

0 l1(x1) 0 . . . 0
0 0 l2(x2) . . . 0
...

...
...

. . .
...

0 0 0 . . . lm(xm)




a0
a1
a2
...
am

 =


y0
y1
y2
...
ym

 .

But this is just the identity matrix! In other words, ai = yi is the solution. Hence

p(x) = y0l0(x) + y1l1(x) + · · ·+ ymlm(x).

is the unique polynomial satisfying the Lagrange interpolation property.



Lagrange Polynomials

Example
One more time, we consider the quadratic interpolation problem

x −1 0 1
y 6 2 4

We only need to calculate the Lagrange polynomials:

l0(x) =
x− x1

x0 − x1

x− x2

x0 − x2
=

x
−1

x− 1
−2 ,

l1(x) =
x− x0

x1 − x0

x− x2

x1 − x2
=

x + 1
1

x− 1
−1 ,

l2(x) =
x− x0

x2 − x0

x− x1

x2 − x1
=

x + 1
2

x
1
.

The solution is the quadratic polynomial

p(x) = 6l0(x) + 2l1(x) + 4l2(x).
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Error Analysis for Lagrange Polynomials

We have seen different ways of computing and writing the solution to the
interpolation problem. Suppose we have a found a polynomial p(x) of degree
m such that

p(x0) = y0, p(x1) = y1, . . . p(xm) = ym.

In many cases, the output values yi are values assumed by some function f ,

f(x0) = y0, f(x1) = y1, . . . f(xm) = ym.

Hence the polynomial p interpolates the function f at the points x0, x1, . . . , xm
and can be seen as an approximation of f.

We ask whether the interpolation polynomial is a good approximation of f.
This is answered by the following result.



Error Analysis for Lagrange Polynomials

Theorem
Let [a, b] containing the pairwise distinct points x0, x1, . . . , xm. Let f : [a, b]→ R
be a function with m+ 1 continuous derivatives over [a, b], and let p(x) be the
m-th degree polynomial which solves

p(x0) = y0, p(x1) = y1, . . . p(xm) = ym.

Then for all x ∈ [a, b] there exists ξ(x) ∈ [a, b] such that

f(x)− p(x) = ω(x)
(m+ 1)!

f(m+1)(ξ(x)), ωm+1(x) =
m∏
i=0

(x− xi).



Error Analysis for Lagrange Polynomials

Proof.
Let x ∈ [a, b]. The result is certainly true if x is one of the data points
x0, x1, . . . , xm. Consider the case that x is any other point in [a, b], so ω(x) 6= 0
We define the function

gx : [a, b]→ R, t 7→ f(x)− p(x)− f(x)− p(x)
ω(x)

ω(t)

We observe that gx has at least m+ 2 zeroes over [a, b], namely the pairwise
distinct points x, x0, x1, . . . , xm. By Rolle’s theorem, g′x has at least m+ 1
zeroes over [a, b], since between two consecutive zeroes of gx there must be
a zero of g′x.



Error Analysis for Lagrange Polynomials

Proof.
By similar reasoning, g′′x has at least m zeroes, and repeating this argument
shows that the k-th derivative of gx has at least m+ 2− k zeroes. In
particular, g(m+1)

x has at least one zero, which we call ξx ∈ [a, b].

Hence

0 = g(m+1)
ξx

= f(m+1)(x)− p(m+1)(x)− f(x)− p(x)
ω(x)

(m+ 1)!

= f(m+1)(x)− f(x)− p(x)
ω(x)

(m+ 1)!.

Rearranging gives the desired result.



Error Analysis for Lagrange Polynomials

As a consequence, if the function f has m+ 1 continuous derivatives over
[a, b], then for any x ∈ [a, b] we can estimate

|f(x)− p(x)| ≤ 1
(m+ 1)!

·
m∏
i=0

|x− xi| · max
ξ∈[a,b]

∣∣∣f(m+1)(ξ)
∣∣∣ .
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