Interpolation and Approximation: Lagrange Interpolation

Martin Licht UC San Diego Winter Quarter 2021 Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

Lagrange Interpolation

Given a function $f : [a, b] \to \mathbb{R}$ over some interval [a, b], we would like to approximate f by a polynomial.

How do we find a good polynomial?

We have already one example, namely the Taylor polynomial around a point a:

$$T_a^m f(x) = \sum_{k=0}^m \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Note that this can be written as

$$T_a^m f(x) = \sum_{k=0}^m c_k (x-a)^k,$$

where

$$\mathsf{c}_k = \frac{f^{(k)}(\mathsf{a})}{k!}.$$

Evidently, we construct the Taylor polynomial by evaluating *f* and its derivatives at a particular point $a \in \mathbb{R}$.

We recall some representations of the error:

Theorem

Let $f:\mathbb{R}\to\mathbb{R}$ have continuous derivatives up to order m+1. Then

We have

$$R_a^m f(x) = \int_a^x \frac{f^{(m+1)}(t)}{m!} (t-a)^m \, \mathrm{d}t.$$

For every $x \in \mathbb{R}$ there exists ξ_x in the closed interval between a and x with

$$R_a^m f(x) = \frac{f^{(m+1)}(\xi_x)}{(m+1)!} (x-a)^{m+1}.$$

For every $x \in \mathbb{R}$ there exists ξ_x in the closed interval between a and x with

$$R_a^m f(x) = \frac{f^{(m+1)}(\xi_x)}{m!} (x - \xi)^m (x - a).$$

From each of those representations of the error we can derive

$$\left|f(x)-T_a^mf(x)\right|=\left|R_a^mf(x)\right|\leq \frac{1}{m!}\max_{\xi\in I}\left|f^{(m+1)}(\xi)\right|\cdot|x-a|^{m+1}.$$

or even

$$|f(x) - T_a^m f(x)| = |R_a^m f(x)| \le \frac{1}{(m+1)!} \max_{\xi \in I} |f^{(m+1)}(\xi)| \cdot |x-a|^{m+1}.$$

where *I* is the interval between *a* and *x*.

The basic principle of polynomial interpolation is that we "take measurements" of f by looking at the values of the function (and its derivatives) at certain points. We then construct a polynomial that satisfies the same measurements.

In the case of the Taylor polynomial, we have a single number $x_0 \in \mathbb{R}$ and take the derivatives up to order *m*, to construct a degree *m* polynomial p(x) with

$$p(x_0) = f(x_0), \quad p'(x_0) = f'(x_0), \quad p''(x_0) = f''(x_0), \quad \dots \quad p^{(m)}(x_0) = f^{(m)}(x_0).$$

A different way of interpolating a function is known as Lagrange interpolation.

In the case of Lagrange interpolation, we have *m* different numbers $x_0, x_1, \ldots, x_m \in \mathbb{R}$ and take function evaluations up to order *m*, to construct a degree *m* polynomial p(x) with

$$p(x_0) = f(x_0), \quad p(x_1) = f(x_1), \quad p(x_2) = f(x_2), \quad \dots \quad p(x_m) = f(x_m).$$

Example

Suppose we have got points x_0, x_1, \ldots, x_m and values

$$y_0 = f(x_0), \quad y_1 = f(x_1), \quad \dots \quad y_m = f(x_m)$$

of some function f that is otherwise unknown. We want to reconstruct a polynomial that attains the same function values as f. For the sake of overview, we put this into a table:

For this example, let us consider the case m = 2 and

$$x_0 = -1, \quad x_1 = 0, \quad x_2 = 1,$$

 $y_0 = 6, \quad y_1 = 2, \quad y_2 = 4.$

Example

The table is

We search for a polynomial p of degree m = 2 such that

$$p(-1) = 6$$
, $p(0) = 2$, $p(1) = 4$.

The solution is the polynomial

$$p(x)=2-x+3x^2.$$

In these notes, we describe different ways to computing and representing such polynomials.

Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

Suppose we have pairwise different points x_0, x_1, \ldots, x_m and that we search for the coefficients a_0, a_1, \ldots, a_m of a polynomial

$$p(x) = a_0 + a_1 x + \cdots + a_m x_m$$

such that for some given values y_0, y_1, \ldots, y_m we have

$$p(x_0) = y_0, \quad p(x_1) = y_1, \quad \dots \quad p(x_m) = y_m.$$

That is, we search for *m* unknown variables $a_0, a_1, \ldots, a_m \in \mathbb{R}$ such that the *m* constraints given by the point evaluations are satisfied. This translates into a linear system of equations

$$\begin{aligned} a_0 + a_1 x_0 + a_2 x_0^2 + \cdots + a_m x_0^m &= y_0, \\ a_0 + a_1 x_1 + a_2 x_1^2 + \cdots + a_m x_1^m &= y_1, \\ a_0 + a_1 x_2 + a_2 x_2^2 + \cdots + a_m x_2^m &= y_2, \\ &\vdots \\ a_0 + a_1 x_m + a_2 x_m^2 + \cdots + a_m x_m^m &= y_m. \end{aligned}$$

We can rewrite this in matrix notation as

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^m \\ 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^m \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

The matrix in that system called the **Vandermonde matrix** associated to the points x_0, x_1, \ldots, x_m . We would like to understand the linear system of equations has got a solution, and for that purpose the Vandermonde matrix.

Theorem

The determinant of the Vandermonde matrix V is

$$\det(V) = \prod_{0 \le i < j \le m} (x_j - x_i).$$

Proof.

For the proof we use elementary properties of determinants. Let $x_0, x_1, \ldots, x_m \in \mathbb{R}$ be pairwise different. Since the determinant is invariant under row additions and subtractions, we get the identity

$$\det \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^m \\ 1 & x_1 & x_1^2 & \dots & x_1^m \\ 1 & x_2 & x_2^2 & \dots & x_2^m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^m \end{pmatrix} = \det \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^m \\ 0 & x_1 - x_0 & x_1^2 - x_0^2 & \dots & x_1^m - x_0^m \\ 0 & x_2 - x_0 & x_2^2 - x_0^2 & \dots & x_2^m - x_0^m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_m - x_0 & x_m^2 - x_0^2 & \dots & x_m^m - x_0^m \end{pmatrix}$$

Similarly, the determinat is invariant under additions of columns. We perform a number of column substractions: we subtract x_0 -times the *m*-th column from the (m + 1)-th column, subtract x_0 -times the (m - 1)-th column from the *m*-th column, subtract x_0 -times the (m - 2)-th column from the (m - 1)-th column, and and so on, until we have subtracted x_0 -times the first column from the second column.

Proof.

Consequently, we end up with the determinant

$$\det \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & x_1 - x_0 & (x_1 - x_0)x_1 & \dots & (x_1 - x_0)x_1^{m-1} \\ 0 & x_2 - x_0 & (x_2 - x_0)x_2 & \dots & (x_2 - x_0)x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_m - x_0 & (x_m - x_0)x_m & \dots & (x_m - x_0)x_m^{m-1} \end{pmatrix}$$

The rows of this determinant have the common factors

$$(x_1 - x_0), (x_2 - x_0), \ldots (x_m - x_0).$$

Proof.

We can extract these common factors from the determinant and get the value

$$\prod_{i=1}^{m} (x_i - x_0) \cdot \det \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & x_1 & \dots & x_1^{m-1} \\ 0 & 1 & x_2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & x_m & \dots & x_m^{m-1} \end{pmatrix}$$
$$= \prod_{i=1}^{m} (x_i - x_0) \cdot \det \begin{pmatrix} 1 & x_1 & \dots & x_1^{m-1} \\ 1 & x_2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & \dots & x_m^{m-1} \end{pmatrix}$$

The last term is the determinat of the Vandermonde matrix for the points x_1, \ldots, x_m .

Proof.

We can repeat this calculation recursively until we only need to compute the determinant of the Vandermonde matrix for the single point x_0 , which is just equals 1. Working up from there, the determinant becomes

$$\prod_{i=1}^m (x_i - x_0) \cdot \prod_{1 \leq i < j \leq m} (x_j - x_i) = \prod_{0 \leq i < j \leq m} (x_j - x_i)$$

This completes the proof.

In particular, since x_0, x_1, \ldots, x_m are pairwise different, the determinant of the Vandermonde matrix is non-zero, and hence that the matrix is invertible. We conclude that the interpolation problem has a got a unique solution.

Theorem

Given pairwise distinct points $x_0, x_1, \ldots, x_m \in \mathbb{R}$ and values $y_0, y_1, \ldots, y_m \in \mathbb{R}$, there exists a unique polynomial p of degree m such that

$$p(x_0) = f(x_0), \quad p(x_1) = f(x_1), \quad p(x_2) = f(x_2), \quad \dots \quad p(x_m) = f(x_m)$$

The polynomials of degree m are a vector space of dimension m + 1, with a basis being the monomials up to order m:

$$1, \quad x, \quad x^2, \quad \ldots \quad x^m,$$

In particular, if we express the interpolation problem using the monomial basis, then the basis does not depend on the interpolation points x_0, x_1, \ldots, x_m .

However, the Vandermonde matrix in the formulation has several disadvantageous properties, e.g., it is very dense.

Example

Consider again the quadratic interpolation problem with the following table:

The solution is

$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix}.$$

We check that the determinant of Vandermonde matrix is

$$\det \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} = (1)(2)(1) = 2.$$

Example

The inverse of that Vandermonde matrix is

$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix},$$

and we readily check that

$$\frac{1}{2}\begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix},$$

which is precisely the coefficients of the solution $p(x) = 2 - x + 3x^2$.

Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

We pose the same interpolation but with a different basis. This time, the basis incorporates the interpolation points $x_0, x_1, \ldots, x_m \in \mathbb{R}$. We define the Newton polynomials

$$p_0(x) = 1$$

$$p_1(x) = (x - x_0)$$

$$p_2(x) = (x - x_0)(x - x_1)$$

$$p_3(x) = (x - x_0)(x - x_1)(x - x_2)$$

$$\vdots$$

$$p_m(x) = (x - x_0)(x - x_1)(x - x_2) \cdots (x - x_{m-1})$$

So we have the form

$$p_k(x) = \prod_{i=0}^{k-1} (x - x_k) = (x - x_0)(x - x_1) \cdots (x - x_{k-1}).$$

Consequently,

$$p_k(x_0)=\cdots=p_k(x_{k-1})=0.$$

Using this basis lets us formulate the interpolation problem in a simplified manner. Using the Newton polynomials, we search coefficients $a_0, a_1, \ldots, a_m \in \mathbb{R}$ such that

$$\begin{aligned} a_0p_0(x_0) + a_1p_1(x_0) + a_2p_2(x_0) + \cdots + a_mp_m(x_0) &= y_0, \\ a_0p_0(x_1) + a_1p_1(x_1) + a_2p_2(x_1) + \cdots + a_mp_m(x_1) &= y_1, \\ a_0p_0(x_2) + a_1p_1(x_2) + a_2p_2(x_2) + \cdots + a_mp_m(x_2) &= y_2, \end{aligned}$$

:

$$a_0p_0(x_m) + a_1p_1(x_m) + a_2p_2(x_m) + \cdots + a_mp_m(x_m) = y_m$$

This can be written in matrix notation as

$$\begin{pmatrix} p_0(x_0) & 0 & 0 & \dots & 0 \\ p_0(x_1) & p_1(x_1) & 0 & \dots & 0 \\ p_0(x_2) & p_1(x_2) & p_2(x_2) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_0(x_m) & p_1(x_m) & p_2(x_m) & \dots & p_m(x_m) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

The coefficients in that matrix have an explicit form:

$$p_i(x_j) = (x_j - x_0)(x_j - x_1) \cdot \cdots \cdot (x_j - x_{i-1}).$$

The system of equations is invertible because the matrix triangular and the diagonal entries are non-zero, hence the matrix is invertible. We recall that such systems can be solved via forward substitution.

$$\begin{aligned} a_0 &= y_0, \\ a_1 &= p_1(x_1)^{-1}(y_1 - a_0p_0(x_1)), \\ a_2 &= p_2(x_2)^{-1}(y_2 - a_1p_1(x_2) - a_0p_0(x_1)), \\ &\vdots \\ a_m &= p_m(x_m)^{-1}(y_m - a_{m-1}p_{m-1}(x_m) - \dots - a_1p_1(x_m) - a_0p_0(x_m)). \end{aligned}$$

In particular, the coefficient a_i only depends on the points x_0, x_1, \ldots, x_i . This shows the following fact: we can keep adding points and incrementally construct the coefficients.

Example

Once more, consider the quadratic interpolation problem with the following table:

The linear system corresponding to the Newton polynomials is

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix}$$

The inverse of the matrix is

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 2 \end{pmatrix}^{-1} = rac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

Example

We readily check that

$$\frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix}.$$

This means that the polynomial can be represented as

$$p(x) = 6 + (-4)(x - x_0) + 3(x - x_1)(x - x_0)$$

= 6 + (-4)(x + 1) + 3(x)(x + 1)
= 6 + ((-4)x + (-4)) + (3x^2 + 3x)
= 6 - 4x - 4 + 3x^2 + 3x
= 3x^2 - x + 2.

Example

Instead of computing the inverse matrix, forward substitution is a quick way of getting the coefficients. We get

$$a_0 = 6,$$

 $a_1 = 2 - 1a_0 = 2 - 6 = -4,$
 $2a_2 = 4 - 1a_0 - 2a_1 = 4 - 6 - 2(-4) = 6 \implies a_2 = 3.$

Suppose we augment our table of input/output values with

$$x_3 = 2, \quad y_3 = 6.$$

We have $p_3(x) = (x + 1)(x)(x - 1)$ being a cubic polynomial that vanishes on the first points x_0, x_1, x_2 . The linear system of equations is extended by an additional line

$$a_0p_0(x_3) + a_1p_1(x_3) + a_2p_2(x_3) + a_3p_3(x_3) = y_3.$$

Example

We reuse the coefficients a_0, a_1, a_2 found previously and get

$$a_0 + 3a_1 + 6a_2 + 6a_3 = y_3$$

so we calculate

$$6a_3 = y_3 - a_0 - 3a_1 - 6a_2$$

= $y_3 - 6 - 3(-4) - 6(6) = y_3 - 6 + 12 - 6(6)$
$$\Rightarrow \qquad a_3 = \frac{1}{6}y_3 - 1 + 2 - 6 = 4.$$

Consequently, the cubic polynomial q(x) solving the interpolation problem is

$$q(x) = 6 + (-4)(x - x_0) + 3(x - x_1)(x - x_0) + 4(x - x_2)(x - x_1)(x - x_0)$$

= 6 + (-4)(x + 1) + 3(x)(x + 1) + 4(x - 1)(x)(x + 1).

Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

Lagrange Polynomials

We define the Lagrange polynomials as follows:

$$U_k(x) = \prod_{\substack{0 \leq i \leq m \ i \neq k}} \frac{x - x_i}{x_k - x_i}.$$

The Lagrange polynomials are polynomials of degree *m*: they are the product of *m* different factors each of which has the form $(x - x_i)(x_k - x_i)$. Furthermore, the Lagrange polynomials satisfy the property

$$I_k(\mathbf{x}_j) = \prod_{\substack{0 \le i \le m \\ i \ne k}} \frac{\mathbf{x}_j - \mathbf{x}_i}{\mathbf{x}_k - \mathbf{x}_i} = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \ne j \end{cases}$$

The linear system associated with the interpolation problem ...

$$\begin{aligned} a_0 l_0(x_0) + a_1 l_1(x_0) + a_2 l_2(x_0) + \cdots + a_m l_m(x_0) &= y_0, \\ a_0 l_0(x_1) + a_1 l_1(x_1) + a_2 l_2(x_1) + \cdots + a_m l_m(x_1) &= y_1, \\ a_0 l_0(x_2) + a_1 l_1(x_2) + a_2 l_2(x_2) + \cdots + a_m l_m(x_2) &= y_2, \\ &\vdots \\ a_0 l_0(x_m) + a_1 l_1(x_m) + a_2 l_2(x_m) + \cdots + a_m l_m(x_m) &= y_m. \end{aligned}$$

... can thus be rewritten in matrix notation as

$$\begin{pmatrix} l_0(x_0) & 0 & 0 & \dots & 0 \\ 0 & l_1(x_1) & 0 & \dots & 0 \\ 0 & 0 & l_2(x_2) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & l_m(x_m) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

But this is just the identity matrix! In other words, $a_i = y_i$ is the solution. Hence

$$p(x) = y_0 l_0(x) + y_1 l_1(x) + \cdots + y_m l_m(x).$$

is the unique polynomial satisfying the Lagrange interpolation property.

Lagrange Polynomials

Example

One more time, we consider the quadratic interpolation problem

We only need to calculate the Lagrange polynomials:

$$\begin{split} & l_0(x) = \frac{x - x_1}{x_0 - x_1} \frac{x - x_2}{x_0 - x_2} = \frac{x}{-1} \frac{x - 1}{-2}, \\ & l_1(x) = \frac{x - x_0}{x_1 - x_0} \frac{x - x_2}{x_1 - x_2} = \frac{x + 1}{1} \frac{x - 1}{-1}, \\ & l_2(x) = \frac{x - x_0}{x_2 - x_0} \frac{x - x_1}{x_2 - x_1} = \frac{x + 1}{2} \frac{x}{1}. \end{split}$$

The solution is the quadratic polynomial

$$p(x) = 6I_0(x) + 2I_1(x) + 4I_2(x).$$

Lagrange Interpolation

Monomial Basis

Newton Polynomials

Lagrange Polynomials

Error Analysis for Lagrange Polynomials

We have seen different ways of computing and writing the solution to the interpolation problem. Suppose we have a found a polynomial p(x) of degree m such that

$$p(x_0) = y_0, \quad p(x_1) = y_1, \quad \dots \quad p(x_m) = y_m.$$

In many cases, the output values y_i are values assumed by some function f,

$$f(x_0) = y_0, \quad f(x_1) = y_1, \quad \dots \quad f(x_m) = y_m.$$

Hence the polynomial *p* **interpolates** the function *f* at the points x_0, x_1, \ldots, x_m and can be seen as an approximation of *f*.

We ask whether the interpolation polynomial is a good approximation of f. This is answered by the following result.

Theorem

Let [a, b] containing the pairwise distinct points x_0, x_1, \ldots, x_m . Let $f : [a, b] \to \mathbb{R}$ be a function with m + 1 continuous derivatives over [a, b], and let p(x) be the *m*-th degree polynomial which solves

$$p(x_0) = y_0, \quad p(x_1) = y_1, \quad \dots \quad p(x_m) = y_m.$$

Then for all $x \in [a, b]$ there exists $\xi(x) \in [a, b]$ such that

$$f(x) - p(x) = \frac{\omega(x)}{(m+1)!} f^{(m+1)}(\xi(x)), \quad \omega_{m+1}(x) = \prod_{i=0}^{m} (x - x_i).$$

Proof.

Let $x \in [a, b]$. The result is certainly true if x is one of the data points x_0, x_1, \ldots, x_m . Consider the case that x is any other point in [a, b], so $\omega(x) \neq 0$ We define the function

$$g_x: [a,b] \to \mathbb{R}, \quad t \mapsto f(x) - p(x) - rac{f(x) - p(x)}{\omega(x)}\omega(t)$$

We observe that g_x has at least m + 2 zeroes over [a, b], namely the pairwise distinct points x, x_0, x_1, \ldots, x_m . By Rolle's theorem, g'_x has at least m + 1 zeroes over [a, b], since between two consecutive zeroes of g_x there must be a zero of g'_x .

Proof.

By similar reasoning, g''_x has at least m zeroes, and repeating this argument shows that the k-th derivative of g_x has at least m + 2 - k zeroes. In particular, $g_x^{(m+1)}$ has at least one zero, which we call $\xi_x \in [a, b]$.

Hence

$$0 = g_{\xi_x}^{(m+1)}$$

= $f^{(m+1)}(x) - p^{(m+1)}(x) - \frac{f(x) - p(x)}{\omega(x)}(m+1)$
= $f^{(m+1)}(x) - \frac{f(x) - p(x)}{\omega(x)}(m+1)!.$

Rearranging gives the desired result.

As a consequence, if the function *f* has m + 1 continuous derivatives over [a, b], then for any $x \in [a, b]$ we can estimate

$$|f(x) - p(x)| \le \frac{1}{(m+1)!} \cdot \prod_{i=0}^{m} |x - x_i| \cdot \max_{\xi \in [a,b]} |f^{(m+1)}(\xi)|.$$