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Und die Bewegung in den Rosen, sieh:
Gebärden von so kleinem Ausschlagswinkel,
daß sie unsichtbar blieben, liefen ihre
Strahlen nicht auseinander in das Weltall.
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1 Introduction
Many scientific texts on the complexity of simplex methods begin with the statement that sim-
plex methods generally feature acceptable running times on practical problems while for each
variant of simplex methods we known a series of instances which realizes worst-case exponen-
tial running time. While a deterministic provably polynomial-time simplex method remained
elusive, theorists grew to formalize the observation that these wort-case instances are special
and ’rare’ among the possible input data. The pursuit of new measures in complexity theory
is justified by the practical relevance of linear programming problems and the gap between
theoretical upper bounds and the observed performance of simplex methods. Furthermore,
fundamental research might lay the ground for applications beyond the initial area of research
and provide useful tools in other contexts.

The principle endeavour of this thesis is to elaborate on the smoothed analysis of the
shadow vertex simplex method by Vershynin [15], which itself builds on top and improves
the smoothed analysis in the seminal publication of Spielman and Teng [13]. The underlying
idea is to estimate the expected number of pivot steps in the simplex method when the input
data are Gaussian variables. We expect such a presentation to be beneficial for the scientific
community.

To ensure self-containedness of the thesis and to impose a common background, we also
include a steep introduction into the theory of linear programming problems. Throughout all
of this thesis, we lay stress on an sound and rigorous mathematical elaboration of the topic.

Smoothed Analysis and its Historical Context The relevance of linear programming
for industrial applications, e.g. as a computational framework for resource allocation, has
been elucidated in the first place by the US-American mathematician George Dantzig and
the Russian mathematician Leonid Kantorovich. The invention of the simplex method, which
seems to have been the most important practical method in computional linear programming,
is generally credited to Dantzig. The underlying idea is that an optimal solution of a linear
programming problem is located at a vertex of the underlying polyhedron; then, having found
an initial vertex, the simplex traverses between neighbouring vertices until an optimal solution
has been found. Each such step is called a pivot step and can be performed with complexity
polynomial in the input size.

Notwithstanding the favourable performance of the simplex method in practical applica-
tions, in comparison to provably polynomial time methods such as ellipsoid-type methods, for
any variant of the simplex method we are aware of a series of instances, parametrized over
the dimension of the search space, which forces the simplex method to perform a number of
pivot steps asympotically exponential in the input size. It has soon been realized that these
instances are pathological only, and that understanding this theorical gap (or closing it), is
considered one of the most important issues in computational mathematics.

The intuition that the expected number of pivot steps is merely polynomial in the input
size, provided that the input has a random component, can be found at least as early as in [5].
A notable precursion to the contempary smoothed analysis is the work of Borgwardt [2], who
studies the expected running time of the shadow vertex simplex method [4] on unit linear pro-
gramming problems where the constraint vectors are distributed independently, identically and
rotationally symmetric. These and similar approaches obtained complexity bounds polynomial
in the input size.

It is a natural idea to view input variables as Gaussian variables, because Gaussian proba-
bility distributions model the effects measurement noise in many applications. The complexity
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estimate depends on the dimension of variables d, the number of constraints n, and the stan-
dard deviation σ of the Gaussian input variables. In [13] (as cited in [15]), the authors obtain
the bound

O∗(n86d55σ−30),

neglecting polylogarithmic factors. This upper bound has been improved in [15, Theorem 1.2]
to

O((d9 + d3σ−4) log7 n)

for n > d ≥ 3 and σ small enough. Notably, this bound is merely polylogarithmic in n.
Intuitively, the deterministic limit is approached as σ → 0. The blow-up coincides with the
lack of a polynomial classical complexity bound. Conversely, as σ →∞, the input approaches
the setting of [2], where a bound polynomial in d and sublinear in n is expected.

Thesis Structure and Results The sections of this thesis follow a loose grouping. We first
assemble an outline of linear programming theory. Second, we collect pertinent elements of
stochastic analysis. In the description and the smoothed analysis of the shadow vertex simplex
method we closely follow the order of [15]. The algorithm and its subroutines are described in
a bottom approach, until only the shadow sizes remain to be estimated. Due to the inherent
difficulty, this last step is accomplished in the two final sections.

We begin with an essentially self-contained introduction into the theory of linear program-
mig problems in Sections 2 – 5. We consider only the structural theory of convex sets, polyhe-
drons and the variational theory of functionals over them, and completely disregard algorithmic
aspects of linear programming. We only assume familiarity with basic concepts from first-year
courses in mathematics, in particular linear algebra, multivariate analysis and basic topology.
The motivation for this elaboration is two-fold. On the one hand, the author’s knowledge in
the theory of linear programming was only superficial prior to this thesis, thus the writing
of this section served to familiarize himself with the theory. On the other hand, considering
the vast amount of literature on the topic and the diversity with respect to the proficiency of
possible readers, it is ought to provide a point of reference in the presentation of the actual
topic of this thesis.

In Section 2 we outline basic results on the optimization of linear functionals over convex
sets. This lays the ground for the specialized polyhedral theory, which is not yet treated
explicitly here. The main results are the variational theory of faces, and the Caratheodory-
Steinitz-type results. We do not refrain from modest usage of analytical tools. While this is
unusual in theoretical computer science, it is not at odds with scientific history: Indeed, im-
portant historical contributors to convex optimization, like, e.g., Krein, Milman and Choquet,
have conducted seminal work in functional analysis, too. (cmp. [18, p.452])

The general convex theory is specialized to the polyhedral theory in Section 3, which in-
troduces basic definitions and structural results. Again, the notion of faces and the natural
partial order on them is the most important notion.

Section 4 puts the spotlight on the fundamental theorem of linear inequalities, whose main
application is a short proof of Farkas’ lemma. We subsequently prove classical results on the
decomposition of polyhedra.

Eventually, Section 5 formally introduces the notion of linear programming problem, the
dual linear programming problem and the notion of polar polyhedra.
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Having gathered the basal aspects of linear programming theory, we turn our attention
towards the stochastic analysis pertaining to the smoothed analysis in Section 6. We give a
self-contained review of selected results on Gaussian random vectors, on the uniform distri-
bution on unit spheres, the Haar measure on the orthogonal group, and on random variables
over sequences. We necessarily take the perspective of a non-probabilist, since the author only
has an eclectic background by himself. Notably, we neither follow the track of the seminal
paper by Spielman and Teng [13], nor the selection of results in [15], but combine the pertinent
sources to a different presentation.

Next, the pivotal algorithm Shadow Vertex Simplex Method is introduced in Section 7.
We lean our presentation to the book of Borgwardt [2], but our formalism is notably differ-
ent. We introduce basic notions of the solution theory of unit linear programming problems,
including concepts specifically relevant to the algorithmic implementation. We study basic
properties of projections of polyhedra onto planes, and eventually outline algorithm Shadow
Vertex Simplex Method with attention to the algorithmic details.

We approach the algorithmic implementation of the complete solution algorithm with a
bottom-up approach. Step by step we introduce the algorithmic details of Phase I and Phase
II. However, the proofs for the bounds of the pivot steps are postponed to later sections.

In Section 8 we introduce the randomized (Monte-Carlo) algorithm Adding Constraints.
Given constraint vectors a1, . . . , an, that algorithm produces a randomized set of additional
constraint vectors an+1, . . . , an+d and a functional direction z0, such that the index set {n +
1, . . . , n + d} describes an optimal solution of the unit linear programming problem with
functional z and constraint vectors a1, . . . , an+d. We follow the presentation of [15, Appendix
B], but our results for the success probability are stated in very general parametrized form,
which allows for the improvement of some absolute constants in the smoothed analysis and,
more importantly, an exposition of the scaling invariance of the probability estimates.

The full Phase I algorithm is briefly outlined in Section 9. Phase I is a randomized algorithm
of Las-Vegas-type. We iteratively build a sequence of linear programming problems with
addtional constraints until suitable initial data for an application of the shadow vertex method
have been found. The eventual bound for the expected total number of pivot steps is given in
abstract form, to be instantiated later.

In Phase II of the solution algorithm, not the original linear programming is solved, but
an “interpolation” linear programming problem, which introduces an additional variable τ
and whose goal functional is parametrized over R. We describe the essential properties of
the interpolation program in Section 10. The Phase II algorithm formally corresponds to
solving a sequence of instatiations of the interpolation problem where the parameter of the
goal functional formally moves from −∞ to ∞.

The top level algorithm is eventually described in Section 11. This incorporates the ideas in
Sections 8 and 9, and the uses the interpolation problem of the previuos section in the Phase
II part. On the one hand, we instantiate the abstract results of the previous sections; on the
other hand, we anticipate the bonds of the shadow size in the followings sections.

The remainder of the thesis elaborates the estimates of the shadow sizes in Phase I and
Phase II.

In Section 12 we describe the pivotal result on the number of edges of the intersection of
a random polytope with a plane, and some of its variations. Notably we slightly generalize
Lemmas 7.2 and 7.3 of [15], and show a distinctive generalization of Lemma 4.0.6 of [13]. We
thus are able to provide a clear presentation of Section 7 of [15]. A minor concession, due to the
desired size of this thesis, is that Lemma 7.5 of [15] is only cited, but not proved. Eventually,
the section provides the desired Phase II estimate.
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The estimate for Phase I builds on top of the previous bound. The analysis boils down to
two steps. First, the maximum norm of the input constraints is located within a sutiable band,
where it serves as an input for Adding Constraints. Second, we use a variation of Theorem
12.3 to estimate the shadow size of the auxiliary linear programming problems in Phase I.

We close the work with Section 14, where some open questions and possible extensions are
outlined.

This thesis has achieved its goal to provide a (mostly) self-contained presentation of the
smoothed analysis in [15]. The original paper is very dense and concise, and references results
of [13]. Instead, we include all necessary preleminary results and avoid conceptual leaps, at
the expense (and with the gain) of a rather technical and formal presentation. A particular
endeavour has been to elucidate the behaviour of the smoothed analysis under scaling of the
variables. This behaviour has been completely understood and elaborated with the completion
of this thesis.
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very interesting topic, assigning this thesis to me and examing it, and his continual willingness
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which I would like to express my appreciation to the complete and exceptionlessly enjoyable
staff, and I wish the very best for their futures. Last but not least, a considerable amount of
financial support has been due to my parents during the past year.

Conventions
We use the following notational guidelines throughout this thesis, which are never to be un-
derstood as too strict. We use Latin uppercase letters (A,B,C,. . . ) for matrices; we use Latin
lowercase letters (a,b,c,. . . ) for vectors and for integer indices; we use Greek lowercase letters
(α,β,γ,. . . ) for scalar entities in R; we use calligraphic Latin uppercase letters (A,B,C,. . . ) for
subsets of Rn; we use fractured Latin uppercase letters (A,B, C, · · · ) for events in the manner
of probability theory.

We freely use notation like a+U := {a+ u | u ∈ U} or U +V = {u+ v | u ∈ U , v ∈ V}, and
similarly for other operations. We write Br(x) for the r-ball around some point x. For any
set A ⊂ Rd, we let voldA the d-dimensional Hausdorff volume of A.

When n ∈ N we let [n] := {1, . . . , n}.
We assume that all vector spaces in this work are real vector spaces. We denote by ~1 and ~0

the all-one and the all-zero vectors, respectively, of finite-dimensional real vector spaces. For
a sequence of vectors x0, x1, . . . in Rd indexed by natural numbers, we write xn → x if that
sequence converges to x ∈ Rd.
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2 Convex Geometry
The aim of this section is to introduce some basic results from linear algebra and convex
geometry. We recall basic notions from linear algebra and topology in Subsection 2.1. Then,
in Subsection 2.2, we derive the separation theorems of convex sets. In Subsection 2.3 we
introduce the concept of faces of convex sets, with a particular focus of the variational theory
of linear functionals. This leads to a proof of the Krein-Milman theorem. Finally, in Subsection
2.4, we give elementary proofs of two theorems of Caratheodory-Steinitz-type.

2.1 Basic Concepts
We begin with basic definitions. Throughout this subsection, let A ⊆ Rd. We say that

A is convex ⇐⇒ ∀a1, a2 ∈ A, λ ∈ [0, 1] : λa1 + (1− λ)a2 ∈ A
⇐⇒ ∀a1, a2 ∈ A, λ1, λ2 ∈ R+

0 , λ1 + λ2 = 1 : λ1a1 + (1− λ2)a2 ∈ A,
A is affine ⇐⇒ ∀a1, a2 ∈ A, λ1, λ2 ∈ R, λ1 + λ2 = 1 : λ1a1 + λ2a2 ∈ A,
A is conical ⇐⇒ ∀a1, a2 ∈ A, λ1, λ2 ∈ R+

0 : λ1a1 + λ2a2 ∈ A,
A is linear ⇐⇒ ∀a1, a2 ∈ A, λ1, λ2 ∈ R : λ1a1 + λ2a2 ∈ A.

Affine and conical spaces are convex. The intersection of convex, affine or conical sets is again
a convex, affine or conical set, respectively. We define convexA, aff A and coneA to be the
smallest convex, affine or conical set, respectively, containing A. Furthermore, we let linA be
the smallest linear space containing A. Their existence can be proven by Zorn’s lemma; direct
constructions are given by

convexA :=

{
k∑
i=1

λiai

∣∣∣∣∣k ≥ 1, ai ∈ A, λi ∈ R+
0 ,

k∑
i=0

λi = 1

}
,

aff A :=

{
k∑
i=1

λiai

∣∣∣∣∣k ≥ 1, ai ∈ A, λi ∈ R,
k∑
i=0

λi = 1

}
,

coneA :=

{
k∑
i=1

λiai

∣∣∣∣∣k ≥ 1, ai ∈ A, λi ∈ R+
0

}
,

linA :=

{
k∑
i=1

λiai

∣∣∣∣∣k ≥ 1, ai ∈ A, λi ∈ R

}
.

A non-empty set A is affine if and only if there does exist a linear subspace U ⊆ Rd such that
for some a ∈ A we have A = a+ U . Note that U is independent of a and that A = a′ + U for
any a′ ∈ A. An affine space A is a linear subspace if and only if 0 ∈ A. We observe

convexA ⊆ aff A ∩ coneA, aff A ⊆ linA, coneA ⊆ linA.

We can reasonably talk about the dimensions of convex sets. If A = a + U is affine, then
dimA = dimU is called the dimension of A. If instead A is merely convex, then we define the
dimension as dimA = dim aff A. A different characterization, which is inspired by Definition
3.2 in [7], can be given in terms of matrices.

Theorem 2.1.
Let A be a non-empty convex set. Then

dimA = min
{

dim kerM |M ∈ Rd×d,∀x, y ∈ A : Mx = My
}
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= min
{

dim kerM |M ∈ Rd×d,∀x, y ∈ aff A : Mx = My
}
.

Proof. Let x ∈ A. Then aff A − x is a linear subspace. Let M be the orthogonal projection
onto (aff A − x)⊥, so MA = {Mx}. Then dim kerM = dim aff A. It remains to show that
there is no M that is constant on A and whose kernel has a smaller dimension. Indeed, if
Mx = My for x, y ∈ A, then for α, β ∈ R with α+ β = 1 we see

M(αx+ βy) = αMx+ βMy = (α+ β)Mx = Mx.

HenceM is constant on aff A. But then it vanishes on aff A−x, so dim kerM ≥ dim aff A.

We call the vectors a0, . . . , ak affinely independent if the vectors a1 − a0, . . . , ak − a0 are
linearly independent. Note that this does not depend on the order of the vectors.

Next we introduce some basic topological concepts that we will use frequently. We refer to
[6] or [17] for basic notions in topology of Rd.

Lemma 2.2.
If A is convex, then its closure A is convex.

Proof. Let A 6= ∅ and xk and yk be convergent sequences in A. Let x, y ∈ A such that xk → x
and yk → y. For λ ∈ [0, 1] let z = λx+ (1− λ)y and zk = λxk + (1− λ)yk. Then zk → z and
zk ∈ A. This implies that z ∈ A, so A is convex.

We note that linA and aff A are always closed, while convexA and coneA need not be
closed, even if A is a closed set.

Lemma 2.3.
A convex set A ⊆ Rd has an interior point if and only if A is d-dimensional.

Proof. If A has an interior point x, then it contains a closed d-dimensional ball Bρ(x) for some
ρ > 0. Then its affine closure must have dimension d, so dimA = d. Conversely, suppose
that A is d-dimensional. We may assume ~0 ∈ A after a translation, so aff A = linA. Then
A must contain a set of d linearly independent points a1, . . . , ad. In conclusion, the d-simplex
convex{~0, a1, . . . , ad} is contained in A, so A contains an interior point.

We call a point a ∈ A a relative boundary point if it is a boundary point of A within aff A
with that set equipped with the relative topology. We call a point a relative interior point,
if it is an interior point of A within aff A with that set equipped with the relative topology.
Note that a singleton has no boundary point and its single member is relative interior. It is
easy to see that any non-empty convex set A has a non-empty relative interior.

Corollary 2.4.
Any non-empty convex set A has a relative interior point.

Lemma 2.5.
Let x ∈ A be a relative interior point. Then for any a ∈ A there exist b ∈ A and λ ∈ (0, 1)
such that x = λa+ (1− λ)b.

Proof. Let L be the infinite line through a and x. Then L \ {x} consists of two non-empty
segments, because x is a relative interior point. Then we may choose b ∈ A in the segment of
L that does not contain a.
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2.2 Separation Theorems and Linear Functionals
Recall that we are given the canonical Euclidean scalar product 〈·, ·〉 on Rd, and that ‖x‖ =√
〈x, x〉 for any x ∈ Rd. For any vector c ∈ Rd we have a linear functional 〈c, ·〉 over Rd. For

any α ∈ R, the α-level set of that functional (or, shorter, of c) is the set of vectors x such that
〈c, x〉 = α. Note that α-level sets are hyperplanes, provided that c 6= ~0. Indeed, if 〈c, xα〉 = α,
then the α level set is given by xα + c⊥.

Let A ⊆ Rd. Then we write

distA(x) := inf
a∈A
‖x− a‖

for the distance of a point x from A. Note that distA(x) = 0 if and only if x ∈ A. The infimum
is in fact a minimum provided that A is closed:

Lemma 2.6.
Let A 6= ∅ be closed. For x ∈ Rd there exists a ∈ A such that distA(x) = ‖x− a‖.

Proof. Let ρ = distA(x) and set B = A ∩ Bρ+1(x). Then B is closed and bounded, i.e., it is
compact. The continuous function ‖x− ·‖ thus has a minimizer a over B. Because A \ B has
a distance from x larger than ρ, the element a is the minimizer of the distance over A.

Our next goal is deriving the standard separation theorems. The presentation is inspired
by the usual treatment of the separation theorems in functional analysis. Notably, we do not
utilize Minkowski functionals for the proofs.

Lemma 2.7 ([18, Lemma V.3.3], [8, Appendix 1, Theorem 3]).
Suppose that A is non-empty, closed and convex, a ∈ A and x ∈ Rd. Then

‖a− x‖ = distA(x) ⇐⇒ ∀y ∈ A : 〈x− a, y − a〉 ≤ 0.

The last inequality is strict for x /∈ A. Furthermore, such a vector a ∈ A is unique.

Proof. Suppose the right-hand statement holds. Then

‖x− y‖2 = ‖x− a+ a− y‖2 = ‖x− a‖2 + ‖a− y‖2 − 2〈x− a, y − a〉 ≥ ‖x− a‖2.

Conversely, suppose the left-hand statement holds. For any τ ∈ [0, 1] we see

‖x− a‖2 ≤ ‖x− (1− τ)a+ τy‖2 = 〈x− (1− τ)a+ τy, x− (1− τ)a+ τy〉
= ‖x− a‖2 + τ2‖a− y‖2 + 2τ〈x− a, a− y〉,

which implies 〈x − a, y − a〉 ≤ τ
2‖a − y‖

2 for 0 < τ ≤ 1. For τ → 0 the inequality of the
right-hand statement follows. This proves the equivalence of both statements. In case that
x /∈ A, strictness of the inequality follows from a 6= x and

0 ≤ 〈a− x, y − a〉 = 〈a− x, y − x〉 − 〈a− x, a− x〉 = 〈a− x, y − x〉 − ‖a− x‖2,

because ‖a− x‖ > 0.
To prove the uniqueness, suppose that a, a′ ∈ A satisfy ‖a′ − x‖ = ‖a − x‖ = distA(x),

and without loss of generality we assume x = 0. Then by convexity we have 1
2a + 1

2a
′ ∈ A,

and a and a′ are not colinear by the minimization property. Then the uniqueness follows from
Minkowski’s inequality.
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We call H a supporting hyperplane of A at a ∈ Rd if a ∈ H and A lies within one of the
two closed halfspaces induced by H.

Theorem 2.8 ([8, Appendix 1, Theorem 4]).
If a ∈ ∂A, then there exists a supporting hyperplane of A at a.

Proof. If the claim holds for A, then it holds for A as well. Therefore we may assume that A is
closed. Let bk → a with bk /∈ A. Let qk ∈ A be the unique minimizer of the distance to bk over
A. Then we know that 〈qk−bk, ·−bk〉 > 0 overA, and conclude that ‖qk−bk‖−1〈qk−bk, ·−bk〉 >
0 over A. The sequence ‖qk − bk‖−1(qk − bk) has a accumulation point q ∈ S1. By limit
arguments we infer that 〈q, · − a〉 ≥ 0 over A. The desired hyperplane is a+ lin{q}⊥.

Theorem 2.9 (separation theorem, first version).
Suppose that A is convex and closed and ~0 /∈ A. Then there exists c ∈ Rd such that

∀x ∈ A : 〈c, x〉 > 0.

Proof. Let A 6= ∅ and a ∈ A minimize ‖ · ‖ over A. Then a 6= 0, i.e., ‖a‖ 6= 0, and Lemma 2.7
implies that 〈a, y〉 ≥ ‖a‖2 > 0 for y ∈ A.

Theorem 2.10 (separation theorem, second version).
Suppose that A is convex and open and ~0 /∈ A. Then there exists c ∈ Rd such that

∀x ∈ A : 〈c, x〉 > 0.

Proof. If ~0 /∈ A, then we may apply the previous theorem to A. Otherwise ~0 ∈ ∂A. Let H be
a supporting hyperplane of A through ~0, and let c ⊥ H point towards A. Because A is open
we know that H ∩A = ∅, and the claim follows.

Theorem 2.11 (separation theorem, third version).
If A and B are convex and disjoint, with A open, then there exists c ∈ Rd such that

∀a ∈ A, b ∈ B : 〈c, a〉 < 〈c, b〉.

Proof. Let C := A−B. Since A and B are disjoint we find ~0 /∈ C. Since A is open, so is C. We
derive the existence of c as desired by the Theorem 2.10.

2.3 Faces of Convex Sets
Our goal in this section is to discuss faces of convex sets, and to derive the Krein-Milman
theorem.

Let A be convex. We call F ⊆ A a face of A if F is convex and

∀x, y ∈ A, λ ∈ [0, 1] : (λx+ (1− λ)y ∈ F =⇒ x, y ∈ F) .

We call x ∈ A an extremal point, if {x} is a face, i.e., if x is not the convex combination of
other points in A. We let exA denote the set of extremal points of A.

Lemma 2.12.
Suppose that F , G and A are convex subsets of Rd such that F ⊆ G is a face of G and G ⊆ A
is a face of A. Then F is a face of A.
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Proof. Suppose that F 6= ∅ and z ∈ F , λ ∈ [0, 1] and x, y ∈ C \F such that λx+ (1−λ)y = z.
Then x ∈ A \ G contradicts that G is a face of A, while x ∈ G \ F contradicts F being a face
of G. Thus x ∈ F , and therefore F is a face of A.

Lemma 2.13.
Suppose that F , G and A are convex subsets of Rd such that F ⊆ G is a face of A and G ⊆ A
is a face of A. Then F is a face of G.

Proof. If F is not a face of G, then there exist x, y ∈ G and λ ∈ (0, 1) with x or y in G \ F ,
such that λx+ (1− λ)y ∈ F . But then F is not a face of A, which is a contradiction. So F is
a face of G.

Corollary 2.14.
If F is a face of A, then exF = exA ∩ F .

Lemma 2.15.
A convex set F ⊆ A is a face of A if and only if A \ F is convex.

Proof. If A \ F is convex then

∀x, y ∈ A : λ ∈ [0, 1] : λx+ (1− λ)y /∈ F .

Then F satisfies the definition of a face. If F is a face, then

∀x, y ∈ A \ F , λ ∈ [0, 1] : λx+ (1− λ)y ∈ A \ F ,

which had to be shown.

Corollary 2.16.
Relative interior points of a convex set A are not contained in any proper face. Any convex
set has a point not contained in any proper face.

Lemma 2.17.
If F ⊂ A is a proper face of A, then dimF < dimA.

Proof. We have dimF ≤ dimA since aff F ⊆ aff A. Suppose that dimF = dimA. Then
dimF contains an interior point of A, which is an interior of A, too. But this contradicts the
previous corollary.

Lemma 2.18.
If F is a non-empty proper face of A, then there exists ~0 6= c ∈ Rd such that F is contained
within the maximum level set of c over A, and such that c is not constant over A.

Proof. After a coordinate transform, we may assume that A is full-dimensional. Since F is
a face, it does not contain a relative interior point of A. So F is a subset of the relative
boundary. Let x ∈ F be a relative interior point of F . There exists a supporting hyperplane
of A at x, therefore there exists c ∈ Rd that takes on a maximum at x. But then it attains
this maximum everywhere on F since otherwise we had a contradiction.

Lemma 2.19.
If A is closed and convex, then its faces are closed.

Proof. Suppose that F is a face of A. Then there exists a hyperplane such that G = A∩H is
a proper closed face of A and F ⊆ G, using Lemma 2.18. If F = G, then there is nothing more
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to show. Otherwise, dimG < dimA, and we may repeat the argument until dimF = dimG,
in which case F = ∅ or F = G.

Theorem 2.20 (Krein-Milman, [18, Theorem VIII.4.4]).
Let A 6= ∅ be compact and convex. Then exA 6= ∅ and A = convex exA.

Proof. Since A is closed, the faces of A are closed. Let all non-empty faces be partially ordered
by inclusion. By Lemma 2.17, or by Zorn’s lemma, there does exists a minimal non-empty
face F , not containing a proper subface.

Suppose that F is not a singleton. For x, y ∈ F distinct, there exists c ∈ Rd such that
〈c, x〉 < 〈c, y〉. Let γ ∈ R be the maximum of c over F , which exists because F is compact.
Let F+ be the intersection of F and the γ level set of c. Then F+ is a proper subface of F ,
which is a contradiction. So a minimal face F must be a singleton.

Let B = convex exA. Assume there exists z ∈ A \ B. By the separation theorem there
exists c ∈ Rd such that 〈c, z〉 > 〈c,B〉. Let F be the maximizing face of c in A. Then exF 6= ∅
and exF ⊆ exA, but exF ∩ B = ∅, which is a contradiction. Thus we have A = B.

2.4 Caratheodory-Steinitz-type Results
We provide proofs of two Caratheodory-Steinitz-type results. These results state that, if a
vector x ∈ Rd lies in the convex or conal hull of a set A of vectors, then it can be written
as the convex or conal combination, respectively, of only a few elements of A. The first one,
Lemma 2.21 states this for convex hulls, and its proof is common in literature. The second
one, Lemma 2.22, is a variation for conal hulls, and the author is not aware of a direct proof
in literature. There are only minor differences in the respective proofs.

Lemma 2.21 (Convex hull version).
Let A be a subset of Rd. Then any x ∈ convexA is the convex combination of at most d+ 1
points of A.

Proof. Assume A 6= ∅ and let x ∈ A and assume that

x =

k∑
i=0

λiai, λi > 0,

k∑
i=0

λi = 1, ai ∈ A.

If k > d, then the vectors a1 − a0, . . . , ak − a0 are linearly dependent. Then there exist
µ1, . . . , µk ∈ R, not all 0, such that, when writing µ0 = −µ1 − · · · − µk, we have

k∑
i=1

µi(ai − a0) = ~0,

k∑
j=0

µj = 0,

k∑
j=0

µjaj = ~0.

Because not all µj are 0, there exist µj > 0. Choose i indices in {0, . . . , k} with µi > 0 such
that α = λi/µi is minimal among those. Without loss of generality i = 0. Then we see for
every j ∈ [k] that λj − αµj ≥ 0, and, in particular, λ0 − αµ0 = 0. So we see that

x =

k∑
i=0

λiai =

k∑
i=0

λiai − α
k∑
j=0

µjaj =

k∑
j=0

(λj − αµj)aj =

k∑
j=1

(λj − αµj)aj .

The coefficients (λj − αµj) are non-negative. Furthermore, their sum is 1. This process can
be repeated, until we have constructed the desired affinely independent points. There are at
most d+ 1 of them.
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Lemma 2.22 (Conical hull version).
Let A be a subset of Rd. Then any x ∈ coneA is the conical combination of at most d linearly
independent vectors of A.

Proof. Assume A 6= ∅ and let x ∈ A and assume that

x =

k∑
i=1

λiai, λi > 0, ai ∈ A.

Assume that the vectors a1, . . . , ak are linearly dependent. Then there exist µ1, . . . , µk ∈ R,
not all 0, such that

k∑
i=1

µiai = ~0,

Because not all µi are 0, we may assume w.l.o.g. that some of these coefficients are positive.
Choose 1 ≤ l ≤ k with µl > 0 such that α = λi/µi is minimal. W.l.o.g., k = l. Then we see
for every i ∈ [k] that λi − αµi ≥ 0, and, in particular, λk − αµk = 0. So we see that

x =

k∑
i=1

λiai =

k∑
i=1

λiai − α
k∑
i=1

µiai =

k∑
i=1

(λi − αµi)ai =

k−1∑
j=1

(λj − αµj)aj .

The coefficients (λj − αµj) are non-negative. This process can be repeated, until we have
constructed the desired linearly independent vectors. There are at most d of them.

3 Basics of Polyhedrons
We introduce polyhedrons and explore their combinatorial and geometric structure. The usage
of the variational theory of linear functionals forshades the investigation of linear program-
ming, which is the point of this work. In the following subsections, we elaborate on the notion
of faces of a polyhedron, inspect the classes of polyhedrons constituted by polyhedral cones
and polytopes, and finally introduce minimal and maximal faces.

Let m, d ∈ N0. Let A ∈ Rm×d and b ∈ Rm. We call

[A, b] :=
{
x ∈ Rd | Ax ≤ b

}
the polyhedron generated by A and b. Note that we also allow m = 0, i.e., the case of no
constraints, in which case we define [A, b] = Rd. Because [A, b] is the intersection of convex
and topologically closed sets, we immediately observe:

Lemma 3.1.
[A, b] is convex and topologically closed.

Given a class of objects, it is always a good idea to study structure-preserving transforma-
tions between these objects. We do this only tentatively, in order to provide some technical
tools. Let us consider linear mappings of polyhedrons.

Lemma 3.2.
Let P = [A, b] ⊆ Rd be a polyhedron, and let T : Rd → Rl be a linear transform. Then
T (P) ⊆ Rl is a polyhedron.
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Proof. Suppose that T is the orthogonal projection from Rd to Rd−1 with T (x1, . . . , xd) =
(x2, . . . , xd). Without loss of generality, we assume that the first column of A has entries in
{−1, 0, 1}. Let I−1, I0 and I1 be the corresponding index sets. If (x1, x2, . . . , xd) ∈ [A, b], then

ai2x2 + · · ·+ aidxd ≤ bi for i ∈ I0,
(aj2 − ak2)x2 + · · ·+ (ajd − akd)xd ≤ bj − bk for j ∈ I1, k ∈ I−1.

Conversely, if (x2, . . . , xd) satisfies the above equations, then β+ ≤ β−, where

β+ := sup
j∈I1

aj2x2 + · · ·+ ajdxd − bj ∈ [−∞,∞),

β− := inf
k∈I−1

bk − ak2x2 − · · · − akdxd ∈ (−∞,∞].

We can choose x1 ∈ [β+, β−] to obtain (x1, . . . , xd) ∈ [A, b]. After coordinate permutation and
iteration, we conclude the statement holds for arbitrary coordinate projections T : Rd → Rl,
l < d. In the case of general T , we verify the following equalities:

T (P) =
{
y ∈ Rl | ∃x ∈ Rd : Tx = y, Ax ≤ b

}
= TRl

({
(x, y) ∈ Rd × Rl | Tx = y, Ax ≤ b

})
= TRl

({
(x, y) ∈ Rd × Rl | −Tx+ y ≤ ~0, Tx− y ≤ ~0, Ax ≤ b

})
,

where TRl : Rd × Rl → Rl is the coordinate projection. Therefore T (P) is the orthogonal
projection of a polytope. This proves the result.

Note that the proof implicitly involves the Fourier-Motzkin-elimination, which turns out to
be a statement on the orthogonal projection of polyhedra.

3.1 Faces
We specialize the general theory of faces as in Section 2.

Lemma 3.3.
Let [A, b] be a polyhedron. Then for each relative boundary point x ∈ ∂[A, b] there exists a
unique non-empty maximal index set I ⊆ [m] such that AIx = bI .

Proof. The set [A, b] is the intersection of halfspaces

Hi = {x ∈ Rd | 〈ai, x〉 ≤ bi}

for 1 ≤ i ≤ m. Assume that x ∈ ∂[A, b] is a relative boundary of [A, b], but there exists ε > 0
such that Bε(x) ⊂ Hi for 1 ≤ i ≤ m. Then x is contained in a finite intersection of open
sets, and thus x must be an interior point of [A, b], which is a contradiction. This proves the
lemma.

Theorem 3.4.
For each non-empty proper face F of [A, b] there does exist a unique non-empty maximal index
set I ⊆ [m] such that F = {x ∈ [A, b] | AIx = bI}.

Proof. After a coordinate transform, we may assume no inequality in Ax ≤ b is redundant,
and that no inequality is satisfied with equality. Let F ⊆ ∂[A, b] be a non-empty proper face.
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Let I ⊆ [m] be a maximal index set such that AIz = bI for all z ∈ F . Suppose that
I = ∅. We let z1, . . . , zm ∈ F be vectors such that atizi < bi for 1 ≤ i ≤ m, and set
z := m−1(z1 + · · · + zm). Then z ∈ F does not satisfy any equality constraint, so it must be
an relative interior point of [A, b]. But this is a contradiction, and we conclude that I 6= ∅.

Let G := {x ∈ [A, b] | AIx = bI}. Note that G is a face of [A, b], and that F is a face of the
polyhedron G. Let J = [m]− I. Because I has been chosen maximal, no inequality with index
J is satisfied with equality everywhere over F . But then after another coordinate transform,
we see that F is the face of polyhedron that does not satisfy any inequalities of the polyhedron
with equality. But then F is not a proper face of G, so F = G.

This proves the theorem.

Theorem 3.5.
Let [A, b] ⊆ Rd be a polyhedron. For any face F of [A, b] there exists c ∈ Rd such that c
attains its maximum over [A, b] precisely over F .

Proof. Let I be the maximal index set such that F = {x ∈ [A, b] | AIx = bI}. Then
c :=

∑
i∈I ai is the desired vector.

Corollary 3.6.
Each polyhedron has only a finite number of faces. In particular, it has only a finite number
of extremal points.

We introduce a technical definition. Let 〈ai, x〉 ≤ bi be an inequality of Ax ≤ b, for
A ∈ Rm×d, b ∈ Rm and 1 ≤ i ≤ m. We call 〈ai, x〉 ≤ bi an implicit equality, if already
〈ai, x〉 = bi for x ∈ [A, b]. We partition the rows of A and b into the set of implicit equalities,
A=x ≤ b, and the other ones, A+x ≤ b. We let I= and I+ denote the respective sets of indices.
Note that there exists an element x ∈ [A, b] such that A=x = b and A+x < b. We see

Lemma 3.7 ([12, Chapter 8, Equation (8)]).
For a polyhedron P = [A, b] we have

aff P =
{
x ∈ Rd | A=x = b

}
.

Proof. The left-hand side is included in the right-hand side by definition. On the other hand,
suppose that x0 ∈ Rd with A=x0 = b=, and let x1 ∈ P with A=x1 = b= and A+x1 < b+.
Now, either x0 ∈ P ⊆ aff P, or aff{x0, x1} contains a point z ∈ P with z 6= x1. But then
x0 ∈ aff P.

This allows us to characterize dimP as follows:

dimP = dim aff P = dim
{
x ∈ Rd | A=x = b

}
= dim kerA = n− rngA=.

Lemma 3.8.
A polyhedron has no proper subfaces if and only if it is an affine subspace.

Proof. Affine subspaces do not have non-empty proper subfaces. Conversely, if a polyhedron
[A, b] has no proper subfaces, then no x ∈ [A, b] satisfies an inequality of A+x ≤ b+ with
equality. Let j ∈ I+ and Ãx ≤ b̃ be the subsystem of Ax ≤ b after removing the constraint j.
Let x̃ ∈ [Ã, b̃] \ [A, b], so 〈aj , x̃〉 > bj , and the boundary of the half-space Hj := {〈aj , x̃〉 ≤ bj}
separates x̃ and [A, b]. Let x ∈ [A, b], then the line segment [x, x̃] is contained in [Ã, b̃]. Then
[x, x̃] ∩ Hj is contained in [A, b] and contains a point in ∂Hj . But this is a contradiction, so
[Ã, b̃] \ [A, b] = ∅. Hence j is a redundant constraint. A repetition of this yields that I+ is
redundant in Ax ≤ b. But then [A, b] = [A=, b=].
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We now turn our attention to the behaviour of faces under linear transformations.

Theorem 3.9.
Let P ⊆ RD and S ⊆ Rd be polyhedra. Let T : RD → Rd be a linear mapping, such that
TP = S. Then for any face F of S the preimage of F under T in P is a face G of P.

Proof. Let F be a face of S. Then there exists a maximal subset G of P such that TG = F .
Suppose that G is not a face of P. Then there exist z ∈ G, x, y ∈ P and 0 < λ < 1 such that
λx+ (1− λ)y = z, and w.l.o.g. we have y /∈ G. But then

λTx+ (1− λ)Ty = Tz ∈ F

whereas y /∈ F , since G has been chosen maximal. But this contradicts F being a face.

3.2 Polyhedral Cones and Polytopes
Polyhedral cones are sets that are both a polyhedron and a cone. They have a very simple
characterization.

Theorem 3.10.
Let [A, b] be a non-empty polyhedral cone. Then [A, b] = [A,~0].

Proof. Because [A, b] is a cone, we have ~0 ∈ [A, b]. Therefore, all entries of b are non-negative.
Suppose that for i ∈ [m] we have bi > 0. Then either 〈ai, x〉 ≤ 0 for all x ∈ [A, b], so that
we may replace bi by 0, or this exist x ∈ [A, b] such that 〈ai, x〉 = γ with 0 < γ ≤ bi. But
because [A, b] is a cone, there exists τ > 0 such that τx ∈ [A, b] and 〈ai, τx〉 = τγ > bi. This
is a contradiction, so we may replace bi by 0. This proves the claim.

In fact, the conal combination of finitely many vectors is a polyhedral cone.

Lemma 3.11.
Let A = {a1, . . . , am} ⊂ Rd. Then coneA is a polyhedral cone.

Proof. We consider the mapping

T : Rm → Rd, x 7→
m∑
i=1

xiai.

and let C = {x ∈ Rm | x ≥ ~0}. Then obviously TC = coneA. Since C is a polyhedron and
linear mapping preserve polyhedrons, we conclude the desired statement.

Another subclass of polyhedrons are polytopes. We define polytopes as compact polyhedra.
Recall that polyhedra are topologically closed; by the Heine-Borel theorem [6, Chapter I.4],
we already infer that a polyhedron P is a polytope if and only if it is a bounded set. By the
Krein-Milman theorem, we find that

Corollary 3.12.
A polytope is the convex closure of finitely many points.

The converse result is easy to prove as well.

Lemma 3.13.
The convex closure of finitely many points is a polytope.

17



Proof. Let z0, . . . , zt ∈ Rd. We consider

T : Rt → Rd, x 7→
t∑
i=1

xizi + (1−
t∑
i=1

xi)z0.

Let ∆t = convex{0, e1, . . . , et}. Then T (∆t) is the linear transform of a polytope. Because
T is continuous and ∆t is compact, T (∆t) is compact. Because ∆t is a polyhedron and T is
linear, T (∆t) is a polyhedron. So T (∆t) is a polytope by definition.

3.3 Extremal Faces
The purpose of this subsection is to study faces of P that are extremal with respect to the
inclusion order. For a polyhedron P a face F is called minimal if its only proper subface is the
empty set, and a proper face F is called a facet of P if it is not a proper face of any proper
face of P. A minimal face that is a singleton is called a vertex of P. We study these concepts
in more detail.

We see that a face of P is minimal if and only if it is an affine subspace, which implies that
the minimal faces of polytopes are vertices.

Lemma 3.14.
Suppose that no inequality in A+x ≤ b+ is implied by the other inequalities in Ax ≤ b. Then
there is a one-to-one correspondence between the facets P and I+, given by

F = {x ∈ P | 〈ai, x〉 = bi} .

Proof. Let F = {x ∈ P | AIx = bI} be a facet of P, where I ⊆ I+, and let i ∈ I. But then
F ′ = {x ∈ P | 〈ai, x〉 = bi} satisfies

F ′ 6= P, F ⊆ F ′ ⊆ P,

This implies that I = {i}. Therefore, for each facet there exists an index as desired. We
furthermore show that the choice of index is unique. Let J = I+ − {i}. Let x1 ∈ [A, b] with
A+x1 < b+. Because we assume irredudancy of A+x ≤ b+ in Ax ≤ b, there exists x2 with
A=x2 = b=, 〈ai, x2〉 > bi and AJx0 ≤ bJ . Then a suitable convex combination x0 of x1 and
x2 satisfies A=x0 = b=, 〈ai, x0〉 = bi and AJx0 < bJ . This implies that the choice of the index
is unique.

Lemma 3.15.
Let F ⊆ P. Then F is a minimal face of P if and only if ∅ 6= F ⊆ P and there exists I ⊆ [m]
such that

F =
{
x ∈ Rd | AIx = bI

}
.

Proof. A face of the form
{
x ∈ Rd | AIx = bI

}
is an affine subspace, and thus has no facets.

Suppose that F is a minimal face. Let I, J ⊆ [m] be such that

F =
{
x ∈ Rd | AIx = bI , AJx ≤ bJ

}
,

and suppose that J has minimum cardinality. Then no inequality in AJx ≤ bJ is implied by
AIx = bI and the other inequalities. By Lemma 3.14, J = ∅, so that F has no facets. But
then F must be a minimal face.
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This has a nice consequence for the dimensions of the faces of a polyhedron:

Lemma 3.16.
Suppose that P = [A, b] has no implicit inequalities. Then P is full-dimensional.

Proof. Suppose that Ax ≤ b has no implicit inequalities. Then there exists x0 ∈ P such
that Ax0 < b. Suppose now that P is not full-dimensional. W.l.o.g., we assume 0 ∈ P. Let
then H be a hyperplane with normal ~n such that P ⊆ H. Then there exists ε > 0 such that
A(x0 + ε~n) < b. This is a contradiction, so P is full-dimensional.

Lemma 3.17.
Let F be a facet of P. Then dimF = dimP − 1.

Proof. Let P = [A, b] and let F be a facet of P. After translation, rotation, and skipping
of trivial coordinate axes, we may assume that A=x ≤ b= is the empty system, so A+ = A,
b+ = b and P is full-dimensional. Let i be associated index to F . Then there exists x0 ∈ F
which satisfies the i-th inquality with equality, but no other inequalities with equality. There
exists γ > 0 such that Bγ(x0) satisfies all inequalities except the i-th, but no inequality with
equality. Then there exists α > 0 small such that x0 + αai satisfies no inequality, so x0 + αai
is an interior point. Then there exists β > 0 such that Bβ(x0 + αai) ⊂ P, because P is
full-dimensional. We conclude that for α and β small enough, F contains the translate of an
(d− 1)-dimensional ball, so dimF = d− 1.

Corollary 3.18.
Let F be a face of the polyhedron P. If dimP − dimF > 1, then there exists a face G of P
such that F ( G ( P and dimF < dimG < dimP.

In order to characterize minimal faces, we define the lineality space of P as

linealP :=
{
y ∈ Rd | Ay = ~0

}
≡ kerA.

We call P pointed if linealP = ~0.

Lemma 3.19.
All minimal faces are translates of the lineality space of P.

Proof. Let F be a minimal face of P. Let I ⊆ [m] such that F =
{
x ∈ Rd | AIx = bI

}
. We

then observe linealP = kerA ⊆ kerAI , so F contains a suitable translate of linealP. On the
other hand, suppose there exists z ∈ kerAI and j ∈ [m]− I such that 〈aj , z〉 6= 0. Let x ∈ F ,
then x+ αz ∈ F for α ∈ R. But since F ⊆ P, there exists α ∈ R such that x+ αz ∈ F while
〈aj , x+ αz〉 > bj . We conclude that kerAI = kerA, from which the claim follows.

Corollary 3.20.
For F a minimal face of P we have dimF = dim linealP.

Corollary 3.21.
For each vertex of P there exists I ⊆ [m] with |I| = d such that AIx = bI .

We conclude this section with further results on the structure of polyhedral cones.

Theorem 3.22.
Let P be a polyhedral cone spanned by the vectors a1, . . . , am. Then each face of P is spanned
by a subset of these vectors.
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Proof. Again, we consider the mapping

T : Rm → Rd, x 7→
m∑
i=1

xiai.

and let C = {x ∈ Rm | x ≥ ~0}, so TC = P. Let F be a face of P. Then we apply Theorem 3.9
to find that there exists a face G of C such that TG = F . This implies the desired result.

4 The Fundamental Theorem of Linear Inequalities and
its Consequences

The fundamental theorem of linear inequalities is a central result in the theory of linear pro-
gramming. It facilitates a proof of Farkas’ lemma and a decomposition result on polyhedra.
A proof, which describes an application of the simplex method, can be found in [12, Theorem
7.1], but the theorem follows can be proven with our previous results.

Theorem 4.1 (Fundamental theorem of linear inequalities).
Let a1, . . . , am, b ∈ Rd. Then the following alternative holds: Either b is a non-negative linear
combination of linearly independent vectors from a1, . . . , am, or there does exist a vector
c whose 0-level set contains (t − 1) linearly independent vectors from a1, . . . , am such that
〈c, b〉 < 0 and 〈c, a1〉, . . . , 〈c, am〉 ≥ 0, where t = dim lin{a1, . . . , am, b}.

Proof. Let P = cone{a1, . . . , am}.
By definition, b ∈ P if and only if b is the convex cone generated by the vectors a1, . . . , am.

But by the Caratheodory-Steinitz lemma for conical hulls, Lemma 2.22, this is equivalent to b
being the non-negative linear combination of at most d vectors from this set.

Now, suppose that b /∈ P, and let H = aff P. If b /∈ H, then clearly the second alternative
holds. If instead b ∈ H holds, then we assume without loss of generality that P is full-
dimensional. From Lemma 3.11 and Theorem 3.10 we find that P is a polyhedron, say,
P = [A,~0] with A ∈ Rp×d and p ∈ N. We can assume that [A=,~0=] is an empty system, and
that no inequality of [A,~0] = [A+,~0+] is implied by the others. Since we assume that b /∈ P,
there exists an inequality of [A,~0], associated to some index i, such that atib > 0. Then we let
F be the unique facet of P associated to the index i. We know that dimF = dimP − 1 by
Corollary 3.17, and using Theorem 3.22, we see that there exists a subset g1, . . . , gk of vectors
from a1, . . . , am that conically generates F . But we have k ≥ dimF , and therefore we may
choose dimP − 1 linearly independent vectors of g1, . . . , gk. Choosing an appropriate normal
of the linear hull of F , which is a hyperplane, the statement follows.

An immediate consequence is a structural observation on polyhedral cones.

Lemma 4.2.
The cone C = cone{a1, . . . , ap} ⊆ Rd is the intersection of the halfspaces H ⊂ lin{a1, . . . , ap}
that are generated by dim lin{a1, . . . , ap} − 1 linearly independent vectors of a1, . . . , ap and
that do not separate C.

Proof. After a coordinate transform we may assume w.l.o.g. that Rd = lin{a1, . . . , ap}. For
any b ∈ Rd we have that b /∈ C if and only if there does exist a hyperplane H that is spanned
by d − 1 linearly independent vectors of a1, . . . , ap and that separates b and C. This implies
that z ∈ C if and only if for all hyperplanes H that are spanned by d− 1 linearly independent

20



vectors of a1, . . . , ap that do not separate C, we have that z lies on the same side of H as C.
This proves the claim.

Farkas’ lemma follows immediately from the fundamental theorem of linear inequalities. It
can also be proven by the Hahn-Banach separation theorem.

Lemma 4.3 (Farkas’ lemma).
Let A ∈ Rm×d and b ∈ Rm. Then there does exist x ∈ Rd with x ≥ ~0 and Ax = b if and only
if for all y ∈ Rm with Aty ≥ ~0 we have 〈y, b〉 ≥ 0.

Proof. It is obvious that the first condition implies the second condition. We prove the converse
direction. Let a1, . . . , ad be the columns of A. Suppose that there does not exist x ∈ Rd with
x ≥ ~0 and Ax = b. Then b /∈ cone{a1, . . . , ad}. By the fundamental theorem of linear
inequalities (or the Hahn-Banach separation theorem), there does exist y ∈ Rm with ytA ≥ ~0
such that 〈y, b〉 < 0.

Corollary 4.4 (Farkas’ lemma, variant).
Let A ∈ Rm×d and b ∈ Rm. Then there does exist x ∈ Rd with x ≥ ~0 and Ax ≤ b if and only
if for all y ∈ Rm with y ≥ ~0 and Aty ≥ ~0 we have 〈y, b〉 ≥ 0.

Proof. There exists x ≥ ~0 with Ax ≤ b if and only if there does exist (x1, x2) ∈ Rm+d with
x1 ≥ ~0, x2 ≥ ~0 and x1 + Ax2 = b. By Farkas’ lemma, (x1, x2) do exist if and only if for all
y ∈ Rm with y ≥ ~0 and Aty ≥ ~0 we have 〈y, b〉 ≥ ~0.

4.1 Decomposition of Polyhedra
Another important application of the fundamental theorem of linear inequalities is the char-
acterization of conical and general polyhedral sets.

Lemma 4.5.
Finitely generated cones are polyhedral.

Proof. Let a1, . . . , ap ∈ Rd. Let C = cone{a1, . . . , ap}. By Lemma 4.2 we conclude C
is the intersection of finitely many halfspaces whose boundaries are spanned by subsets of
{a1, . . . , ap}.

Theorem 4.6.
Let a1, . . . , ap and b1, . . . , bq be column vectors of matrices A ∈ Rm×p and B ∈ Rm×q, respec-
tively. Then we have

cone{a1, . . . , ap} = [Bt,~0] ⇐⇒ cone{b1, . . . , bq} = [At,~0].

Proof. Suppose that the left-hand statement holds. We have to show the right-hand statement.
For i ∈ [p] and j ∈ [q] we have 〈ai, bj〉 ≤ 0, so b1, . . . , bq ∈ [At,~0]. Suppose that y ∈ [At,~0]
but y /∈ cone{b1, . . . , bq}. We know that the latter cone is polyhedral by Lemma 4.5, thus
there exists w ∈ [Bt,~0] with 〈w, y〉 > 0. Then w ∈ cone{a1, . . . , ap}, but also 〈w, c〉 ≤ 0 for all
c ∈ [Bt,~0], such that in particular 〈w, ai〉 ≤ 0 for i ∈ [p]. But then w ∈ [At,~0] and 〈w, y〉 > 0,
which is a contradiction. By symmetry we obtain the desired result.

Corollary 4.7.
A cone is polyhedral if and only if it is finitely generated.
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Proof. We already know that finitely generated cones are polyhedral. Let [A,~0] with A ∈ Rm×p
be a polyhedral cone. Then coneA is finitely generated, and therefore it is polyhedral, say
coneA = [B,~0] with B ∈ Rm×q. But then coneB = [A,~0], which proves the corollary.

Theorem 4.8.
A set P ⊆ Rd is a polyhedron if and only if there exist a polytope Q ⊆ Rd and a polyhedral
cone C ⊆ Rd such that P = Q+ C.

Proof. Suppose that Q = convex{x1, . . . , xp} is a polytope and C = cone{y1, . . . , yq} is a cone.
Then x0 ∈ Q+ C if and only if(

x0

1

)
∈ cone

{(
x1

1

)
, . . . ,

(
xp
1

)
,

(
y1

0

)
, . . . ,

(
yq
0

)
,

}
.

Since this cone is finitely generated, there exist m ≥ 0, A ∈ Rm×d and b ∈ Rm such that this
cone equals [(A, b),~0]. But (x0, 1) ∈ [(A, b),~0] is equivalent to Ax ≤ −b.

Conversely, we have

x ∈ [A, b] ⇐⇒
(
x

1

)
∈


(
x

λ

)∣∣∣∣∣∣∣∣
x ∈ Rd,
λ ∈ R+

0 ,

Ax− λb ≤ ~0

 .

The latter set is a polyhedral cone, and therefore it is finitely generated. We conclude that
there exist x1, . . . , xt ∈ Rd and λ1, . . . , λt ∈ R such that

(
x

λ

)∣∣∣∣∣∣∣∣
x ∈ Rd,
λ ∈ R+

0 ,

Ax− λb ≤ ~0

 = cone

{(
x1

λ1

)
, . . . ,

(
xt
λt

)}
.

After rescaling, we may assume that the λi are either 0 or 1. It follows that we can choose
Q to be the polytope generated by those xi with λi = 1, and C to be the cone with indices
generated by those xi with λi = 0.

It is a startling fact that this decomposition is almost unique: the polyhedral cone in the
decomposition is the same in each decomposition of a fixed polyhedron P. We introduce the
recession cone

rec. coneP :=
{
y ∈ Rd | ∀x ∈ P : x+ y ∈ P

}
.

Lemma 4.9.
If P = [A, b], then

rec. coneP =
{
y ∈ Rd | Ay ≤ ~0

}
.

Proof. Clearly, if y ∈ Rd with Ay ≤ 0, then y is a member of the left-hand side. Conversely,
if y satisfies x + y ∈ P for all x ∈ P but has 〈ai, y〉 = γ for some i ∈ [n] and γ ∈ R, γ > 0,
then we may choose k ∈ N and x ∈ P such that x+ ky ∈ P while 〈ai, x+ ky〉 > bi. This is a
contradiction, and so the desired claim follows.

Corollary 4.10.
If C is a polyhedral cone and Q is a polytope such that P = Q+ C, then C = rec. coneA.
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Proof. Clearly, C ⊆ rec. coneP. Conversely, suppose that z ∈ (rec. coneP) \ C. There exists
α ∈ R+

0 such that αz + Q has positive distance from C + Q = P. But αz + Q ⊂ Q, since
αz ∈ rec. coneP. We conclude that C = rec. coneP.

The former corollary is useful for proving Theorem 5.2 below. Note furthermore that
linealP = (rec. coneP) ∩ (− rec. coneP).

4.2 Polarity theory
We introduce the polar polyhedron and some related results. Properties of a polyhedron
directly correspond to properties its polar polyhedron and vice versa, so switching from the
primal to the polar polyhedron can be useful.

Let P ⊆ Rd be a polyhedron. The polar set of P is

P∗ :=
{
w ∈ Rd | ∀x ∈ P : 〈w, x〉 ≤ 1

}
.

Suppose that we have the decomposition

P = convex
{
~0, x1, . . . , xp

}
+ cone {y1, . . . , yq} . (1)

Then it is easy to see that

P∗ =
{
w ∈ Rd | ∀1 ≤ j ≤ q : 〈w, yj〉 ≤ 0 and ∀x ∈ convex

{
~0, x1, . . . , wp

}
: 〈w, x〉 ≤ 1

}
=
{
w ∈ Rd | ∀1 ≤ j ≤ q : 〈w, yj〉 ≤ 0 and ∀1 ≤ i ≤ p : 〈w, xi〉 ≤ 1

}
.

We conclude that P∗ is polyhedron again. In fact, polarization is self-inverse under mild
conditions on the polyhedron P.

Theorem 4.11.
Assume that 0 ∈ P. Then P∗∗ = P.

Proof. We first verify that P ⊆ P∗∗ from definitions. Conversely, if x ∈ P∗∗, suppose that
x /∈ P. Let 〈ai, x〉 ≤ bi be an inequality of P not satisfied by x. We have ~0 ∈ P, so bi ≥ 0. If
bi = 0, then R+

0 ai ⊆ P∗; but then 〈ai, x〉 > 0, and so for some λ > 0 we have λ〈ai, x〉 > 1. This
is a contradiction. If instead bi > 0, then b−1

i ai ∈ P∗; thus x /∈ P∗∗, which is a contradiction,
too. This proves that x ∈ P.

Theorem 4.12.
The decomposition

P = convex
{
~0, x1, . . . , wp

}
+ cone {y1, . . . , yq} .

holds if and only if

P∗ =
{
w ∈ Rd | ∀1 ≤ j ≤ q : 〈w, yj〉 ≤ 0 and ∀1 ≤ i ≤ p : 〈w, xi〉 ≤ 1

}
.

Proof. The first implication has been outlined above. For the proof of the other direction, set

Q := convex
{
~0, x1, . . . , wp

}
+ cone {y1, . . . , yq} .

Then Q∗ = P∗ and ~0 ∈ Q, so Q = Q∗∗ = P∗∗ = P.
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Having clarified the relation between the polyhedron and the polar polyhedron, it is now
possible to infer properties of one of this polyhedrons from properties of the other.

Lemma 4.13.
We have dimP = k if and only if linealP∗ = d− k, provided that ~0 ∈ P.

Proof. We can write P as in (1). Let Y ∈ R(p+q)×d be the matrix with rows xt1, . . . , xtp, yt1, . . . , ytq.
Then

d− linealP∗ = d− dim kerY = rng Y.

But dimP = dim aff P = dim linP, since ~0 ∈ P. So rng Y = dimP.

Lemma 4.14.
Assume that ~0 ∈ P. Then ~0 is an internal point of P if and only if P∗ is bounded.

Proof. We immediately see that ~0 is an internal point of P if and only if there exist a1, . . . , ap,
p ∈ N0, such that P =

{
x ∈ Rd | 〈ai, x〉 ≤ 1

}
. But this is the case if and only if P∗ =

convex
{
~0, a1, . . . , ap

}
, which is equivalent to P∗ being bounded, due to Theorem 4.8.

5 Linear Programming
The theory of extremal values of linear functionals on polyhedrons appears in two flavors in
this thesis. On the one hand, as a tool for polyhedral theory, as serves as a tool in Sections 3
and 4. On the other hand, the maximizations of linear functionals over polyhedrons is central
in optimization theory. We therefore elaborate this perspective in the present section.

Let A ∈ Rn×d, b ∈ Rn and c ∈ Rd. A linear programming problem (A, b, c) is the problem
of solving

Maximize 〈c, x〉 subject to Ax ≤ b. (2)

We call the problem feasible, if [A, b] is non-empty, and infeasible otherwise. If [A, b] 6= ∅, then
we call any z ∈ [A, b] a (feasible) solution. We call the problem unbounded, if 〈c, ·〉 does not
have a supremum over [A, b], otherwise we call it bounded. If it is bounded, then call x an
optimal solution if it maximizes 〈c, ·〉 over [A, b].

It is not immediately clear that such an optimal solution exists, either because [A, b] is
empty, or because 〈c, ·〉 has no supremum over [A, b], or because an existing supremum is not
realized over [A, b]. The last possibility can be ruled out.

Lemma 5.1.
If (A, b, c) is bounded, then the supremum is attained, i.e., 〈c, ·〉 has a maximum over [A, b].

Proof. Let C be a polyhedral cone, generated by vectors c1, . . . , cm ∈ Rd, and let D be a
polytope, such that [A, b] = C+D. Because 〈c, ·〉 is continuous and D is compact, the functional
attains a maximum over D, say, at point xD ∈ D. If C = ∅, then there is nothing to show.
So we assume that C is non-empty. Because c is bounded from above over [A, b], it must be
bounded from above over C. This necessitates that 〈c, ci〉 ≤ 0 for 1 ≤ i ≤ m. But then the
supremum of c over C is attained at 0. On the other hand, xD ∈ [A, b], and for y ∈ C, z ∈ D
we have

〈c, xD〉 ≥ 〈c, z〉 ≥ 〈c, z + y〉

This proves the claim.
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Therefore, the three most constitutive questions in linear programming theory are whether
the problem is feasible, whether the problem is bounded, and whether we can find an optimal
solution. For usage in the sequel, we adopt the terminology to call two linear programming
problems (A1, b1, z1) and (A2, b2, z2) equivalent if either both are infeasible, both are un-
bounded, or both are bounded with exactly the same set of optimal solutions. Surprisingly,
the boundedness of a linear programming problem essentially depends on the system matrix
A and the direction z, but not on the right-hand side b.

Theorem 5.2.
Let A ∈ Rn×d, z ∈ Rd and b1, b2 ∈ Rn. If [A, b1] and [A, b2] are both non-empty, then (A, b1, z)
is bounded if and only if (A, b2, z) is bounded.

Proof. Let [A, b1] = Q1 +C1 and [A, b2] = Q2 +C2, where Q1 and Q2 are polytopes and C1 and
C2 are polyhedral cones, by Theorem 4.8. But by Corollary 4.10, we have C1 = C2 = rec. coneA.
Thus, z is bounded on [A, b1] or [A, b2] if and only if it is bounded on rec. coneA. This had to
be shown.

The notion of dual linear programming problem is vital for the overall understanding of
linear programming theory. Let (A, b, c) be a linear programming problem. Then the dual
linear programming problem (A, b, c)∗ is given by

Minimize 〈b, y〉 subject to Aty = c, y ≥ ~0. (3)

This problem can be formulated as a linear programming problem again. To see this, we note
that

ytA = ct,

y ≥ ~0
⇐⇒

Aty = c,

y ≥ ~0
⇐⇒


At

−At

−I

 y ≤


c

−c
~0

 .

Hence (3) is equivalent to

Maximize − 〈b, y〉 subject to


At

−At

−I

 y ≤


c

−c
~0

 .

Dualization is "self-inverse", i.e., the primal is the dual of the dual of the primal. To see this,
we note that (A, b, c)∗∗ equals

Find z ∈ argmin
{

(−c, c,~0)t(z1, z2, z3) | (A,−A,−I)(z1, z2, z3)t = (−b), (z1, z2, z3)t ≥ ~0
}
.

Then (z1, z2, z3) optimally solves this problem if and only if (z, w) = (z1 − z2, z3) optimally
solves

Find (z, w) ∈ argmin
{

(−c,~0)t(z, w) | (A,−I)(z, w)t = (−b), w ≥ ~0
}
,

which in turn is equivalent to z being an optimal solution of

Find z ∈ argmin
{
−〈c, z〉 | z ∈ Rd, Az ≤ b

}
.

But this problem is equivalent to (2).
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Lemma 5.3.
Let x be a feasible solution of (A, b, c), and let y be a feasible solution of (A, b, c)∗. Then we
have 〈c, x〉 ≤ 〈y, b〉.

Proof. We verify 〈c, x〉 = 〈Aty, x〉 = 〈y,Ax〉 ≥ 〈y, b〉.

Corollary 5.4.
If a linear programming problem is unbounded, then its dual is infeasible. If the dual of a
linear programming problem is feasible, then it is bounded.

Theorem 5.5.
Let (A, b, c) and (A, b, c)∗ be feasible. Then both are bounded, and their respective optimal
solutions x and y satisfy 〈c, x〉 = 〈y, b〉.

Proof. This is Theorem 2.7 of [11]. From Lemma 5.3 we know that both linear programming
problems are bounded and that their respective optimal solutions x′ and y′ satisfy 〈c, x′〉 ≤
〈b, y′〉. It suffices to prove that 〈c, x〉 ≥ 〈b, y〉 for some feasible solutions x of (A, b, c) and y of
(A, b, c)∗, respectively. But this means that (x, y) satisfies the linear inequalities

Ax ≤ b, 〈−c, x〉+ 〈b, y〉 ≤ 0, Aty ≤ c, −Aty ≤ −c, −y ≤ ~0.

We know by Farkas’ Lemma that such a (x, y) exists if and only if

∀


u

v

w

z

 ≥

~0

~0

~0

~0

 , β ∈ R+
0 :

(
Au− βc = ~0 ∧

βb+Av −Aw − z = ~0
=⇒ 〈u, b〉+ 〈v − w, c〉 ≥ 0

)
.

We eliminate the variable z and find the equivalent statement

∀


u

v

w

 ≥

~0

~0

~0

 , β ∈ R+
0 :

(
Au− βc = ~0 ∧
βb+Av −Aw ≥ ~0

=⇒ 〈u, b〉+ 〈v − w, c〉 ≥ 0

)
.

Let u ≥ 0, v ≥ 0, w ≥ 0. In the case that β > 0 we find

〈u, b〉 = β−1β〈b, u〉 ≥ β−1〈A(w − v), u〉 = β−1β〈w − v, c〉 = 〈w − v, c〉.

If instead β = 0, then for any pair (x, y) of feasible solutions of (A, b, c) and (A, b, c)∗ we have

〈u, b〉 ≥ 〈u,Ax〉 = 0 ≥ 〈A(w − v), y〉 = 〈w − v, c〉.

This means that Farkas’ lemma can be applied, and so the desired result follows.

Lemma 5.6.
Let (A, b, c) be a linear program. Let x and y be solutions to (A, b, c) and (A, b, c)∗. Then

x and y are optimal solutions ⇔ 〈c, x〉 = 〈y, b〉 ⇔ 〈y, b−Ax〉 = 0.

Proof. The first equivalence follows from the strong duality theorem (Theorem 5.5). For the
second equivalence we verify

〈y, b−Ax〉 = 〈y, b〉 − 〈y,Ax〉 = 〈y, b〉 − 〈c, x〉 = 0

from the definition of the dual linear programming problem.
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6 Elements of Stochastic Analysis and Randomized Algo-
rithms

Within this section we assemble a number of results from probability theory for later reference.
The focus is on Gaussian vectors in Rd, but the uniform distribution on unit spheres and the
normalized Haar measure on the orthogonal group are briefly examined, too. For this section,
and similar for the whole of the present work, we freely employ basic notions of probability
and its canonical foundation in measure theory, but at no point will an immersion into the
foundational and technical details be necessary. The interest reader is recommended [3, Kapi-
tel I-V] for further background.

Let X denote the set of Lebesgue-measurable subsets of Rd. A probability measure or
probability distribution is a measure defined over X under which Rd evaluates to 1. A random
variable x in Rd is just a probability measure on Rd which we think of as a “random object in
Rd” rather than measure. The measurable function µx : Rd → R is called a density function
of x if

x(A) =

∫
A
µx(a)da, A ∈ X .

Let F : Rd → Rd be a diffeomorphism. Then we define

(Fx)(A) := x(F−1A), A ∈ X .

In particular, the law of substitution [3, Kapital V.4] implies for a density function that

x(F−1A) =

∫
F−1A

µx(a)da =

∫
A
µx(F−1(a)) · | detDF−1(a)|da, A ∈ X .

Let x and y be random variables in Rd with continuous density functions µx and µy. Then
x+ y is a random variable with density function

µx+y(◦) =

∫
Rd
µx(t)µy(◦ − t)dt.

The most important type of random variables in this thesis are Gaussian vectors in Rd.
These random variables are defined only by two parameters and their analytical properties are
comparatively easy to assess. An (x̄, σ)-Gaussian vector x is a random variable in Rd that has
a density function

µx(◦) =
(√

2πσ
)−d

exp

(
−1

2
σ−2‖ ◦ −x̄‖2

)
. (4)

Note that a Gaussian vector can be seen as a vector whose entries are Gaussian variables on R.
Due to the exponential decay of µx and due to symmetry arguments, we can directly infer that
Ex(x) exists and equals x̄. We call x̄ the mean value of x, and call σ the standard deviation
of x. For an y ∈ Rd, the random variable x+ y ≡ y + x has density

µx+y(◦) =
(√

2πσ
)−d

exp

(
−1

2
σ−2‖ ◦ −(x̄+ y)‖2

)
,

so x+ y is a (x̄+ y, σ)-Gaussian. Let α ∈ R \ {0}, then αx has density

µαx(◦) =
(√

2πασ
)−d

exp

(
−1

2
σ−2‖α−1 ◦ −x̄‖2

)
α−d
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=
(√

2πασ
)−d

exp

(
−1

2
(ασ)−2‖ ◦ −αx̄‖2

)
,

so αx is a (αx̄, ασ)-Gaussian vector. Let x be a (x̄, σx)-Gaussian and let y be a (ȳ, σy)-
Gaussian. For the density function µx+y(◦) of the sum x+ y, we see

µx+y(◦) =

∫
Rd
µx(t)µy(◦ − t)dt

=

∫
Rd

(2πσxσy)−d exp

(
− 1

2σ2
x

‖t− x̄‖2 − 1

2σ2
y

‖ ◦ −t− ȳ‖2
)

dt

= (2π)−d/2
(
σ2
x + σ2

y

)−d/2
exp

(
−1

2

(
σ2
x + σ2

y

)−1 ‖ ◦ −x̄− ȳ‖2
)

·
∫
Rd

(2π)−d/2

(
σ2
xσ

2
y

σ2
x + σ2

y

)−d/2
exp

(
−‖t− x̄‖

2

2σ2
x

− ‖ ◦ −t− ȳ‖
2

2σ2
y

+
‖ ◦ −x̄− ȳ‖2

2(σ2
x + σ2

y)

)
dt.

After substituting t by t+ x̄ we can derive by simple calculations that

‖t− x̄‖2

2σ2
x

‖ ◦ −t− ȳ‖2

2σ2
y

− ‖ ◦ −x̄− ȳ‖
2

2(σ2
x + σ2

y)

=
1

2

(
σ2
xσ

2
y

σ2
x + σ2

y

)−1 ∥∥t− σ2
x(σ2

x + σ2
y)−1(◦ − x̄− ȳ)

∥∥2
.

So the integrand of the last integral is the density of a Gaussian distribution, whose integral
is 1. We conclude that x + y is a

(
x̄+ ȳ,

√
σ2
x + σ2

y

)
-Gaussian. Furthermore, the orthogonal

projections of Gaussian vectors are Gaussian vectors within the target space, too.

Lemma 6.1.
Let H ⊂ Rd be an affine space, and let PH : Rd → H be the orthogonal projection onto H.
Let x be a (x̄, σ)-Gaussian vector. Then PHx is a (PHx̄, σ)-Gaussian vector.

Proof. Without loss of generality, we assume that 0 ∈ H and that H is a coordinate plane,
H = lin{e1, . . . , ek}. Set Z = lin{ek+1, . . . , ed} and let A ⊆ H be measurable in H. Then a
generalization of the law of substitution [3, Kapitel III.1, Satz 1.7] implies

µPHx(A) = x(P−1
H A) =

∫
A+Z

µx(A+ z)dz

=

∫
A+Z

(√
2πσ

)−d
exp

(
−1

2
σ−2‖A+ z − x̄‖2

)
dz

=
(√

2πσ
)−k

e−
1

2σ2
‖(A−x̄)1,...,k‖2

∫
A+Z

(√
2πσ

)−d+k

e−
1

2σ2
‖(A+z−x̄)k+1,...,d‖2dz.

The last integral evaluates to 1, which completes the proof.

Remark 6.2.
Spielman and Teng [13, Subsection 2.4] take into account an even broader class of random
variables, where, speaking in loose terms, the randomness is anisotropic. However, their
subsequent analysis considers only Gaussian random variables with isotropic density functions,
as above (4), so this more general case remains for future study.

28



We derive a series of estimates on the probability that Gaussian vectors happen to be
contained in certain sets. The most pivotal tool is the following lemma, which we state
without proof.

Lemma 6.3 ([16, Proposition 5.34]).
Let f : Rd → R be a Lipschitz function with Lipschitz constantK. Let x be the (0, 1)-Gaussian
in Rd. Then Exf(x) exists and for t ≥ 0 we have

Probx {f(x)− Exf(x) ≥ t} ≤ exp

(
− t2

2K2

)
.

We can obtain a simple probability estimate of a Gaussian vector deviating too far from its
center. A similar estimate holds for Gaussian matrices as well.

Corollary 6.4.
Let x be a (x̄, σ)-Gaussian vector in Rd. Let κ and θ be in R+

0 . Then

ProbX{‖x− x̄‖ ≥ κσ} ≤ exp

(
−1

2
κ2

)
,

ProbX{‖x− x̄‖ ≥ θ} ≤ exp

(
−1

2
θ2σ−2

)
.

Proof. The random vector σ−1(x − x̄) is the (0, 1)-Gaussian in Rd. The inverse triangle in-
equality implies that the norm ‖ · ‖ has Lipschitz constant 1. Furthemore, EXσ−1‖x− x̄‖ = 0
exists. Since ‖x− x̄‖ > κσ is equivalent to ‖σ−1(x− x̄)‖ > κ, we may apply Lemma 6.3 to find
the first result. The second result follows immediately from θ = θσ−1σ, choosing κ = θσ−1,
and the first result.

Corollary 6.5.
Let G be a random matrix with (0, σ)-Gaussian entries. Let κ and θ be in R+

0 . Then

ProbG{‖G‖2 ≥ κσ} ≤ exp

(
−1

2
κ2

)
,

ProbG{‖G‖2 ≥ θ} ≤ exp

(
−1

2
θ2σ−2

)
.

Proof. It suffices to bound the probability of ‖G‖F > tσ, because ‖G‖F ≥ ‖G‖2. But the
center of G is the 0-matrix, and so Corollary 6.4 applies. The second result follows immediately
from θ = θσ−1σ, choosing κ = θσ−1 and the first result.

In the one-dimensional case, a tail estimate, widely regarded as canonical, can help to find
a sharper bound if τ > σ/2 holds:

Lemma 6.6.
Let x be a (0, σ)-Gaussian vector in R. Then for τ > 0 we have

Prob{x ≥ τ} ≤ σ

2τ
exp

(
− τ2

2ρ2

)
.
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Proof. We verify

Prob{x > τ} = Prob{σ−1x > σ−1τ} =

∫ ∞
σ−1τ

e−θ
2

dθ ≤
∫ ∞
σ−1τ

σθ

τ
e−θ

2

dθ

≤
[
− σ

2τ
e−θ

2
]∞
σ−1τ

=
σ

2τ
e−τ

2

.

The following result proves useful if the tail bound is parametric.

Lemma 6.7 ([15, Lemma 7.4, 1.]).
Let x be a (x̄, σ)-Gaussian vector, β ≥ 0 and n ≥ d. Then

Prob
{
‖x− x̄‖ ≥ β

√
d log nσ

}
≤ n−

β2d
2 .

Proof. With a simple application of Corollary 6.4, we derive

Prob
{
‖x− x̄‖ ≥ β

√
d log nσ

}
≤ exp

(
−β

2

2
d log n

)
= exp log

(
n−

β2

2 d

)
= n−

β2d
2 .

Surprisingly, there exist non-trivial upper bounds for the probability that a Gaussian vector
is close to an arbitrary point. The proof is independent of the previous corollaries. Let us
recall the volume formula for the d-dimensional unit ball:

|Bd1 (0)| = πd/2

Γ
(
1 + d

2

) =
2πd/2

dΓ
(
d
2

) .
Lemma 6.8 ([13, Proposition 2.4.7]).
Let x be a (x̄, σ)-Gaussian in Rd. Let p ∈ Rd. Then

Prob{‖x− p‖ ≤ γ} ≤
(

min

(
1,

√
e

d

)
γ

σ

)d
.

Proof. We derive∫
Bγ(p)

µxdt =
(√

2πσ
)−d ∫

Bγ(p)

exp

(
−1

2
σ−2‖t− x̄‖2

)
dt =

(√
2πσ

)−d ∫
Bγ(p)

1dt

=
(√

2πσ
)−d
|Bγ(p)| =

(√
2πσ

)−d 2πd/2γd

dΓ(d/2)
=
(γ
σ

)d 2

d2d/2Γ(d/2)
.

Note that 2(d2d/2Γ(d/2))−1 ≤ 1 in general. Furthermore, the Gamma inequality [13, Proposi-
tion 2.4.8] implies for d ≥ 3 that 2(d2d/2Γ(d/2))−1 ≤ (e/d)d/2. This completes the proof.

Corollary 6.9 ([15, Lemma 7.4, 2.]).
Let d ≥ 3 and x be a (x̄, σ)-Gaussian vector. Then

Prob
{
‖x‖ ≤ e−3/2σ

√
d
}
≤ e−d.

Proof. We apply Lemma 6.8 with p = 0 and immediately derive

Prob
{
‖x‖ ≤ e−3/2σ

√
d
}
≤

(
min

(
1,

√
e

d

)
e−3/2σ

√
d

σ

)d
≤ e−d.
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We close the treatment of Gaussian variables with the algorithic remark that it is possi-
ble to simulate a Gaussian distribution provided that a random variable on [0, 1] and, e.g.,
trigonometric functions are available. We assume this for the computational model that we
use in this thesis.

We turn our attention to the uniform probability distribution on the unit spheres. —
Measure spaces with bounded total measure can be interpreted in probabilistic terms after
normalization of the measure. An important example is the hypersphere, where the measurable
sets are the intersection of measurable subsets of Rd+1 with Sd. Let Sd ⊂ Rd+1 denote the
d-dimensional unit sphere. Then Sd has surface measure

|Sd| = 2π
d+1
2 Γ

(
d+ 2

2

)−1

.

Considering the curved part of the surface of the spherical cap

Sd(h) :=
{
u ∈ Sd | 〈u, e1〉 > h

}
,

a formula by Li [9] states that

|Sd(h)| = 2π
d
2

Γ
(
d
2

) ∫ π/2−sin−1(h)

0

sind−1(θ)dθ.

Let ν ∈ Sd, h ∈ [0, 1] and u be the uniformly distributed random variable on Sd. Then

Probu {〈u, ν〉 ≥ h} =
|Sd(h)|
|Sd|

= |Sd|−1 2π
d
2

Γ
(
d
2

) ∫ π/2−sin−1(h)

0

sind−1(θ)dθ

=
1

2

(∫ π/2

0

sind−1(θ)dθ

)−1 ∫ π/2−sin−1(h)

0

sind−1(θ)dθ

=
1

2

(∫ π/2

0

sind−1(θ)dθ

)−1(∫ π/2

0

sind−1(θ)dθ −
∫ π/2

π/2−sin−1(h)

sind−1(θ)dθ

)

=
1

2
− 1

2

(∫ π/2

0

sind−1(θ)dθ

)−1 ∫ π/2

π/2−sin−1(h)

sind−1(θ)dθ.

A lower estimate, useful for small h, thus is

Probu {〈u, ν〉 ≥ h} ≥ 1− 1

π
sin−1(h). (5)

An upper estimate for small h is also known as concentration of measure on the sphere. Let
Bd+1(h) := convex{0, Sd(h)} be the “cone” element suspended from the spherical cap Sd(h)
to the origin. We observe that Bd+1(h) is contained within a ball of radius

√
1− h2 provided

that h ≤ 1√
2
. More precisely, the ball can be chosen to be centered at hν for ν being the

symmetry axis of Bd+1(h). Under this condition we have |Bd+1(h)| ≤
√

1− h2
d+1|Bd+1| and

thus

Probu {〈u, ν〉 ≥ h} ≤
|Sd(h)|
|Sd|

=
|Bd+1(h)|
|Bd+1|

≤ (1− h2)
d+1
2 ≤ e− 1

2 (d+1)h2

. (6)
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This proof is taken from [1, Lecture 2].

Finally, the Haar measure on the orthogonal group O(d) is of minor relevance for this thesis.
We only state a simplified statement on its existence, combined from [3, Kapitel VIII]. i

Theorem 6.10.
There does exist a unique measure h on O(d), called normalized Haar measure, defined on the
σ-algebra O of intersections of open subsets of Rd with O(d), such that

h (O(d)) = 1, ∀Q ∈ O(d),U ∈ O : h(QU) = h(U)

In other words, the Haar measure is a probability measure that is invariant under the group
operation from the left. The normalized Haar measure on O(d) is the conceptual sibling of
the uniform measure on the unit sphere and the natural choice for a probability measure.
It can implemented algorithmicly, provided that Gaussian variables in R are available in the
computational model; see also Remark 8.1.

6.1 The change of variables formula
Blaschke’s formula and its consequences are used frequently in the work of Spielman, Teng
and Vershynin. We present it in a manner more akin to the background in integration theory.

Let q ∈ S1(Rd) be arbitrary but fixed, and assume that ω ∈ S1(Rd) with ω 6= −q. Then
there exists a unique Rqω ∈ O(d) which maps q to ω and acts as the identity on lin{ω, q}⊥.
Furthermore, we let Iq be any isometric linear mapping from Rd−1 onto q⊥. Note that Rqω
maps q⊥ to ω⊥. We consider the coordinate transform

Φq : R(d−1)×d × R+
0 × S1(Rd)→ Rd×d,

(y1, . . . , yd, r, ω) 7→ (RqωI
qy1 + rω, . . . , RqωI

qyd + rω).
(7)

With abuse of notation, we ignore here that Φq is not defined for ω = −q. A famous theorem
by Blaschke provides a convenient formula for the coordinate transform induced by Φq.

Theorem 6.11.
Let F : Rd×d → R be a measurable function, and let

X ⊆ Rd×d, Y ⊆ R(d−1)×d × R+
0 × S1(Rd)

be measurable sets such that X = Φq(Y). Then∫
X
F (x1, . . . , xd)dx1 . . . dxd (8)

=

∫
Y

(F ◦ Φq)(y1, . . . , yd, r, ω) · (d− 1)! vold−1 convex{y1, . . . , yd}dωdrdy1 . . . dyd (9)

Note that this is basically a statement on the term |detDΦq| in the change of variables
of integration theory. In our applications, F generally is the joint distribution of Gaussian
random variables a1, . . . , ad in Rd. — We first note a basic observation:

iWhile not stated explicitly there, our version follows from Definition 1.1, Theorem 3.12, Theorem 3.15 b)
and Theorem 1.16 of the referenced chapter, together with elementary topology.
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Lemma 6.12.
Suppose that x = Φq(y, r, ω) for (y, r, ω) ∈ R(d−1)×d × R+

0 × S1(Rd). Then ‖x‖ ≥ ‖y‖.

Proof. With the triangle inequality we verify that

‖x‖ = ‖RqωIqy + rω‖ ≥ ‖RqωIqy‖ = ‖y‖,

where we have used ω ⊥ ImRqω.

Now assume that a1, . . . , ad are Gaussian variables in Rd with center of norm ā1, . . . , ād
and common standard deviation σ, and let F denote their joint density function. Then the
function

G(y1, . . . , yd, r, ω) = (F ◦ Φq)(y1, . . . , yd, r, ω) · (d− 1)! vold−1 convex{y1, . . . , yd}

is the density function of a probability distribution on R(d−1)×d × R+
0 × S1(Rd). For fixed r

and ω, it takes the form of a joint density of Gaussian vectors itself.

Theorem 6.13.
Let a1, . . . , ad, F and G be as above, and let r and ω be fixed. Then G has the form

G(y1, . . . , yd, r, ω) = (d− 1)! vold−1 convex{y1, . . . , yd} ·
d∏
i=1

φi(y1, . . . , yd)

where the φi are probability density functions of (b̄i, σ)-Gaussians on Rd−1 with ‖b̄i‖ ≤ ‖āi‖.

Proof. A direct application of Blaschke’s Lemma yields that

G(y1, . . . , yd, r, ω) = (d− 1)! vold−1 convex{y1, . . . , yd} ·
d∏
i=1

µi(Φ
q(y1, . . . , yd, r, ω))

where the µ1, . . . , µd are the density functions of the random variables a1, . . . , ad. Let 1 ≤ i ≤ d
be fixed. We use the results at the beginning of the section. First, note that µi(· + rω) is a
(āi− rω, σ)-Gaussian. Then µi(Rqω ·+rω) must be a ((Rqω)−1āi− r(Rqω)−1ω, σ) Gaussian. We
see that the new center of norm is in fact (Rqω)−1āi − rq. Similarly as in the proof of Lemma
6.1, we can use [3, Kapitel III.1, Satz 1.7] to infer the desired statement along the lines of the
aforementioned proof.

The latter two results can be found in Appendix C of [15].

7 The Shadow Vertex Method
We provide a concise description of the shadow vertex method, which is a variant of the
simplex method. We draw from the book of Borgwardt [2] and the seminal publication of
Spielman and Teng [13]. These authors discuss the algorithm in a ’primal’ and a ’polar’
formulation. The difference between the two presentations is mostly formal, and instead we
choose a presentation of the algorithm that already demonstrates a (possible) implementation.
We precede the algorithmic discussion with an outline of some duality relations for pointed
unit linear programming problems and properties of polyhedra projected onto hyperplanes.

For the rest of this section, let A ∈ Rn×d and z ∈ Rd.
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7.1 Properties of Unit Linear Programming Problems
Suppose a unit linear programming problem (A,~1, z) is to be solved.

Maximize 〈z, x〉 subject to Ax ≤ ~1.

We write P := [A,~1] for the corresponding polyhedron in this section, and let a1, . . . , an ∈ Rd
denote the rows of A. The polar P∗ of P has a useful characterization.

Lemma 7.1 ([2, Lemma 1.5]).
We have

P∗ ≡
{
y ∈ Rd | ∀x ∈ P : 〈x, y〉 ≤ 1

}
= convex

{
~0, a1, . . . , an

}
. (10)

Proof. Suppose that y is contained in the right-hand side, so there exist λ1, . . . , λn ∈ R with

λ1, . . . , λn ≥ 0,

n∑
i=1

λi ≤ 1, y =

n∑
i=1

λiai.

For x ∈ P we observe 〈x, y〉 = λ1〈a1, x〉+ · · ·+ λn〈an, x〉 ≤ 1, so y ∈ P∗.
Conversely, suppose that y ∈ Rd with 〈y,P〉 ≤ 1. Assume that y is not a member of the

right-hand side of (10). By the Hahn-Banach separation theorem (Theorem 2.7) there exists
z ∈ Rd such that

〈z, y〉 > 1, ∀w ∈ convex{~0, a1, . . . , an} : 〈w, z〉 ≤ 1.

But then z ∈ P and so y /∈ P∗, which is a contradiction. This proves the lemma.

We introduce a general position condition on the matrix A, which holds almost surely if the
entries are Gaussian random variables:

∀I ⊂ {1, . . . , n}, |I| = d+ 1 : vold convex{ai | i ∈ I} > 0. (GP1)

We assume (GP1) for the rest of this section. This condition implies that all submatrices of
A with d rows are invertible, and therefore that P is pointed, and that an optimal solution
of the unit linear program is realized at a vertex of P. The general position condition implies
furthermore that the vertices can almost surely be identified with an index d-set I ⊆ [n].

In other words, (GP1) implies

AI := (ai)i∈I ∈ GL(d), dim convex{ai | i ∈ I} = d− 1.

For notational simplicity we write

xI := A−1
I
~1 ∈ Rd, FI := convex{ai | i ∈ I},

HI :=
{
y ∈ Rd | ytxI = 1

}
, CI := cone{ai | i ∈ I}.

It is essential to understand that the solution properties of a pointed unit linear program-
ming problem can be viewed through the following definitions and the subsequent equivalence
theorem.

Definition 7.2.
We say that I describes a vertex of P if xI is a vertex of P. We say that I describes a facet
of P if FI is a facet of P∗.
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Definition 7.3.
Let I ⊆ [n] be a d-set of indices. We say that I satisfies the primal optimal vertex condition
if xI is a vertex of P that is an optimal solution of the linear programming problem. We say
that I satisfies the polar optimal simplex condition if

z ∈ CI , FI is a facet of convex{~0, a1, . . . , an}.

Theorem 7.4 ([2, Lemma 1.6, Lemma 1.7, Lemma 1.8]).
Let I ⊆ [n] be a d-set of indices. Then I describes a vertex of P if and only if I describes a
facet of P∗, and I satisfies the primal optimal vertex condition if and only if I satisfies the
polar optimal facet condition.

If I satisfies the primal optimal vertex condition or the polar optimal facet condition, then
we say that I is optimal with respect to z.

Proof. For an auxiliary result, let I ⊆ [n] describe a vertex xI of P. Then

FI = P∗ ∩HI ≡
{
y ∈ Rd | 〈y, xI〉 = 1,∀x ∈ P : 〈y, x〉 ≤ 1

}
. (11)

To see this, assume that y ∈ HI ∩ P∗. Then there exist λ1, . . . , λn ∈ R such that

λi ≥ 0,

n∑
i=1

λi ≤ 1, y =

n∑
i=1

λiai.

We can infer λ1 + · · ·+ λn = 1 by

1 = 〈y, xI〉 =

n∑
i=1

λi〈ai, xI〉 ≤
n∑
i=1

λi ≤ 1.

Hence, y ∈ FI , and the opposite inclusion in (11) holds by definition. The general position
condition (GP1) implies that I is unique.

Now, we show that xI is a vertex if and only if FI is a facet of P∗. Suppose that xI is
a vertex. Then {ai | i ∈ I} is a subset of HI . Note that FI ⊂ HI , while 〈aj , xI〉 ≤ 1 for
j /∈ I. Thus HI is a supporting hyperplane of P∗, and FI is a facet of P∗. Conversely, assume
that FI is a facet of P∗. Then HI is a supporting hyperplane of P∗, and so xI satisfies the
definition of being a vertex of P.

We have shown that xI is a vertex of P if and only if FI is a facet of P∗. If a vertex xI
optimally solves the primal problem, then the dual problem has an optimal solution y ∈ Rn
that satisfies

y ≥ 0, yt(~1−AxI) = 0, ytA = zt.

From this we infer that z ∈ CI . Conversely, if z ∈ CI and FI is a facet of P∗, then 〈ai, xI〉 = 1
for i ∈ I and 〈ai, x〉 ≤ 1 for x ∈ P. Hence

∀x ∈ P : 〈z, xI〉 ≥ 〈z, x〉.

We conclude that xI is a vertex of P that maximizes z over P.
This completes the proof.
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7.2 Projected Polyhedra
We continue to consider the unit linear programming problem with the general position con-
dition (GP1). Let u ∈ Rd be non-colinear to z, so E = lin {u, z} is two-dimensional. Let PE
be the orthogonal projection of P to E , and write xE for the orthogonal projection to E of
x ∈ P. To understand the shadow vertex simplex method, we have to relate concepts on PE
with corresponding concepts on P.

We have for x 6= 0 that every vector v ∈ E⊥ is already contained in z⊥, and therefore
〈x, z〉 = 〈xE , z〉 for x ∈ P. In particular, if xI maximizes z over P, then xEI maximizes z over
PE , and the two maxima are the same. We introduce a second general position condition:

∀V ⊂ {a1, . . . , an, z, u} , |V | = d : dim linV = d. (GP2)

If A is a Gaussian matrix, then (GP2) holds almost surely, and therefore we assume (GP2) in
the following.

Definition 7.5.
We call xI a shadow vertex of P with respect to E if xEI is a vertex of PE .

Lemma 7.6 ([2, Lemma 1.2]).
Let xI be a vertex of P. Then xI is a shadow vertex if and only if there exists w ∈ E , w 6= 0
such that xI maximizes w over PE .

Proof. If xI is a shadow vertex, then xEI is a vertex of PE , and we can find a supporting
hyperplane at xEI of PE in E .

Conversely, let xI be a vertex that maximizes w = αu+βv ∈ E \{0}, α, β ∈ R over P. Then
xEI must lie on an edge of E , to which xI must be orthogonal. There exists v ∈ E such that
xEI + [−ε, ε]v lies within that edge. Note that {ai | i ∈ I} is a basis of Rd. Let us parameterize
w + Rv and write

w + γv =
∑
i∈I

λi(γ)ai,

where the λi(·) are affine. Note that w is the only point on the edge that intersects with CI ,
so there do exist at least two indices, say, k, l ∈ I, such that λk(·) and λl(·) vanish at γ = 0.
But then

~0 6= w = αz + βu =
∑
i∈I

i6=k,i 6=l

λi(γ)ai,

which contradicts non-degeneracy.

Lemma 7.7 ([2, Lemma 1.3]).
Let xI and xJ be shadow vertices of P. If xEI and xEI are adjacent, then so are xI and xJ .

Proof. The segment [xEI , x
E
J ] is an edge of PE . Therefore there exists w = αu+ βv ∈ E \ {~0},

α, β ∈ R, w 6= ~0 such that

1 = 〈xI , w〉 = 〈xJ , w〉 = 〈xEI , w〉 = 〈xEJ , w〉

is maximized over P. It can be seen by Farkas’ lemma that w is contained in the cone of the
restriction vectors that are satisfied exactly over [xEI , x

E
J ]. Suppose that [xI , xJ ] is not an edge
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of P. Then it is not in the intersection of (d− 1) supporting hyperplanes of P. But then w is
in the convex cone of at most (d− 2) vectors of {ai | i ∈ I},

αu+ βv =
∑
j∈J

γjai, J ⊂ [n], |J | < d− 1.

But this contradicts the general position condition (GP2) so the lemma follows.

Lemma 7.8.
Let y be a vertex of PE . Then it is the projection of a vertex of P.

Proof. If y is a vertex of PE , then there exists w ∈ E such that y is the only maximizer of w
over PE . But then y+ {g ∈ E | w ⊥ g}+ E⊥ is a supporting hyperplane of P, which intersects
with P only in y + E⊥, where it contains a vertex of P.

Remark 7.9.
For a matrix with Gaussian entries, the projections of two vertices are almost surely distinct.

7.3 Algorithmic Details
This leads to a method to solve linear programming problems: If we choose a vector u ∈ Rd
as above, called initial direction, we find a solution to the problem if we maximize z over
E = lin{u, z}. This is the idea of the shadow vertex method.

Let qλ := λz+ (1−λ)u, and let x0 ∈ PE be a vertex that maximizes u ≡ q0 over PE . Then
x0 is the shadow of a vertex x of P, called initial solution. We try to construct a sequence
λ0 ≡ 0, λ1, λ2, . . . of real numbers, and vertices xE0 , xE1 , . . . of PE , such that xEi maximizes
qλi over PE . Furthermore, we keep track of the original shadow vertices x0, x1, . . . of the
xE0 , x

E
1 , . . . . The problem has a solution if and only if we can find a vertex of PE that maxi-

mizes q1 ≡ z over PE .

A pseudo-code for the shadow vertex method is shown in Algorithm 1. We estimate the
time and space complexity of this algorithm, and we inspect how the respective steps can be
implemented in detail.

An elementary subtask is to check whether an index d-set I ⊆ [n] describes a vertex. On
the one hand, the point xI must be well-defined, i.e., AI must be invertible. This either can
be checked by matrix inversion algorithms, or holds by the general position conditions. On the
other hand, the point xI must satisfy the constraint set I of the linear programming problem;
this can be checked by a series of scalar products. Therefore, the costs for this step are a
matrix inversion and O(n) scalar products. Alternatively, we may check whether xI describes
a facet of P∗. For this, we compute a normal to FI and check whether all points are below the
affine hull of FI , using O(n) operations. Interestingly, if we use the (stabilized) Gram-Schmidt
process, then such a normal vector can be computed almost surely, in time O(d3), using the
generalized position assumptions.

Another elementary subtask is to determine the interval [µmin, µmax] ⊆ [−∞,∞] such that
I describes an optimal solution for qµ = (1− µ)u+ µz with µ ∈ [µmin, µmax]. We define

pu := A−1
I u, pz := A−1

I z,

so that A−1
I qµ = (1−µ)pu +µpz. We know that I describes an optimal solution if and only if

qµ ∈ cone{ai | i ∈ I}. But this is equivalent to A−1
I qµ having non-negative coordinates. Now
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Input: A ∈ Rn×d, z ∈ Rd, u ∈ Rd, I0 ⊂ [n] such that
xI0 is a vertex of P that maximizes u over P.

Output: Either ’failure’ or I ⊂ [n] such that xI is a
vertex of P that maximizes z over P.

Algorithm: (I) Let i = 0 and λ0 = 0. Check that I0 describes a vertex of P.

(II) Let [λmin, λmax] ⊆ [−∞,∞] be the maximal interval such that I0 is
optimal for qλ with λ ∈ [λmin, λmax]. Check that 0 ∈ [λmin, λmax].

(III) If 1 ∈ [λmin, λmax], then return Ii.

(IV) Find j ∈ Ii and k /∈ Ii such that

(i) Ii ∪ {k} − {j} describes a vertex of P.
(ii) When [µmin, µmax] is the maximal interval such that Ii ∪ {k} −
{j} is optimal for qµ with µ ∈ [µmin, µmax], then µmax > λmax.

If this is not possible, then return ’failure’. Otherwise, let Ii+1 =
Ii ∪ {k} − {j}, λmin = µmin, λmax = µmax and i = i+ 1.

(V) Go to (III)
Algorithm 1: Shadow vertex simplex algorithm

it is easy to determine the desired maximal interval [µmin, µmax] from pu and pz. This last
step requires O(d) operations, and two matrix inversions have been employed before.

These two subtasks are solved at each iteration of the main loop of the shadow vertex al-
gorithm. Note that at each iteration we cycle through all indices j ∈ Ii and k /∈ Ii until either
the range is exhausted, or we have found an index set Ii+1 which improves upon the current
solution. A crude upper bound for the number of those iterations is O(nd).

We recall that scalar products use O(d) operations and matrix inversions use O(d3) oper-
ations. Consolidating these thoughts, we obtain the following bounds on the time and space
complexity of the method.

Theorem 7.10 (Time complexity of the simplex method, naive estimate).
Let t be the number of pivot steps in the shadow vertex method. Then the number of operations
used in the shadow vertex method is

O(tn2d4)

Remark 7.11.
In each of the subtasks, multiplications and divisions dominate the overall complexity. Thus,
this estimate also applies if we only count multiplications and divisions and disregard additions
and subtractions.

Remark 7.12.
The estimate can be improved at several points, and further aspects of the implementation
should be mentioned briefly.
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First, it is not necessary to actually invert any matrix throughout the algorithm; instead,
we only apply a matrix inversion algorithm to several right-hand sides. This does not affect
the asymptotic complexity of the method, but the numerical stability of most operations.

An important observation is that there are only three right-hand sides z, u,~1 ∈ Rd for which
we actually compute preimages under AI , and the matrix AI between pivot steps changes only
by one row. It is therefore possible to recycle information from previous iterations, which may
help to reduce the asymptotic complexity of the method in variable d.

Lastly, the number of indices checked at each pivot step may be reduced. For example,
under the general position condition each vertex has only d neighbors, so we may stop the
search after having encountered at least d neighbours. A clever ordering of the rows may also
help to reduce the complexity of each pivot step.

Remark 7.13.
The general position conditions are not only relevant for a stochastic analysis of the simplex
method, but also are important for the understanding of the method itself. Let k ≥ 2 and
1 ≤ i ≤ k − 1 and set

e = (0, 0, 1),

a0 = (1, 0, 0), ak = (−1, 0, 0),

a+
i =

(
cos( i

2π ), sin( i
2π ), 0

)
, a−i =

(
cos( i

2π ),− sin( i
2π ), 0

)
.

Let P be the convex closure of these points. Let Q its projection onto the x-z-plane. Then Q
has an edge between a0 and a1 that is not the projection of an edge of P. The shadow vertex
method then follows the vertices in the upper or lower ’arc’ of P, but these vertices are not
shadow simplices. If the algorithm followed directly the vertices in Q, then the path would be
arbitrarily shorter for k arbitrarily large, but this would only constitute a generalized simplex
method. This does not affect the algorithmic implementation of the shadow vertex method,
but the relation between the number of vertices of Q and the number of pivot steps depends
on the general position condition.

8 Adding constraints
Phase I of Vershynin’s simplex method requires solving a sequence of unit linear programming
problems, each of which is derived from the original problem by imposure of additional con-
straints. These new constraints are assembled by the algorithm Adding Constraints which
this section describes and analysis; see Algorithm 2 for the pseudo-code. The underlying idea is
that Adding Constraints creates random constraint vectors an+1, . . . , an+d and a functional
vector z0 such that, with high probability, the maximum of z0 over the polyhedron defined
by the constraint vectors a1, . . . , an+d with unit right-hand side is realized at the vertex xI
defined by the index set I = {n+ 1, . . . , n+ d}.

For notational purposes we introduce the vectors

w = d−
1
2~1, v̄i = ld(d2 − d)−

1
2 ei + d−

1
2~1− l(d2 − d)−

1
2~1.

= l(d2 − d)−
1
2 (dei −~1) + d−

1
2~1.

Here l > 0. The simplex ∆ = convex{v̄1, . . . , v̄d} has center and normal w, which is a unit
vector, and the distance between center and each vertex is l. For usage in the sequel, let
T be the invertible matrix whose columns are precisely the vectors v̄i. One can see that T
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acts on lin{~1}⊥ as scaling by ld(d2 − d)−
1
2 and on lin{~1} as scaling by d

1
2 . This describes

the eigenspace decomposition of T . The maximal and minimal singular values of T and T−1,
respectively, satisfy

smax (T ) = max{d 1
2 , ld(d2 − d)−

1
2 }, smax (T−1) = max{d− 1

2 , l−1d−1(d2 − d)
1
2 },

smin (T ) = min{d 1
2 , ld(d2 − d)−

1
2 }, smin (T−1) = min{d− 1

2 , l−1d−1(d2 − d)
1
2 }.

Intuitively, T scales convex{e1, . . . , ed} into a regular simplex of diamter l, centered at and
normal to w, as can also be seen by direct calculation.

Input: ζ > 0, l > 0, ρ > 0

Output: Either ’failure’ or an+1, . . . , an+d, z0 ∈ Rd.
Algorithm: (I) Let v1, . . . , vd be random variables in Rd with standard deviation ρ

and centers of norm v̄n+1, . . . , v̄n+d.

(II) Let Q be a random variable in O(d) drawn by Haar measure. Let
z0 = 2ζQw and an+i = 2ζQvi for 1 ≤ i ≤ d.

(III) Check that z0 ∈ cone{an+1, . . . , an+d} and aff{an+1, . . . , an+d} has
distance from the origin at least ζ. If not, return ’failure’, otherwise,
return an+1, . . . , an+d, z0.
Algorithm 2: Adding Constraints algorithm

The analysis of Adding Constraints is subject to the next subsection. We note that the
random variables an+i = 2ζQvi for 1 ≤ i ≤ d have standard deviation 2ζρ and respective
mean values ān+i = 2ζQv̄i.

Remark 8.1.
Algorithm 2 requires drawing a random element of Q ∈ O(d) according to the Haar measure.
This can be implemented by drawing d2 Gaussian variables on the real line (with arbitrary
but common standard deviations) to obtain a random matrix M , which is invertible almost
surely, and an application of the LQ-decomposition to M . The matrix Q then is a orthogonal
matrix drawn from O(d) by the Haar measure. It is easy to see that Algorithm 2 utilizes O(d3)
numerical operations and draws O(d2) Gaussian variables in R. We refer to [14] and [10] for
further information.

It is easy to verify that Adding Constraints produces a new linear programming problem
already together with its optimal solution. Let Â be a matrix that is derived from A by
appending the additional rows an+1, . . . , an+d.

Theorem 8.2.
Let ζ ≥ max1≤j≤n ‖aj‖. If Algorithm Adding Constraints does not return failure, then
the linear programming problem (Â,~1, z0), i.e., (Aug Unit LP), is solved by the index set
I = {n+ 1, . . . , n+ d}.

Proof. Suppose that Adding Constraints does not return failure. We need to show that I as
above describes a facet of the polar polyhedron

(
P̂
)∗

of P̂, and that R+
0 · z0 intersects with

this facet. First, if I describes such a facet, then z0 ∈ CI is asserted in the final step of the
algorithm. So it remains to show that I describes a facet. By the second assertion checked at
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the end of Adding Constraints,

dist (aff{an+1, . . . , an+d}, 0) ≥ ζ + ε ≥ ζ ≥ max
1≤j≤n

‖aj‖

for some ε > 0, almost surely. But then, none of the vectors ai, n+ 1 ≤ i ≤ n+ d, lies in

convex{a1, . . . , ai−1, ai+1, . . . , an+d}.

This implies the desired property.

Having shown correctness, The remainder of the section aims at estimating the probability
that Adding Constraints returns a set of vectors, and furthermore that these vectors lie
within some given halfspace H. In later applications, that halfspace will be specified to be a
fixed halfspace in the “numb set” of the linear programming problem considered; see Section
9. Throughout the following proofs, we let G be the random matrix in Rd×d that satisfies

vi = (T +G)ei.

In other words, the entries of G are (0, ρ)-Gaussians. The following probabilistic results are
drawn from [15], but we state the results in a more general manner, in order to detach the
analysis from any particular instantiation of parameters.

Lemma 8.3 (Estimate for (B.1) in [15]).
Let an+1, . . . , an+d and z0 be the output of Adding Constraints, then

ProbG,Q {z0 ∈ cone{an+1, . . . , an+d}} ≥ 1− exp

(
−1

2
ρ−2κ−2s−2

max (T−1)

)
,

where κ ∈ R+ satisfies

κ−1 ≤
(
1 + 2d · smax (T−1)

)−1
.

Proof. The statement whose probability we estimate is invariant under scaling and orthogonal
transformations. Therefore it is sufficient to derive a lower bound for

ProbG {w ∈ cone{v1, . . . , vd}} .

Invertibility of T is known, and T +G is invertible almost surely. We condition on T and T +G
being invertible. This implies that there exist real numbers c1, . . . , cd and c̄1, . . . , c̄d such that

w = c1v1 + · · ·+ cdvd, w = c̄1v̄1 + · · ·+ c̄dv̄d.

Since v̄i = Tei and v1 = (T +G)ei for 1 ≤ i ≤ d, we see

(T +G)−1w = c1e1 + · · ·+ cded, T−1w = c̄1e1 + · · ·+ c̄ded.

In particular,

ci = 〈(T +G)−1w, ei〉, c̄i = 〈T−1w, ei〉 = 1/d.

So it suffices to bound ‖T−1 − (T +G)−1‖ from above. Since T and T +G are invertible,

T−1 − (T +G)−1 = (T +G)−1(T +G)(T−1 − (T +G)−1)

= (T +G)−1(1 +GT−1 − 1)
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= (T +G)−1GT−1

= (1 + T−1G)−1T−1GT−1

holds, and so

‖T−1 − (T +G)−1‖ = ‖(1 + T−1G)−1T−1GT−1‖ ≤ ‖(1 + T−1G)−1‖ · ‖T−1G‖ · ‖T−1‖.

Next, we recall that

ProbG
{
‖T−1G‖ < κ−1

}
≥ ProbG

{
‖G‖ < κ−1s−1

max (T−1)
}

≥ ProbG
{
‖ρ−1G‖ < κ−1ρ−1s−1

max (T−1)
}

≥ 1− exp

(
−1

2
ρ−2κ−2s−2

max (T−1)

)
.

via Corollary 6.5. Provided that κ−1 < 1, we have ‖T−1G‖ < 1 with high probability, so the
Neumann series identity ([18, Satz II.1.11]) is applicable:

(1− ‖T−1G‖)−1 ≥
∞∑
p=0

‖T−1G‖p ≥

∥∥∥∥∥
∞∑
p=0

(−T−1G)p

∥∥∥∥∥ =
∥∥(1 + T−1G)−1

∥∥ .
We can then derive

‖(1 + T−1G)−1‖ · ‖T−1G‖ · ‖T−1‖ ≤ ‖T
−1G‖‖T−1‖

1− ‖T−1G‖
≤ smax (T−1)κ−1

1− κ−1
=
smax (T−1)

κ− 1
.

The last term is bounded from above by (2d)−1, provided that T satisfies

κ−1 ≤
(
1 + 2d · smax (T−1)

)−1
< 1.

This implies the desired result.

Lemma 8.4 (Estimate for (B.2) in [15]).
Let an+1, . . . , an+d and z0 be the output of Adding Constraints, then

ProbG,Q

{
dist(~0, aff{an+1, . . . , an+d}) ≥ ζ

}
≥ 1− exp

(
−1

2
ρ−2κ−2s−2

max (T−1)

)
,

where κ ∈ R+ satisfies

κ−1 ≤
(
1 + 2d · smax (T−1)

)−1
.

Proof. The result whose probability we want to estimate is invariant under scaling und or-
thogonal transformations. Therefore if suffices to estimate

ProbG

{
dist(0, aff{v1, . . . , vd}) ≥

1

2

}
.

Recall that v1, . . . , vd have standard deviation ρ and centers of norm v̄n+1, . . . , v̄n+d. Let
h ∈ Rd be the defining normal to H := aff{v1, . . . , vd} and let h̄ ∈ Rd be the defining normal
to H := aff{v̄1, . . . , v̄d}; this means that x ∈ H if and only if 〈x, h〉 = 1 and x ∈ H if and only
if 〈x, h̄〉 = 1. We then know by linear algebra that

h̄ = (T ∗)−1~1, h = ((T +G)∗)−1~1,
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as follows from

1 = 〈~1, ei〉 = 〈~1, T−1v̄i〉 = 〈(T ∗)−1~1, v̄i〉,
1 = 〈~1, ei〉 = 〈~1, (T +G)−1vi〉 = 〈(T ∗ +G∗)−1~1, vi〉.

We can then estimate

‖h− h̄‖ ≤ ‖((T +G)∗)−1 − (T ∗)−1‖ · ‖~1‖ = ‖(T +G)−1 − T−1‖ · ‖~1‖.

Using exactly the same argument as in the previous proof, we obtain that with high probability
we have ‖(T +G)−1 − T−1‖ ≤ 1

2d
−1, so with high probability

‖h− h̄‖ · ‖~1‖ ≤ 1

2
d−

1
2 .

Since h̄ = w has norm 1, with high probability h has norm near 1. This completes the
proof.

Remark 8.5.
The parameter κ depends on ρ, d and the spectrum of T . The latter depends on the parameter
l, which in turn will be chosen depending on ρ, n and d. In Section 11, a possible choice of κ
is examined.

The previous two theorems allow us to estimate the probability that Adding Constraints
does not return failure. It is relevant for applications of Adding Constraints that the output
vectors an+1, . . . , an+d are located within some (fixed) halfspace.

Lemma 8.6 (Estimate for (B.3) in [15]).
Let H be a halfspace. Then

Proban+1,...,an+d
{an+1, . . . , an+d ∈ H}

≥ |S
d−1(h)|
|Sd−1|

− dρ

2τ
exp

(
− τ2

2ρ2

)
− d |S

d−2(δ/l)|
|Sd−2|

,

provided that h ∈ [0, 1], τ ∈ (0,∞), δ ∈ [0, l], and h− τ − δ ≥ 0.

Remark 8.7.
The parameters h, τ and δ must be chosen with dependence on d and ρ. Upon appropiate
choice of ρ with dependence on d and n only, the parameters can be chosen with dependence
only on d in the context of our application.

Proof. Let ν ∈ Sd−1 such that H = {x ∈ Rd | 〈ν, x〉 ≥ 0}. We want to estimate the probability

Proban+1,...,an+d

{
〈an+1, ν〉, . . . , 〈an+d, ν〉 ∈ R+

0

}
.

With abuse of notation, we may neglect the successive scaling of z0, ān+i and an+i by the
factor 2ζ as in Adding Constraints. We split the products

〈ν, an+i〉 = 〈ν, z0〉+ 〈ν, an+i − ān+i〉+ 〈ν, ān+i − z0〉, (12)

and show that these terms are contained within suitable ranges with high probability.
First, since z0 is the uniformly distributed random variable in Sd−1, the musings of Section

6 state that

ProbQ {〈z0, ν〉 ≥ h} =
|Sd−1(h)|
|Sd−1|

,
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where h ∈ [0, 1] and Sd−1(h) ⊂ Sd−1 is the spherical cap suspended from e1 with height h
above the plane orthogonal to e1.

Second, we observe that the vectors an+i − ān+i are Gaussian variables with centers at the
origin and standard deviation ρ. According to Lemma 6.1, the product 〈an+i − ān+i, ν〉 is a
Gaussian variable on R centered at 0 with standard deviation ρ. Since

ProbA,Q {−〈an+i − ān+i, ν〉 > τ} ≤ ρ

2τ
exp

(
− τ2

2ρ2

)
according to Lemma 6.6, we obtain the estimate

ProbA,Q

{
min

1≤i≤d
〈an+i − ān+i, ν〉 > −τ

}
≥ ProbA,Q

{
− min

1≤i≤d
〈an+i − ān+i, ν〉 < τ

}
≥ ProbA,Q

{
max

1≤i≤d
〈an+i − ān+i,−ν〉 < τ

}
= 1−

d∑
i=1

ProbA,Q {−〈an+i − ān+i, ν〉 > τ} ≥ 1− dρ

2τ
exp

(
− τ2

2ρ2

)
.

The third term of Equation (12) is the most complicated to estimate. We decompose
Q = VW , where W is a random variable in O(d) and V is random variable in the subgroup
of O(d) whose elements leave the space lin(Ww) invariant. Let li = W (v̄i − w), let P be the
orthogonal projection onto (Ww)⊥, and let ν′ be the normalization of Pν. We verify

〈li,Ww〉 = 〈W (v̄i − w),Ww〉 = 〈v̄i − w,w〉 = 0,

by the definition of w and v̄i. We conclude that V li ⊥Ww, and that

|〈ν, ān+i − z0〉| = |〈ν, V li〉| = |〈Pν, V li〉| = |〈V ∗Pν, li〉| ≤ |〈V ∗ν′, li〉|.

We have ‖li‖ = l, and without loss of generality we may apply a coordinate transformation
such that the li are vectors in Rd−1 ⊂ Rd of norm l, and u := V ∗ν′ is a uniformly distributed
random vector on the 1-sphere of Rd−1. We estimate

Probu

{
max

1≤i≤d
|〈ān+i − z0, ν〉| ≤ δ

}
≥ Probu

{
max

1≤i≤d
|〈u, li〉| ≤ δ

}
= 1−

d∑
i=1

Probu {|〈u, li〉| ≥ δ} = 1− dProbu

{
|〈u, e1〉| ≥

δ

l

}
= 1− d |S

d−2(δ/l)|
|Sd−2|

,

provided that δ ∈ [0, l]. With these estimates, we can finally derive

Proban+1,...,an+d

{
〈an+1, ν〉, . . . , 〈an+d, ν〉 ∈ R+

0

}
≥ Proban+1,...,an+d


〈z0, ν〉 ≥ h,

∀1 ≤ i ≤ d : 〈an+i − ān+i, ν〉 > −τ,
∀1 ≤ i ≤ d : |〈ān+i − z0, ν〉| ≤ δ


≥ |S

d−1(h)|
|Sd−1|

− dρ

2τ
exp

(
− τ2

2ρ2

)
− d |S

d−2(δ/l)|
|Sd−2|

.

This completes the proof.
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Remark 8.8.
As one might reasonably expect, not only are the events mentioned in Theorem 8.3 and
Theorem 8.4 invariant under scaling, but so are the lower bounds, too. This can be verified
by tracking the effects of scaling through the respective proofs. The scaling invariance of the
event in Theorem 8.6 is obvious, which is not as easy for the lower bound. However, scaling
the random vectors an+1, . . . , an+d by a factor α leads to the emergence of rescaled parameters
h
α ,

τ
α and δ

α . The parametrized set of lower bounds remains the same.

The previous three results serve as building blocks to eventually estimate the probability of
success for Adding Constraints.

Theorem 8.9.
Let H be a halfspace. Then Adding Constraints returns z0, an+1, . . . , an+d such that
an+1, . . . , an+d ∈ H with probability at least

|Sd−1(h)|
|Sd−1|

− dρ

2τ
exp

(
− τ2

2ρ2

)
− d |S

d−2(δ/l)|
|Sd−2|

− 2 exp

(
−1

2
ρ−2κ−2s−2

max (T−1)

)
where h ∈ [0, 1], τ ∈ (0,∞), δ ∈ [0, l], h− τ − δ ≥ 0, and κ ∈ R such that

κ−1 ≤
(
1 + 2d · smax (T−1)

)−1
.

9 Phase I Method
Each variant of the simplex method requires an initial vertex of the input problem and possible
additional initial information, which entails the need to construct a so-called Phase I method.
The Phase I algorithm of the shadow vertex algorithm according to Vershynin’s work con-
structs a randomized sequence of linear programming problems by employing the algorithm
Adding Constraints. The output of each call of Adding Constraints is an augmented sys-
tem matrix Â and an initial direction z0, such that the indices of the additional constraint
describe a vertex that maximizes z0 over

[
Â,~1

]
. With sufficient probabibility, as remains to

be shown in Section 11, the shadow vertex method applied to the linear programming problem
provides an optimal solution of

(
A,~1, z

)
. The Phase I method, algorithm Unit Solver, is

therefore a Las-Vegas-method for solving unit linear programming problems. In this section,
we describe Unit Solver, inspect its correctness and provide probabilistic estimates for its
running time. Again, the run-time estimate is parametrized, to be instantiated in Section 11.

Let us consider the following unit linear programming problem

Maximize 〈z, x〉 subject to Ax ≤ ~1. (Unit LP)

Let the augmented matrix Â ∈ R(n+d)×d be the extension of the matrix A ∈ Rd×d by the
additional constraint row vectors. This induces an augmented linear programming problem

Maximize 〈z, x〉 subject to Âx ≤ ~1, (Aug Unit LP)

which serves as an auxiliary problem. Let us denote its underlying polyhedron by P̂ and its
dual polyhedron by

(
P̂
)∗

. Our first concern is which rows can be appended to A such that
(Unit LP) and (Aug Unit LP) are equivalent. Our second concern is whether their equivalence
can be checked algorithmically, if any set of additional rows is given.
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We call N ⊂ Rd a numb set of the linear programming problem (Unit LP) if imposing any
finite number of additional constraint vectors to (Unit LP) gives a new linear programming
problem equivalent to the (Unit LP).

Lemma 9.1.
The numb set of a unit linear programming problem (A,~1, z) always contains a closed halfspace.

Proof. If (A,~1, z) is infeasible, then the statement is trivial. Suppose that (A,~1, z) is feasible
and bounded, and that I ⊆ [n] describes a solution. Then z ∈ CI . Let G be the unique
halfspace that contains P∗ and has FI in its boundary. Then G is a numb set. Suppose that
(A,~1, z) is feasible but unbounded, which means that there exists a hyperplane through the
origin that separates R+ · z from P∗. The closed halfspace containing P∗ is a numb set.

The reader might have noted that in the case of a bounded feasible program, constraints
from the numb halfspace added may lead to vertices in non-general position. This event
happens almost never in our algorithmic construction. Anyways, the solution theory and the
correctness of the algorithms are not critically affected by this. This is important for the
following result.

Lemma 9.2.
Assume that (Aug Unit LP) is in general position. The linear programming problem (Aug Unit LP)
is equivalent to (Unit LP) if and only if either (Aug Unit LP) is unbounded or if (Aug Unit LP)
has a solution that satisfies d different constraint vectors of A with equality.

Proof. We note that both linear programming problems are trivially feasible, since 0 is a
feasible point in both cases. If (Aug Unit LP) is unbounded, then (Unit LP) is unbounded,
too. Otherwise, suppose that (Aug Unit LP) is bounded with optimal solution set I. If I ⊆ [n],
then there is nothing to show. Otherwise, the optimal value of (Aug Unit LP) is almost surely
strictly smaller than the optimal value of (Unit LP), since almost surely no two vertices lie in
the same level set of z, which means that the solution space is different.

We now provide the pseudo-code for algorithm Unit Solver, see Algorithm 3, and inspect
its correctness and smoothed complexity.

Input: A ∈ Rn×d, z ∈ Rd, ρ ∈ R+, l ∈ R+.
Output: Either ’unbounded’ or the index set I of an optimal solution of (A,~1, z).
Algorithm: (I) Apply Adding Constraints with parameters µ0, ρ and l, where

µ0 = exp ceil log max
1≤i≤n

‖ai‖,

If ’failure’ is returned, then repeat. Otherwise, keep the output vector
z0 and the augmented matrix Â.

(II) Apply the polar shadow vertex method with initial direction z0, initial
solution {n+ 1, . . . , n+ d} and objective direction z to (Â,~1, z).

(III) If ’unbounded’ is returned, then return ’unbounded’. If a solution is
returned that contains an index among {n+ 1, . . . , n+d}, then go to
Step (I). Otherwise, return the solution I.

Algorithm 3: Randomized solver for unit linear programming problems
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Theorem 9.3.
Unit Solver is correct.

Proof. There is a fixed non-zero probability that z0 and Â are returned in Step (I), so almost
surely, after a finite number of iterations of Step (I), it finds z0 and Â. The application of the
shadow vertex method in Step (II) is almost surely well-defined, because almost surely z and
z0 are linearly independent. There is a fixed non-zero probabibility that z0 and the additional
constraint vectors lie within a numb halfspace of the original problem. So almost surely, after
a finite number of iterations of Steps (I) – (III), the output of Step (II) is not an index set
containing indices from [n+ d]− [n]. If the output is an index set I ⊆ [n], then a solution has
been found. If ’unbounded’ is found, then the original is unbounded.

On the one hand, we want to estimate the number of iterations of the main loop, and on
the other hand we need to estimate the number of pivot steps in each iteration. Let F (k)
be the binary random variable in {0, 1} that is 1 if and only if either Adding Constraints
returns ’failure’ in the k-th iteration or (Aug Unit LP) in the k-th iteration is not equivalent
to (Unit LP). Let T (k) be the random variable in N0 that describes the number of pivot steps
in the call of the shadow vertex method in the k-th iteration. Then the random variable V ,
defined by

TI :=

∞∑
k=1

T (k)

k−1∏
j=1

F (j), (13)

is the number of pivot steps in the call of Algorithm 3 until the first success is made. Our aim
is to derive its expected value.

The random variables about which we take the expected value are the input matrix A and
the random choices Ci in each i-th iteration, thus

EA,C1,C2,...TI = EA
∞∑
k=1

ECkT (k)

k−1∏
j=1

ECjF (j).

The expected values EA,CkT (k) are all independent of k, so we may write EA,CkT (k) =
EA,CkT (1). Let p ∈ [0, 1) be an upper bound independent from A for the probability that
the algorithm Adding Constraints returns ’failure’ or that (Aug Unit LP) is not equivalent
to (Unit LP). With the elementary fact on the geometric series we find

EA,C1,C2,...TI = EA
∞∑
k=1

ECkT (k)
k−1∏
j=1

p ≤ EÂ1
T (1) ·

∞∑
k=1

pk−1

= EÂ1
T (1) ·

∞∑
k=0

pk =
EÂ1

T (1)

1− p
.

An explicit instantion for p and a bound for EÂ1
T (1) is provided in Section 11

10 Interpolation of Linear Programming Problems
The shadow vertex simplex method, Algorithm 1, applies to unit linear programming prob-
lems in general position. Employing the algorithm indirectly for general linear programming
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problems not only requires the construction of auxiliary problems with unit right-hand side,
but also should the construction preserve stochastic properties of the input. We describe such
a construction in this section. Recall that our initial task is to find the optimal solution of the
linear programming problem

Maximize 〈z, x〉 subject to Ax ≤ b. (LP)

We consider the corresponding unit linear linear programming problem

Maximize 〈z, x〉 subject to Ax ≤ ~1. (LP Unit)

for auxiliary purposes because its solution properties are easier to comprehend. We relate
(LP) and (LP Unit) through a third problem. The interpolation linear programming problem
depends on a parameter λ and is given by

Maximize 〈z, x〉+ λ · τ subject to Ax ≤ τb+ (1− τ)~1, 0 ≤ τ ≤ 1. (LP Int)

We write P[0,1] for the underlying polyhedron, called interpolation polyhedron. Occassionally,
we might fix the variable τ with some value t. This yields the linear programming problem

Maximize 〈z, x〉+ λ · τ subject to Ax ≤ τb+ (1− τ)~1, τ = t, (LP Int t)

and we write Pt for its polyhedron.

The following results rigorously relate and describe (LP), (LP Unit) and (LP Int). Theo-
rems 10.1, 10.2 and 10.4, and Corollary 10.3 can be found in Appendix A of [15]. We only
give some minor alterations. For notational brevity, we write

β := max
τ∈[0,1]

‖τ~1− (1− τ)b‖∞ ∈ [1,∞), µ(τ) := sup
x∈Pτ

〈z, x〉 ∈ [−∞,∞].

Theorem 10.1 ([15, Proposition 4.1, (i)]).
The following statements are equivalent

• (LP) is unbounded.

• (LP Unit) is unbounded.

• (LP Int) is unbounded for all λ.

• (LP Int) is unbounded for some λ.

Proof. We know by Theorem 5.2 that (LP) is bounded if and only if (LP Unit) is bounded.
Assume that (LP Unit) is unbounded. Since P0 contains the feasible set of (LP Unit), this

set is contained in the feasible set of (LP Int), hence (LP Int) is unbounded for every λ, too.
Now assume that (LP Int) is unbounded for some λ, i.e., there exists a sequence (xi, τi) of

feasible points such that 〈(xi, τi), (z, λ)〉 → ∞. Because 0 ≤ τi ≤ 1, we have

Axi ≤ β~1 ⇐⇒ β−1Axi ≤ ~1.

This shows that β−1xi is a sequence of feasible vectors for (LP Unit). But we also observe
that 〈z, β−1xi〉 → ∞ because 0 ≤ τi ≤ 1.

This completes the proof.
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Theorem 10.2 ([15, Proposition 4.1, (iii)]).
Assume that (LP) is not unbounded. Then (LP) is feasible if and only if for λ sufficiently large
(LP Int) has an optimal solution with τ = 1. Furthermore, x ∈ Rd is an optimal solution of
(LP) if and only if for λ sufficiently large (LP Int) has an optimal solution (x, 1).

Proof. Suppose that for λ sufficiently large (LP Int) has an optimal solution (x, 1), then (x, 1) ∈
P1 and x is an optimal solution of (LP). In particular, (LP) is feasible.

Suppose that (LP) is feasible. We see that for x ∈ P1 we have τx ∈ Pτ , so (LPτ ) is feasible
for τ ∈ [0, 1], so their optimal values are larger than −∞. By assumption and Theorem 10.1,
we know that (LP Unit) is not unbounded. Because ~0 ∈ P0, we infer that (LP Unit) is feasible
and bounded. Note that µ(0) ≥ 0. Since we have (β−1x) ∈ P0 for x ∈ Pτ , we derive

∀τ ∈ [0, 1] : |µ(τ)| =
∣∣∣∣ sup
x∈Pτ
〈z, x〉

∣∣∣∣ = β

∣∣∣∣ sup
x∈Pτ
〈z, β−1x〉

∣∣∣∣ ≤ β ∣∣∣∣ sup
x∈P0

〈z, x〉
∣∣∣∣ = βµ(0).

Thus, (LP Int) is bounded. Let (xλ, τλ) optimally solve (LP Int) with some parameter λ > 0.
This implies

τλ ∈ argmaxτ∈[0,1] max
x∈Pτ

〈(z, λ), (x, τλ)〉 ⇐⇒ τλ ∈ argmaxτ∈[0,1] λ
−1µ(τ) + τ.

We also know that ∣∣(λ−1µ(τ) + τ)− τ
∣∣ = λ−1|µ(τ)| ≤ βλ−1µ(0).

Because τλ maximizes we find

τλ ≥
(
λ−1µ(τλ) + τλ

)
− βλ−1µ(0)

≥
(
λ−1µ(1) + 1

)
− βλ−1µ(0)

≥ 1− 2βλ−1µ(0).

We have shown that an optimal solution (xλ, τλ) of (LP Int) with parameter λ satisfies τλ → 1
as λ → ∞. But we may assume without loss of generality that there are only finitely many
different points in the family (xλ, τλ). It follows that τλ = 1 for all sufficiently large λ. This
completes the proof.

Corollary 10.3 ([15, Proposition 4.1, (iv)]).
Assume that (LP) is feasible and bounded. Then x ∈ Rd is an optimal solution of (LP) if and
only if (x, 1) is an optimal solution of (LP Int) for all sufficiently large λ.

Theorem 10.4 ([15, Proposition 4.1, (ii)]).
Assume that (LP)) is not unbounded. Then x ∈ Rd is an optimal solution of (LP Unit) if and
only if for λ sufficiently small (LP Int) has an optimal solution (x, 0).

Proof. Suppose that for λ sufficiently small (LP Int) has an optimal solution (x, 0), then
(x, 0) ∈ P0 and x is an optimal solution of (LP Unit).

By assumption, (LP Unit) is feasible and bounded. As Pτ = ∅ is possible for general
τ ∈ [0, 1], we introduce T ⊂ [0, 1], where τ ∈ T if and only if Pτ 6= ∅. Since we have
β−1x ∈ P0 for x ∈ Pτ , we derive

∀τ ∈ T : |µ(τ)| =
∣∣∣∣ sup
x∈Pτ
〈z, x〉

∣∣∣∣ = β

∣∣∣∣ sup
x∈Pτ
〈z, β−1x〉

∣∣∣∣ ≤ β ∣∣∣∣ sup
x∈P0

〈z, x〉
∣∣∣∣ = βµ(0).
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This implies that (LP Int) is bounded.
Suppose that (LP Int) has an optimal solution. Let (xλ, τλ) optimally solve (LP Int) with

some parameter λ < 0. This implies

τλ ∈ argmaxτ∈T max
x∈Pτ

〈(z, λ), (x, τλ)〉 ⇐⇒ τλ ∈ argmaxτ∈T |λ|−1µ(τ)− τ.

We also know that∣∣− (|λ|−1µ(τ)− τ
)
− τ
∣∣ =

∣∣(|λ|−1µ(τ)− τ
)

+ τ
∣∣ = |λ|−1|µ(τ)| ≤ β|λ|−1µ(0).

Since τλ is a maximizer,

τλ ≤ −
(
|λ|−1µ(τλ)− τλ

)
+ β|λ|−1µ(0)

≤ −
(
|λ|−1µ(0)− 0

)
+ β|λ|−1µ(0)

≤ 0 + 2β|λ|−1µ(0).

We have shown that an optimal solution (xλ, τλ) of (LP Int) with parameter λ satisfies τλ → 0
as λ→ −∞. But we may assume without loss of generality that there are only finitely many
different points in the family (xλ, τλ). It follows that τλ = 0 for all sufficiently small λ. This
completes the proof.

Remark 10.5.
The optimal solutions of (LP Int) for λ → −∞ and of (LP Int) for λ → +∞ are optimal
solutions for the directions (0,−1) and (0, 1), respectively. But the converse implication does
not hold, because any vertex of P0 and P1 is an optimal solution for (0,−1) and (0, 1), respec-
tively. This is related to the subspace (0,R) being orthogonal to P0 and P1. We conclude that
the optimal solution of the limit problems depends on z. This has implications for the choice
of the plane of rotation in Phase II of the full solution algorithm.

Remark 10.6.
Suppose that the linear programming problem (LP) has Gaussian entries in A and b. The
previous reduction of (LP) to a unit problem is ostensibly complicated – indeed, one might
object that an instance has no zero entries in b with probability 1, so a trivial renormalization
would suffice to derive a unit problem. We appeal to the reader to recall that the system matrix
of that unit problem then has rows distributed by a ratio distribution. It seems difficult to
estimate S(Q, E) if Q is the convex closure of random variables having such a distribution.

11 The Full Solution Algorithm
In this section we eventually describe a randomized variant of the simplex algorithm and esti-
mate its smoothed complexity. We first provide a reduction from general linear programming
problems to the interpolation linear programming problem (LP Int). We prove correctness
of the method, which employs the previously discussed subroutines Shadow Vertex Simplex
Method, Unit Solver, and, indirectly, Adding Constraints. The smoothed complexity es-
timate reduces to estimating the number of pivot steps taken within all calls of Subroutine
1. The latter estimates depend on two results on the sizes of two-dimensional shadows of
polyhedrons, which are proven in the remaining sections of this thesis.
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11.1 Proof of Correctness
We recall the definition of the interpolated linear programming problem:

Maximize 〈z, x〉+ λ · τ subject to
Ax− τ(~1− b) ≤ ~1,

0 ≤ τ ≤ 1.
(LP Int)

and the linear programming problems (LP) and (LP Unit). Algorithm Full Solution Algorithm
formally uses (LP Int), but we need to transform it into a unit linear programming problem.
We introduce a parameter γ > 0 and a perturbed interpolated problem:

Maximize 〈z, x〉+ λ · τ subject to
Ax− τ(~1− b) ≤ ~1,
−γ ≤ τ ≤ 1.

(LP Int’)

We write P[−γ,1] for the underlying polyhedron. The vertices of the interpolated polyhedron
are either located on the planes {t = 0} or {t = 1}, or have positive distance from these
planes. Similarly, we infer that there exists γ > 0 such that the limit solutions of (LP Int’)
and (LP Int) are the same. The transformation into a unit linear programming problem is
now obvious:

Maximize 〈z, x〉+ λ · τ subject to
Ax− τ(~1− b) ≤ ~1,
− 1
γ τ ≤ 1, τ ≤ 1.

(LP Int”)

Suppose we are given an arbitrary linear programming problem (A, b, z). The pseudo-code
for Full Solution Algorithm is given by Algorithm 4. Step (I) describes Phase I of the
algorithm, while Step (II) and Step (III) formalize Phase II. Notably, Step (II) describes the
rotation of the search direction q from (0,−1) to (0, 1) in the plane E = lin{(0, 1), (z, 0)}. This
process of rotation is formally split up into two parts, because (0, 1) and (0,−1) are colinear,
but we refer to it as a single rotation in the sequel. Furthermore, we ignore the difference be-
tween P[−γ,1] and P[0,1] formally. Alternatively to computing a suitable γ, one may modify the
beginning of the shadow vertex method in Phase II to ignore the single 0 in the right-hand side.

We first prove that this algorithm is well-posed and returns the correct result.
If Unit Solver returns ’unbounded’, then Theorem (10.1) implies unboundedness of (LP).

Otherwise Unit Solver produces an index set I0 ⊆ [n] which describes an optimal solution
of (LP Unit). We then infer from Theorem (10.4) that (xI0 , 0) is an optimal solution of
(LP Int) for λ→ −∞. Note that the constraint τ ≥ 0 is satisfied exactly, so I0 can be reused
without modification. This implies that (xI0 , 0) maximizes (0,−1) over the polyhedron of the
interpolated problem. A fortiori, we may utilize the initial direction (0,−1) and the index set
I0 of initial solution as input of Phase II.

Since (LP Unit) is bounded, we infer that (LP Int) is bounded for all λ, and we know that
(LP Int) is feasible. Therefore, when we use (0, 1) as the objective direction and (z, 0) as the
direction of rotation, the two successive applications of algorithm Shadow Vertex Simplex
Method provide a vertex (xI1 , τ). Obviously, (xI1 , τ) is an optimal solution of (LP Int) for
λ → ∞. Then we conclude via Theorem 10.2 that τ ≤ 1 if and only if (LP) is feasible with
optimal solution xI1 . Note that the constraint τ ≤ 1 is satisfied exactly by (xI1 , 1) then, so I1
can be extracted without modification.

We conclude that algorithm Full Solution Algorithm is correct.
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Input: A ∈ Rn×d, b ∈ Rn, z ∈ Rd

Output: Either ’unbounded’, ’infeasible’ or the index set I1 of an
optimal solution.

Algorithm: (I) Apply the algorithm Unit Solver to the unit problem (A,~1, z). If
’unbounded’ is returned, then return ’unbounded’. If I0 is returned,
then proceed.

(II) Apply the shadow vertex method to the interpolated polyhedron with
initial direction (0,−1), initial solution (xI0 , 0) and objective direc-
tion (z, 0), and obtain a solution (x, τ)I0.5 .

Apply the shadow vertex method to the interpolated polyhedron with
initial direction (z, 0), initial solution (x, τ)I0.5 and objective direction
(1, 0), and obtain a solution (xI1 , τ1).

(III) If τ 6= 1, then return ’infeasible’.

Otherwise, (xI1 , τ1) = (xI1 , 1) for some I1 ⊆ [n]. Return I1.
Algorithm 4: Full solution algorithm

11.2 Smoothed Complexity Estimates
We separately estimate the expected number of pivot steps undertaken by the calls of Shadow
Vertex Simplex Method in Phase I and Phase II of Full Solution Algorithm.

We make the following technical assumptions:

∀i ∈ [n] :
∥∥(āi, b̄i)

∥∥
2
≤ 1, σ ≤ 1

6
√
d log n

. (14)

These conditions are satisfied if the variables are scaled by a suitable factor. This scaling does
not have to be implemented and is only of technical relevance; in fact, we show below that it
is not necessary.

The linear programming problem (LP Int”) is defined by n Gaussian constraint vectors
(ai, 1−bi) and 2 additional deterministic constraint vectors, say (0, 1) and (0,− 1

γ ) in E . TODO:
As the Shadow Vertex Simplex Method produces a sequence of intermediate solutions, the
corresponding index set ranges over facets of the polar polytope that intersect with a vector
from E . Hence, the number of pivot steps in Phase II is bounded by the number of facets of
the polytope

Q := convex{0, (0, 1), (0,− 1

γ
), (a1, 1− b1), . . . , (an, 1− bn)}

that intersect with the plane E , in other words, the number of edges S(Q, E) of the random
polytope E ∩ Q. Since 0, (0, 1), (0,− 1

γ ) ∈ E , we conclude

S(Q, E) ≤ 3 + S (convex{(a1, 1− b1), . . . , (an, 1− bn)}, E)

Thus it remains to estimate the number of facets of the random polytope

Q− := convex{(a1, 1− b1), . . . , (an, 1− bn)} ⊂ Rd+1
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that intersect with E . To simplify matters, we use the scaling invariance, Corollary 12.2;
without changing the expected value S(Q, E), we may assume

∀i ∈ [n] :
∥∥(āi, b̄i)

∥∥
2
≤ 1, σ ≤ 1

6
√
d log n

.

We thus can utilize the following upper bound.

Theorem 11.1 ([15, Theorem 6.2]).
Suppose that a1, . . . , an are independent Gaussian vectors in Rd, whose mean values have
norm at most 1 and whose standard deviation is bounded from above by σ ≤ (6

√
d log n)−1.

Let E ⊂ Rd be a plane, and let Q = convex{a1, . . . , an}. Then the shadow size S(Q, E) is a
random variable whose mean value satisfies

EAS(P, E) ≤ CIID(d, σ),

where D(d, σ) = d3σ−4 and CII is a universal constant.

When we denote the expected value of pivot steps in Phase II by TII , then

TII ≤ D(d+ 1, σ) + 3 = CII(d+ 1)3σ−4 + 3.

This establishes the upper bound of the number of pivot steps in Phase II.

It is more complicated to estimate the number of pivot steps in Phase I. On the one hand,
we need to estimate the number of iterations in Unit Solver, on the other hand we need
to estimate the number of pivot steps in each call Shadow Vertex Simplex Method, where
the additional constraint vectors correlate with the input vectors; so a different shadow size
estimate proves necessary.

A first observation considers the behaviour of Phase I under scaling. Our estimation of the
number of calls to Algorithm Shadow Vertex Simplex Method, which is no a tight bound, is
invariant under rescaling of the constraint vectors a1, . . . an. Furthermore, the upper bound
on the number of facets in the random polytopes is invariant under rescaling of the a1, . . . , an,
having chosen ρ as below. In conclusion, we may again assume

∀i ∈ [n] :
∥∥(āi, b̄i)

∥∥
2
≤ 1, σ ≤ 1

6
√
d log n

.

The algorithms in Phase I depend on several parameters. We set

l :=
(

300 log
1
2 d
)−1

, ρ := min

{
1

6
√
d log n

,
1

9000000d3/2 log d

}
. (15)

This implies for the largest singular value of the matrix T−1 in Section 8 that

smax (T−1) = max
{
d−

1
2 , l−1d−1(d2 − d)

1
2

}
= max

{
d−

1
2 , 300 log

1
2 d · (1− 1/d)

1
2

}
= 300 log

1
2 d · (1− 1/d)

1
2 .

because d ≥ 3. Having chosen these parameters, we compute for the terms in Lemma 8.3 and
Lemma 8.4 that (

ρκsmax (T−1)
)−1
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=
max{6

√
d log n, 9000000d3/2 log d}

300 log
1
2 d · (1− 1/d)

1
2

(
1 + 2d · 300 log

1
2 d · (1− 1/d)

1
2

)
≥ 9000000d3/2 log d

300 log
1
2 d · (1− 1/d)

1
2

(
1 + 2d · 300 log

1
2 d · (1− 1/d)

1
2

)
≥ 9000000d3/2 log d

100 log
1
2 d
(

1 + d · 300 log
1
2 d
)

≥ 90000d3/2 log
1
2 d(

1 + d · 300 log
1
2 d
) ≥ 90000d3/2 log

1
2 d

d · 600 log
1
2 d

≥ 150d1/2,

hence

exp

(
−1

2
ρ−2κ−2s−2

max (T−1)

)
≤ exp (−11250d) < 10−10000.

Next, we choose the parameters of Lemma 8.6 as

h =
1

60
√
d
, τ =

1

120
√
d
, δ =

1

120
√
d
.

We instantiate the three terms of the probability estimate in Lemma 8.6 with these values.
For the first term, the lower estimate (5) provides

|Sd−1(h)|
|Sd−1|

≥ 1− 1

π
sin−1(h) = 1− 1

π
sin−1

(
1

60
√
d

)
≥ 0.496937.

The upper bound for the second term is

dρ

2τ
exp

(
−τ2

2ρ2

)

=

60d3/2 exp

(
−τ2

2ρ2

)
max

{
6
√
d log n, 9 · 106d3/2 log d

} ≤ 60d3/2 exp

(
−τ2

2ρ2

)
9 · 106d3/2 log d

≤
exp

(
−τ2

2ρ2

)
105 log d

≤ 10−5 log−1 d · exp

(
−max

{
6
√
d log n, 9 · 106d3/2 log d

}2

28800d

)

≤ 10−5 log−1 d · exp

(
− 81

28800
· 1012d2 log2 d

)
≤ 10−5 log−1 d · d−(1010) ≤ 0.0001.

For the third term, we apply the upper estimate (6) to find

d
|Sd−2(δ/l)|
|Sd−2|

≤ d exp

(
− (d− 3)2

4 · 14400d2l2

)
= d exp

(
− (d− 3)290000

4 · 14400d2
log d

)
= d−

90000(d−3)2

57600d2
+1 = d−

32400d2−180000d+810000

57600d2 < 0.1

for, say, d > 200. This last term contributes most to the failure probability of Adding Constraints,
and decreases only faster than d−

1
2 . We conclude that the success probability of Algorithm

54



Adding Constraints is very close to 1
2 . In fact, the expected number of iterations at most

NI ≤ 2.04, and the value rapidly approaches 2 for d large.

The estimate for the number of pivot steps in the iterations of Unit Solver is different
than the estimate in Phase II, because the additional constraints are coupled with the original
constraints. A shadow bound can be developed separately. We have

TI ≤ CI ln lnn ·
(
D

(
d,

min (σ, ρ)√
lnn

)
+ 1

)
+ 1,

Eventually, we may summarize for the total number of steps:

NI · TI + TII

≤ NICI ln lnn ·
(
D

(
d,

min (σ, ρ)√
lnn

)
+ 1

)
+ 1 + CIID(d+ 1, σ) + 3

≤ NIC ′ ln2 n ln lnn ·D (d,min (σ, ρ)) + C ′D(d, σ) + 4.

≤ NIC ′′ ln2 n ln lnn ·D (d,min (σ, ρ)) + 4.

Here, C ′ and C ′′ are universal constants. We see

min (σ, ρ) = min

(
σ,

1

6
√
d log n

,
1

9000000d3/2 log d

)
,

so, with C ′′′ being another universal constant,

NIC
′′ ln2 n ln lnn ·

(
D (d, σ) +D

(
d,

1

6
√
d log n

)
+D

(
d,

1

9000000d3/2 log d

))
+ 4

≤ NIC ′′′ ln2 n ln lnn ·
(
d3σ−4 + d3d2 log2 n+ d3d6 log4 n

)
+ 4

This reproduces Theorem 6.1 of [15].

12 Shadows of Random Polytopes
The major part of the smoothed analysis is the upper estimate of the expected number of
edges of a random polytope with a plane, which, in itself, is a question of stochastic geometry
and of independent intrinsic interest.

Let E ⊂ Rd be a plane and let P be a polytope. Then P ∩E is a polyhedron of dimension at
most two. We denote the number of its edges, called shadow size, by S(P, E) ∈ N. Note that
S(P, E) ≤

(
n
d

)
. Let a1, . . . , an be Gaussian vectors in Rd. More precisely, we assume that ai is

a (āi, σi)-Gaussian for āi ∈ Rd and σi > 0. We assume that P = convex{a1, . . . , an}, thus P
is a random polytope. Then S(P, E) is a random variable in N, actually in {0, . . . ,

(
n
d

)
}. Our

goal is to bound its expected value Ea1,...,anS(P, E).
In general, if an event is invariant under positive scaling, then its probability under a

Gaussian vector is invariant under positive scaling of that random variable. We formalize this
this in manner that is of direct relevance in Section 11 for the understanding of the smoothed
complexity of the shadow vertex simplex method.

Theorem 12.1.
Let n, d ∈ N and let A ⊂ Rn×d be invariant under scaling by α ∈ R+. Let X be a random
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matrix in Rn×d with rows x1, . . . , xn, each xi being a (x̄i, σi)-Gaussian. Then for α ∈ R+ we
have

X(A) = (αX)(A), A ⊂ Rd×d measurable.

Proof. Consider the diffeomorphism F (x) = αx. We know that X has a density function

µX(a1, . . . , an) = µx1
(a1) · · ·µxn(an).

An elementary computation now shows:∫
A

µX(a)da =

∫
F−1A

µX(a)da =

∫
A

µX
(
F−1(a)

)
α−dnda =

∫
A

µx1

(a1

α

)
· · ·µxn

(an
α

)
α−dnda

=

∫
A

µF (x1)(a1) · · ·µF (xn)(an)da =

∫
A

µF (X)(a)da =

∫
A

µαX(a)da

which had to be shown.

Corollary 12.2.
Let α > 0. Then αP = convex{αa1, . . . , αan}, and

Ea1,...,anS(P, E) = Eαa1,...,αanS(αP, E).

We may therefore apply any scaling to the random variables a1, . . . , an at the outset of our
proofs. Thus, without loss of generality, we assume a scaling condition within this section:

∀1 ≤ i ≤ n :

(
‖āi‖ ≤ 1, and σi ≤

1

6
√
d log n

)
. (16)

It can be achieved by a suitable scaling of the variables. Our aim is proving the following
result.

Theorem 12.3 ([15, Theorem 6.2]).
Suppose that n > d ≥ 3 and the scaling condition (16) holds. Suppose furthermore that σi = σ
for 1 ≤ i ≤ n. There exists a universal constant CII > 0 such that

Ea1,...,anS(P, E) ≤ CIID (d, σ) .

Here, D (d, σ) = d3σ−4.

We refer to the universal constant CII in the sequel. — This bound detoriates for d growing
and σ decreasing. As has been observed before, Ea1,...,anS(P, E) is invariant under scaling of
the constraint vectors, so one could assume without loss of generality that σ−1 = 6

√
d log n;

however, this can only be assumed if the centers of the rescaled ai are still contained in the
unit ball then, i.e., (6σ

√
d log n)−1‖āi‖ ≤ 1. We conclude and interpret this as follows: If the

centers of norm are small enough, then the lower bound for σ−1 can be assumed after rescaling.
This corresponds to the intuition that for vectors with relatively large standard deviation σ,
the random polytope P will be “smeared out“. The lower bound, quadratic in d and log n, is
then still good enough. If the centers of norm are too large, then the scaling condition (16)
might only hold with σ being rescaled too a comparatively small value, an possibly degenerate
instances can not be ”healed“ by the stochastic pertubations then. The blow-up of σ−1 in the
upper bound of Theorem 12.3 has impact within that asymptoticly deterministic setting.

These insights can be formalized partially as follows:
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Corollary 12.4 ([13, Corollary 4.3.1]).
Let n > d ≥ 3 and let E ⊂ Rd be a plane. Let a1, . . . , an be random vectors in Rd centered
at points ā1, . . . , ān with common standard deviation σ ≤ 1

6

√
d lnn. Let P denote the convex

closure of a1, . . . , an. Then

Ea1,...,anS(P, E) ≤ CIID
(
d,

σ

max(1, ‖ā1‖, . . . , ‖ān‖)

)
.

Proof. Let µ̄ := maxi ‖āi‖. If µ̄ ≤ 1, then Theorem 12.3 holds, and there is nothing to show.
Otherwise, we use Corollary 12.2 and Theorem 12.3, again, to infer

Ea1,...,anS(P, E) ≤ Ea1,...,anS(µ̄−1P, E) ≤ D
(
d, µ̄−1σ

)
.

This completes the proof.

An important auxiliary result implies that the Gaussian vectors are contained with the
2-ball, and will be referenced several times throughout this thesis.

Lemma 12.5.
Assume that n > d ≥ 3 and that (16) holds, and that σi ≤ 3

√
d log n for 1 ≤ i ≤ n. Then

Prob
a1,...,an

{
max

1≤i≤n
‖ai‖ ≤ 2

}
≥ Prob
a1,...,an

{
∀1 ≤ i ≤ n : ‖ai‖ ≤ 3σi

√
d log n

}
≥ 1− ω0

(
n

d

)−1

,

where ω0 ≤ 0.00003 is a universal constant.

Proof. Using the scaling condition (16) and Lemma 6.7, we see

ProbA

{
max

1≤i≤n
‖ai‖ ≥ 2

}
≤ ProbA

{
max

1≤i≤n
(‖ai‖ − 1) ≥ 1

}
≤ ProbA

{
max

1≤i≤n
(‖ai‖ − ‖āi‖) ≥ 1

}
≤ ProbA

{
max

1≤i≤n
|‖ai‖ − ‖āi‖| ≥ 1

}
≤ ProbA

{
max

1≤i≤n
‖ai − āi‖ ≥ 1

}
≤ ProbA

{
max

1≤i≤n
‖ai − āi‖ − 3σi

√
d log n ≥ 0

}
≤ n− 9

2d+1 ≤ (d) · · · (1)

(n) · · · (n− d+ 1)
n−

7
2d+1 ≤ ω0

(
n

d

)−1

,

where ω0 ≤ 3−9.5 ≤ 0.00003. This proves the desired result.

Hereafter, we let ω0 denote the constant from the previous result. As a first application,
we show how the assumption of uniform standard deviations of the a1, . . . , an can be relieved.
The remaining effort of this section is directed towards a proof of Theorem 12.3.

Lemma 12.6 ([13, Corollary 4.3.2]).
Let n > d ≥ 3 and let E ⊂ Rd be a plane. For 1 ≤ i ≤ n, let ai be a random vector in Rd
centered at āi with standard deviation σi. Let σ0 be such that σ0 ≤ σi ≤ 1

3

√
d lnn. Let P

denote the convex closure of a1, . . . , an. Then

Ea1,...,anS(P, E) ≤ CIID
(
d,

σ0

1 + maxi ‖āi‖

)
+ ω0.
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Proof. We write ai = āi + ui + vi, where ui is a (0, σ0)-Gaussian and vi is a (0,
√
σ2
i − σ2

0)-
Gaussian. Consider the event V that ‖āi + vi‖ ≤ ‖āi‖ + 1 for 1 ≤ i ≤ n. We know from
Lemma 12.5 that

Probv1,...,vn V
c = Probv1,...,vn {∃1 ≤ i ≤ n : ‖āi + vi‖ ≥ ‖āi‖+ 1}
≤ Probv1,...,vn {∃1 ≤ i ≤ n : |‖āi + vi‖ − ‖āi‖| ≥ 1}

≤ Probv1,...,vn {∃1 ≤ i ≤ n : ‖vi‖ ≥ 1} ≤ ω0

(
n

d

)−1

.

We continue with

Ev1,...,vnEu1,...,unS(P, E) ≤ Ev1,...,vn|VEu1,...,unS(P, E) + ω0.

Using Lemma 12.4, we estimate from above by

Ev1,...,vn|VEu1,...,unS(P, E) ≤ Ev1,...,vn|VCIID
(
d,

σ0

max(1, ‖ā1 + v1‖, . . . , ‖ān + vn‖)

)
.

≤ CIID
(
d,

σ0

1 + max(‖ā1‖, . . . , ‖ān‖)

)
.

which completes the proof.

12.1 Preparatory Geometric Results
Given a random polyhedron P and a hyperplane E , we estimate the number of edges of
the random polyhedron P ∩ E . A series of geometric auxiliary lemmas is proven before we
investigate the shadow size.

We begin with some auxiliary lemmas.

Lemma 12.7.
Let a1, . . . , an ∈ R2 be convexly independent, and v1, v2, v3 ∈ R2 be the vertices of an equi-
lateral triangle centered at 0. Assume that r,R > 0 with ‖ai‖ ≤ r for 1 ≤ i ≤ n and
‖v1‖ = ‖v2‖ = ‖v3‖ = R, and such that r < R · cos(π/6). Write A = convex{a1, . . . , an}.
Then for any edge (as, at) of A, where 1 ≤ s, t ≤ n, there exists 1 ≤ j ≤ 3 such that (as, at) is
an edge of convex{A, vj} and

dist(vi, aff{as, at}) ≥ R− r.

Proof. First, we observe that for any line L through 0 there exist indices 1 ≤ i, j ≤ 3 such
that vi and vj are separated by L and their distance to L is at least γR, where γ = cos(π/6).
To see this, we consider the case where L passes through a vertex vt and rotate this geometric
setting.

Second, let (as, at) be an edge of A, and let L be the line through 0 parallel to this edge. So
there exist vi and vj whose distance to L is at least γR. Moreover, ‖as‖, ‖at‖ ≤ r implies that
dist(L, aff{as, at}) < r. Since r < R · cos(π/6) by assumption, we conclude that aff{as, at}
separates vi and vj , too, and that their distance to the affine line is at least cos(π/6)R−r > 0.
Finally, we see that a vertex, say, vj lies on the same side of aff{as, at} as A. Therefore (as, at)
has the desired property.

Lemma 12.8.
Let 0 < r ≤ R. If L is an affine line with distance r to the origin, and x, y ∈ L have norm at
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most R, then (
r +

R2

r

)−1

‖x− y‖ ≤ ^(x, y) ≤ 1

r
‖x− y‖.

Proof. Note first that
(
r +R2/r

)−1
=
(
1 +R2/r2

)−1
r−1, We see that L̃ := L/r has distance

1 to the origin, and that x̃ := x/r, ỹ := y/r on L′ have norms smaller than R̃ := R/r. The
claim is equivalent to (

1 + R̃2
)−1

‖x̃− ỹ‖ ≤ ^ (x̃, ỹ) ≤ ‖x̃− ỹ‖ .

Let u, v ∈ S1 with u ⊥ v and write L̃ = u+ Rv. Furthermore, let x̃ = u+ sv and ỹ = u+ tv.
Without loss of generality, s ≤ t. We observe

^(x, y) = arctan t− arctan s =

∫ s

t

d

dτ
(arctan τ)dτ =

∫ s

t

(1 + τ2)−1dτ.

We estimate for s ≤ τ ≤ t that 1 ≤ 1 + τ2 ≤ 1 + t2 ≤ 1 + R̃2, which implies

t− s
1 + R̃2

≤ ^(x, y) ≤ t− s.

The identity ‖ỹ − x̃‖ = t− s proves the claim.

In the next theorem, and in the sequel, we write TE for the 1-sphere in E . Furthermore,
after choice of an arbitrary but fixed isometry f : S1(0) ⊂ R2 → TE , we write

TEm =

{
f

(
2kπ

m

)
∈ TE

∣∣∣∣ 0 ≤ k ≤ m− 1

}
.

Then we can show

Theorem 12.9.
Let a1, . . . , an denote Gaussian random variables in Rd and let P = convex{0, a1, . . . , an}. Let
E be a plane in Rd and γ > 0.

Ea1,...,an
∣∣∣{I ⊂ [n], |I| = d

∣∣∣ ∃q ∈ TE : FI facet of P intersecting R+
0 q,

dist(0, aff FI) ≥ γ

}∣∣∣
= lim
m→∞

Ea1,...,an

∣∣∣∣∣
{
I ⊂ [n], |I| = d

∣∣∣∣∣ ∃q ∈ TEm : FI facet of P intersecting R+
0 q,

^(FI ∩ E) > 2π
m , dist(0, aff FI) ≥ γ

}∣∣∣∣∣.
(17)

Proof. Note that ≥ holds trivially in (17). We introduce binary random variables

XI = χ
{
∃q ∈ TE : FI facet of P intersecting R+

0 q, dist(0, aff FI) ≥ γ
}
,

Xm
I = χ

{
∃q ∈ TEm : FI facet of P intersecting R+

0 q, ^(FI ∩ E) >
2π

m
, dist(0, aff FI) ≥ γ

}
.

indexed over I ⊂ [n] with |I| = d. The first expected term is the sum Ea1,...,anXI , whereas
the second term is limm→∞ Ea1,...,anXm

I . We derive

Ea1,...,anXI − lim
m→∞

Ea1,...,anXm
I =

∑
I

(∫
µIda− lim

m→∞

∫
µmI da

)
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where µI and µmI are the characteristic functions of the respective events, and the integrals are
taken over Rn×d with the probability measure induced by a1, . . . , an. Note that µI ≥ µmI for
allm. By a variation of Fatou’s lemma [3, Kapitel IV, §5, Aufgabe 5.5], or direct consideration,
the limit and the integral can be rearranged. The last term equals∑

I

(∫
µIda−

∫
lim sup
m→∞

µmI da

)
=
∑
I

∫
µI −max

m∈N
µmI da.

We have > in (17) if and only if there exists I such that

Proba1,...,an


∃q ∈ S1(E) : FI facet of P intersecting R+

0 q, dist(0, aff FI) ≥ γ,

∀m ∈ N : ¬

(
∃q ∈ TEm : FI facet of P intersecting R+

0 q,

^(FI ∩ E) > 2π
m , dist(0, aff FI) ≥ γ

)  > 0.

It is easy to see that this can be simplified to

Proba1,...,an

{
∃q ∈ S1(E) : FI facet of P intersecting R+

0 q, dist(0, aff FI) ≥ γ,
∀m ∈ N : ^(FI ∩ E) > 2π

m

}
> 0.

Obviously, this probability is dominated by the probability of ^(FI ∩ E) = 0. But this
corresponds to a set of Lebesgue-measure 0. Thus, > cannot hold in (17), and the theorem
follows.

Remark 12.10.
The above theorem can be vastly generalized. The statement dist(0, aff FI) ≥ γ has not been
used explicitly and can be replaced by any event that does depend on A and I (but not on
m).

12.2 Main Estimate
We say that the event E holds if max1≤i≤n ‖ai‖ ≤ 2. The random variables are located within
a small ball with high probability with high probability. Using the scaling condition (14) and
Lemma 12.5, we see

ProbA Ec ≤ ω0

(
n

d

)−1

. (18)

Therefore we may condition the expected value to E with only a minor penalty:

EAS(P, E) = EA|ES(P, E) · ProbE + EA|EcS(P, E) · ProbEc ≤ EA|ES(P, E) + ω0.

We have the simple equality

EA|ES(P, E) = EA|E
∣∣{F | F facet of PE intersecting Rq, q ∈ TE

}∣∣ .
The event E implies that PE ⊂ S2(E). Let z1, z2, z3 ∈ S8(E) be points of an equilateral triangle
in E centered at the origin with diameter 8. We define

Pi = convex{P − zi, 0} = convex{P, zi} − zi.

We can apply Lemma 12.7 with r = 2 and R = 8, and infer that for each edge of PE there exists
at least one 1 ≤ i ≤ 3 such that this edge is still an edge of convex{PE , zi} = convex{P, zi}E ,
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and furthermore that its affine span has distance R − r = 6 from the origin. We have a
correspondence between edges of convex{P, zi}E that do not include zi, and edges of PEi that
do not include 0. These observations give

EA|E
∣∣{F | F facet of PE intersecting R+

0 q, q ∈ TE
}∣∣

≤
3∑
i=1

EA|E
∣∣{F | F facet of PEi intersecting R+

0 q, q ∈ TE , dist(aff F , 0) ≥ 6
}∣∣ .

Under the general position assumption, it is possible to remove the intersection with E , i.e.,

EA|ES(P, E) ≤
3∑
i=1

EA|E
∣∣{F | F facet of Pi intersecting R+

0 q, q ∈ TE , dist(E ∩ aff F , 0) ≥ 6
}∣∣ .

In order to apply the torus lemma, we first remove the conditioning on E, i.e.,

3∑
i=1

EA|E
∣∣{F | F facet of Pi intersecting R+

0 q, q ∈ TE , dist(E ∩ aff F , 0) ≥ 6
}∣∣

≤ 1

ProbE
·

3∑
i=1

EA
∣∣{F | F facet of Pi intersecting R+

0 q, q ∈ TE , dist(E ∩ aff F , 0) ≥ 6
}∣∣ .

Note that the additional factor is bounded from above by, say, ω1 ≤ 1.0001. Now Lemma 12.9
shows

3∑
i=1

EA

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q, q ∈ TE ,

dist(E ∩ aff F , 0) ≥ 6

}∣∣∣∣∣
≤

3∑
i=1

lim
m→∞

EA

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q, q ∈ TEm,

dist(E ∩ aff F , 0) ≥ 6, ^(I) > 2π
m

}∣∣∣∣∣ .
Now we turn back towards the setting where E holds, and obtain

3∑
i=1

lim
m→∞

EA

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q, q ∈ TEm,

^(F) > 2π
m , dist(E ∩ aff F , 0) ≥ 6

}∣∣∣∣∣
=

3∑
i=1

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q, q ∈ TEm,

^(F) > 2π
m , dist(E ∩ aff F , 0) ≥ 6

}∣∣∣∣∣ · ProbA E

+

3∑
i=1

lim
m→∞

EA|Ec

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q, q ∈ TEm,

^(F) > 2π
m , dist(E ∩ aff F , 0) ≥ 6

}∣∣∣∣∣ · ProbA Ec

≤
3∑
i=1

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q, q ∈ TEm,

^(F) > 2π
m , dist(E ∩ aff F , 0) ≥ 6

}∣∣∣∣∣ · ProbA E + 3ω0.

Now Lemma 12.8 applies. For any facet F included in one of the sums above we have
dist(0, aff(F)) ≥ 1 and F ⊂ Bϑ(0), where ϑ = 2 +R = 8, so that we also have(

1 +
ϑ2

6

)−1

diam(F) ≤ ^(F) ≤ diam(F).
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We write qF for the intersection point of R+
0 q and F . The comparability of angle and diameter

of F implies that we may write

3∑
i=1

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q, q ∈ TEm,

^(F) > 2π
m , dist(0, aff(F)) ≥ 6

}∣∣∣∣∣
≤

3∑
i=1

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q at qF , q ∈ TEm,

^(F) > 2π
m , dist(0, aff(F)) ≥ 6, ^(F , qF ) < 2π

m

}∣∣∣∣∣
≤

3∑
i=1

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q at qF , q ∈ TEm,

^(F) > 2π
m , dist(0, aff(F)) ≥ 6, dist(∂F , qF ) < (1 + ϑ2

6 ) 2π
m

}∣∣∣∣∣
≤

3∑
i=1

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q at qF , q ∈ TEm,

dist(∂F , qF ) < (1 + ϑ2

6 ) 2π
m

}∣∣∣∣∣ .
Summarizing the present estimate, we may conclude

EAS(P, E)

≤ ω1 ·
3∑
i=1

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q at qF ,

q ∈ TEm, dist(∂F , qF ) < (1 + ϑ2

6 ) 2π
m

}∣∣∣∣∣+ 4ω0

≤ 3ω1 · max
1≤i≤3

lim
m→∞

EA|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of Pi intersecting R+
0 q at qF ,

q ∈ TEm, dist(∂F , qF ) < (1 + ϑ2

6 ) 2π
m

}∣∣∣∣∣+ 4ω0.

For the remaining estimates we forget about most of the special structure of the Pi. We only
use that the vertices a1− zi, . . . , an− zi have mean values within the 9-ball, and introduce the
set of tupels of random variables

Z :=

{
a1, . . . , an are random variables with

centers in B9(0) and standard deviation σ

}
.

We generalize our to estimate to

EAS(P, E)

≤ 3ω1 ·max
Z∈Z

lim
m→∞

EZ|E

∣∣∣∣∣
{
F

∣∣∣∣∣ F facet of PZ intersecting R+
0 q at qF ,

q ∈ TEm, dist(∂F , qF ) < (1 + ϑ2

6 ) 2π
m

}∣∣∣∣∣+ 4ω0.

We may employ Lemma 7.5 of [15] to find:

EAS(P, E) ≤ 3ω1 · C0 ·max
Z∈Z

d3σ−4 + 4ω0,

where C0 is another universal constant. This completes the estimate.

13 Shadows of Random Polytopes with an Added Facet
In Phase I we solve unit linear programming problems whose constraint vectors are corre-
lated Gaussian random variables. More precisely, the additional Gaussian constraint vectors
correlate with the maximal norm µ of the input constraint vectors. We may in fact exclude
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the origin from the definition of P at the cost of neglecting 1 additional edge of P ∩ E . The
eventual goal in this section is therefore to find an upper bound for

Ea1,...,an+d
S(P, E)

where P := convex{a1, . . . , an+d} is a random polytope of the type encountered in Phase I.

In our attempt to find an upper bound, we take a look at the following random variables:

µ̄ := max
1≤i≤n

‖āi‖, µ := max
1≤i≤n

‖ai‖, µ0 := eceil(lnµ).

Note µ0 is a random variable over the set eN. We first inspect the random variable µ. Let
Ct = e−3/2 be the constant from the tail estimate, Lemma 6.9.

Lemma 13.1.
With the definitions above, we have

Proba1,...,an

{
Ct
9

(lnn)−
1
2 (µ̄+ σ

√
d lnn) ≤ µ ≤ µ̄+ 3σ

√
d lnn

}
≥ 1−

(
n

d

)−1

.

Proof. We separately estimate the probability that µ transgresses the upper or lower bounds.
As for transgressions of the upper bound, we observe

Proba1,...,an

{
µ ≥ µ̄+ 3σ

√
d lnn

}
= Proba1,...,an

{
µ− µ̄ ≥ 3σ

√
d lnn

}
≤ Proba1,...,an

{
max

1≤i≤n
‖ai‖ ≥ 3σ

√
d lnn+ µ̄

}
≤ Proba1,...,an

{
max

1≤i≤n
‖ai‖ ≥ 3σ

√
d lnn

}
≤ ω0

(
n

d

)−1

where we have used Lemma 12.5. As for transgressions of the lower bound, we distinguish two
cases. On the one hand, if µ̄ ≥ 8σ

√
d log n, then we use n ≥ 3 and Ct

9 < 1
2 to see

Proba1,...,an

{
µ ≤ Ct

9
(lnn)−

1
2 (µ̄+ σ

√
d lnn)

}
≤ Proba1,...,an

{
µ ≤ 1

2
(µ̄+ σ

√
d lnn)

}
≤ Proba1,...,an

{
µ ≤ µ̄− 3σ

√
d lnn

}
= Proba1,...,an

{
µ− µ̄ ≤ −3σ

√
d lnn

}
= Proba1,...,an

{
µ̄− µ ≥ 3σ

√
d lnn

}
≤ ω0

(
n

d

)−1

as we have already seen in the previous estimate. On the other hand, if µ̄ ≤ 8σ
√
d log n, then

Proba1,...,an

{
µ ≤ Ct

9
(lnn)−

1
2 (µ̄+ σ

√
d lnn)

}
≤ Proba1,...,an

{
µ ≤ Ctσ

√
d
}
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≤ Proba1,...,an

{
max ‖ai‖ ≤ Ctσ

√
d
}

≤ e−dn ≤ e−d logn = n−d ≤ 0.5

(
n

d

)−1

via Lemma 6.9 and direct computation. These estimates prove the claim.

This essentially means that if µ and µ̄ are represented in a real number system with basis
e, then with high probability µ needs about as many digits as µ̄ does. More formally, with
probability larger than 1−

(
n
d

)−1, the random variable µ takes values within a set

M :=

{
µ ∈ R

∣∣∣∣Ct9 (lnn)−
1
2 (µ̄+ σ

√
d lnn) ≤ µ ≤ µ̄+ 3σ

√
d lnn

}
.

We want to bound the cardinality of the set

M0 := eceil lnM.

We verify that

|M0| = | lnM0| = | ceil lnM|

≤ ln
(
µ̄+ 3σ

√
d lnn

)
− ln

(
Ct
9

(lnn)−
1
2

(
µ̄+ σ

√
d lnn

))
+ 1

≤ ln
(
µ̄+ σ

√
d lnn

)
+ ln 3− ln

(
Ct
9

(lnn)−
1
2

(
µ̄+ σ

√
d lnn

))
+ 1

≤ ln
(
µ̄+ σ

√
d lnn

)
+ ln 3− lnCt + ln 9 +

1

2
ln lnn− ln

(
µ̄+ σ

√
d lnn

)
+ 1

≤ 1

2
ln lnn+ 3 ln 3 +

5

2
≤ 63 ln lnn.

Remark 13.2.
Notably, the factor 63 can be replaced by 5 for d ≥ 100.

Remark 13.3.
While M is an interval whose length is not invariant under scaling of the random variables
ai, the cardinality of M0 is indeed invariant (up to a unit due to rounding errors), so this
cardinality estimate is scaling invariant.

The net result is that M0 is a set of cardinality O(log log n). Recall that the additional
constraints are coupled with input constraints only through the maximum norm of these. We
reduce this to the uncoupled case. Let E denote the event that µ ∈M. Using basic properties
of the expected value, we derive

Ea1,...,an+d
S(P, E)

= Ea1,...,an+d|EcS(P, E) · Prob
a1,...,an

{µ0 /∈M0}+ Ea1,...,an+d|ES(P, E) · Prob
a1,...,an

{µ0 ∈M0}

≤ 1 + Ea1,...,an+d|ES(P, E).

The joint probability measure of the variables a1, . . . , an+d has a density of the form

Ψ(a1, . . . , an+d) = Ψ1(a1, . . . , an) ·Ψ2(an+1, . . . , an+d;Q,µ0)
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where Ψ1 is the product of the densities of the independent Gaussian variables a1, . . . , an, and
Ψ2 is the product of the densities of the independent Gaussian variables an+1, . . . , an+d, and
µ0 = eceil(ln max1≤i≤n ‖ai‖). The parameters Q and µ0 capture the dependency of the additional
random vectors on O(d) and max1≤i≤n ‖ai‖. This gives∑

t

tProb{S(P, E) = t and E}

=
∑
t

t

∫
S(P,E)=t

E

Ψ(a1, . . . , an+d)da1 · · · dan+d

=
∑
t

t

∫
S(P,E)=t

E

Ψ1(a1, . . . , an) ·Ψ2 (an+1, . . . , an+d;Q,µ0) da1 · · · dan+d

=
∑

ζ0∈M0

∑
t

t

∫
S(P,E)=t
µ0=ζ

Ψ1(a1, . . . , an) ·Ψ2 (an+1, . . . , an+d;Q, ζ0) da1 · · · dan+d

= |M0| · max
ζ0∈M0

∑
t

t

∫
S(P,E)=t

Ψ1(a1, . . . , an) ·Ψ2 (an+1, . . . , an+d;Q, ζ0) da1 · · · dan+d

(19)

Furthermore, for d large enough

Prob
a1,...,an

{µ0 ∈M0} ≤ Prob
a1,...,an

{µ ∈M} ≥ 0.99.

So the condition on E can be removed again and we obtain the upper estimate that

1 + Ea1,...,an+d|ES(P, E) ≤ 1 + ω2|M0| · max
ζ0∈M0

max
Z

Ez1,...,zn+d
S(P, E).

Here, say, ω2 ≤ 1.02, and Z is a set of random variables as follows. Each zi is a (z̄i, σi)-Gaussian
such that σi = ρ for n+ 1 ≤ i ≤ n+ d, such that σi = σ for 1 ≤ i ≤ n, and where

max
1≤i≤n

‖z̄i‖ ≤ µ̄, max
n+1≤i≤n+d

‖z̄i‖ ≤ 2ζ0 · ‖v̄1‖

holds. It remains to find an upper bound for the expression

Ez1,...,zn+d
S(P, E).

Because of the scaling invariance of the shadow size, Corollary 12.2, we may assume further-
more without loss of generality

max
1≤i≤n

‖z̄i‖ ≤ 1, σ ≤ (6
√
d log n)−1, ρ ≤ (6

√
d log n)−1.

In a further utilization of the rescaling invariance, we introduce the rescaled variables

bi :=
(

27ζ0 ln
1
2 n
)−1

Ctzi.

We write that the variables have centers b̄i and standard deviations σbi . We know that

Ez1,...,zn+d
S(P, E) = Eb1,...,bn+d

S(P, E)

In order to apply Theorem 12.6 for this shadow size, we estimate the norm of the centers and
standard deviations of these vectors. Write ζ := exp(floor ln ζ0) ∈M.
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We estimate the norms of their centers from above. Using ζ ≤ ζ0 and ζ ∈M, we derive for
1 ≤ i ≤ n and n sufficiently large that

‖b̄i‖ = Ct

(
27ζ0 log

1
2 n
)−1

‖z̄i‖ ≤ Ct
(

27ζ log
1
2 n
)−1

µ̄

≤ Ct
(

27
(
Ct
µ̄

9

√
lnn

)
log

1
2 n
)−1

µ̄ ≤ 1

3
.

For the indices n+1 ≤ i ≤ n+d, we first recall the norms of their centers have norms bounded
by 2µ0 from above, by construction in Adding Constraints. Thus we derive for n sufficiently
large that

‖b̄i‖ = Ct

(
27ζ0 log

1
2 n
)−1

‖z̄i‖ ≤ Ct
(

13.5 log
1
2 n
)−1

‖v̄1‖ ≤ 1

due to the choice of l in Section 11. In particular, the centers of norm b̄1, . . . , b̄n+d are con-
tained within the unit sphere.

Our next aim is to estimate the standard deviations of the dilated variables from above and
below. For the indices 1 ≤ i ≤ n, we derive the upper bound

σbi = Ct

(
27ζ0 log

1
2 n
)−1

σ ≤ Ct
(

27ζ log
1
2 n
)−1

σ

≤ Ct
(

27
(
Ct
σ

9

√
d
)

log
1
2 n
)−1

σ ≤
(

3
√
d log n

)−1

,

again by ζ ≤ ζ0, ζ ∈M and largeness of n. The lower bound is shown by

σbi = Ct

(
27ζ0 log

1
2 n
)−1

σ ≥ Ct
(

27eζ log
1
2 n
)−1

σ

≥ Ct
(

27e log
1
2 n
)−1 (

µ̄+ 3σ
√
d log n

)−1

σ ≥ Ct
(

324
√

log n
)−1

σ,

where we use ζ0 ≤ eζ, ζ ∈M and the scaling condition (14). For the variables n+1 ≤ i ≤ n+d,
we need no additional lower bound. We derive an upper bound using the definition of ρ in
(15) and largeness of n:

σbi = Ct

(
27ζ0 log

1
2 n
)−1

· 2ζ0ρ

= 2Ct

(
27 log

1
2 n
)−1

ρ

≤ 2Ct

(
27 log

1
2 n
)−1 (

6
√
d log n

)−1

≤ Ct
(

27 log
1
2 n
)−1 (

3
√
d log n

)−1

≤ Ct (27)
−1
(

3
√
d log n

)−1

≤
(

3
√
d log n

)−1

.

Summarizing, we have seen that

max
i
‖b̄i‖ ≤ 1, max

1≤i≤n+d
σbi ≤

(
3
√
d lnn

)−1

, min
1≤i≤n+d

σbi ≥
Ct
324

ln−
1
2 n ·min (σ, ρ).

We can leverage these bounds for an application of Lemma 12.6, and derive

Eb1,...,bnS(P, E) ≤ CIID
(
d,
Ct
648

ln−
1
2 n ·min (σ, ρ)

)
+ 1.
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In combination, we find that

Ea1,...,anS(P, E) ≤ 1 + ω264 ln lnn ·
(
CIID

(
d,
Ct
648

ln−
1
2 n ·min (σ, ρ)

)
+ 1

)
≤ CI ln lnn ·

(
D

(
d,

min (σ, ρ)√
lnn

)
+ 1

)
+ 1,

for some universal constant CI . This completes the purpose of this section.

14 Conclusion and Outlook
There is a number possibilities to extend and improve the content of this thesis.

We have used a small pertubation of the interpolation linear programming problem to
make the shadow vertex simplex method applicable. Either one circumvents this by a suitable
modification of the algorithm, e.g., one checks all neigbours of the initial vertex at t = 0, or
one computationally implements a suitable upper estimate of the parameter γ. We have not
explored the computational efficiency of such an estimate.

We have left out the proof of [15, Lemma 7.5] as the last part of the original paper that
is described here. It appears natural to include a complete description of Blaschke’s theorem
[13, Theorem 2.5.2] then, and, going further, a complete proof of Lemma 7.6 in the same
publication. Eventually, large and relatively technical parts of Section 4 of [13] are ought to
be elaborated upon if such an extension is made.

As already mentioned in [15, p.14], a factor of asymptotically O(log2 n log log n) can be
removed from the complexity estimate. Albeit not expanded within this thesis, the general
path to this improvement has become visible during the production of this thesis. On the
one hand, a term of order log log n can be removed by a change of Derivation 19; it is not
obligatory to replace exp(ceil lnµ) by µ then. On the other hand, the factor log2 n can be
removed using the scaling invariance of the shadow size.

The author of [15] also mentioned the possibility to derandomize Phase I. First, we note
that letting ρ→ 0 does not detoriate the success probability of algorith Adding Constraints.
Instead if the randomization is only exerted via the random variable Q, the algorithm has
success probability slightly below 0.5. Second, the randomization can be skipped altogether,
because one of the 2d directions ±ei, 1 ≤ i ≤ d, can serve as a choice of z0. However, as ρ→ 0,
the estimate on S(E ,P) suffers a blow-up. It is not clear how this can be fixed.

These are extensive modifications and expansions to the presentation at hand. Subsequently,
it is an interesting question with which random pertubations other than Gaussians we can
implement a smoothed analysis. This has also been an initial motiviation for this thesis. Note
that Gaussian vectors are generated from the (0, 1)-Gaussian by rescaling and translation; we
conjecture that scalings and translations of other rotationally symmetric random “urvariables”
can be accessed in ways very similar. Assuming that the above modifications have been
employed, the major difficulty is then to generalize Lemma 7.5 of [15], which likely entails
considerable generalizations of Section 4 of [13]. Theorem 12.9 seems to hold for rather large
class of random variables. We expect similar generality for Lemma 6.9 and Lemma 12.5.
An immediate extension is likely possible for Gaussian variables with anisotropic covariance
matrices, in a manner similar to Lemma 12.6. Finally, in order to model zero-preserving
random pertubations of A, the random pertubations can be restricted to subspaces of Rd. But
how this can be attained is completely open.

In the wake of Michelangelo’s aphorism on the sculpture that already resides within the
untreated marmor, we conclude that the theory is already there; ours is just to disclose it.
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Adding Constraints, 37
A=, 16
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AI , 31
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PE , 32
P∗, 21
CI , 31
conical closure, 8
conical set, 8
convex closure, 8
convex set, 8

density function, 25
dual linear programming problem, 23

equivalent linear programming problems, 23
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face, 11
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feasible solution, 22
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G, 37
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general position condition, 31, 32
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l, 36
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linear programming problem, 22
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ω0, 54
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optimal solution, 22

P̂, 42
Phase I method, 42
P[0,1], 45
pivot step, 4
pointed, 18
polar optimal simplex condition, 31
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polyhedral cone, 16
polyhedron, 14
polytope, 16
primal optimal vertex condition, 31
probability distribution, 25
probability measure, 25
Pt, 45

Q, 37
qλ, 34

random variable, 25
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relative boundary point, 9
relative interior point, 9
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Shadow vertex simplex algorithm, 34
S(P, E), 52
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Ausgelöst worden ist alles dadurch, dass ich mir nach und
nach sagte, ich hätte vielleicht eine Chance.

Elementarteilchen
Michel Houellebecq
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