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1 Introduction

Point vortices are point-like singularities in the vorticity field of an ideal fluid. First
described by von Helmholtz (1858), they form a finite-dimensional singular solution
of the Euler equations and are now a classical subject in hydrodynamics, see among
others Lamb (1945), Milne-Thomson (1968), Saffman (1992), Newton (2001).

The interest in point vortices is two-fold. On the one hand, paraphrasing Aref
(2007), the description of point vortices forms a veritable playground for classi-
cal mathematics and gives rise to interesting phenomena from dynamical systems,
such as periodic motions (Soulière and Tokieda 2002; Borisov et al. 2004), (rela-
tive) equilibria (Polvani and Dritschel 1993; Kidambi and Newton 1998; Aref 2011),
and chaotic advection and topological chaos in fluids (Boyland et al. 2003). On the
numerical front, on the other hand, desingularizations of the point-vortex equations,
such as the classical vortex blob method of Chorin (1973) form the basis for impor-
tant classes of particle methods for the Euler and Navier–Stokes equations. The idea
is that the vorticity field of an arbitrary fluid can be approximated by a number of
vortex blobs whose motion is then followed in time. Strong analytical estimates exist
that link the behavior of the vortex blobs with the solution of the Euler equations that
they approximate (Majda and Bertozzi 2002).

On the sphere, the dynamics of point vortices was first described by Bogomolov
(1977) after a model by Gromeka (see Newton 2001 for an historical overview) and is
in some sense a generalization of the planar case (see also Kimura and Okamoto 1987
and Polvani and Dritschel 1993). The relevance of point vortices of the sphere lies in
the fact that they provide a first approximation of the behavior of certain geophysical
flows for which the curvature of the earth is important, and which persist over long
periods of time. The mathematical description of point vortices on the sphere is an
area of active research: fixed and relative equilibria of the three-vortex problem were
described in Polvani and Dritschel (1993), Kidambi and Newton (1998) (see also
Pekarsky and Marsden 1998), while more general equilibria were described in Lim
et al. (2001), Chamoun et al. (2009), Newton and Sakajo (2011). Conditions for the
collapse of point-vortex configurations on the sphere were established in Kidambi
and Newton (1998) and Sakajo (2008).

Most of the research on point vortices on the sphere has focused on the existence
of analytical solutions such as relative equilibria for few point vortices, but compara-
tively little is known about the behavior of arbitrary configurations of vortices. One of
the contributions of this paper is to construct a geometric numerical integrator which
is second-order accurate, preserves the geometry of the sphere, and is symplectic. As
symplectic integrators are known to capture the long-term behavior of a Hamiltonian
system better than classical integrators (see Pullin and Saffman 1991 for an appli-
cation of symplectic integrators to point-vortex dynamics in the plane, and Marsden
and West 2001; Hairer et al. 2002 for a general overview of variational integration
techniques), we expect our geometric integrator to give insight into the behavior of
non-equilibrium vortex configurations, even over long integration times.

1.1 Aims and Contributions of This Paper

The contributions of this paper are two-fold. In the first part of this paper, we construct
a Lagrangian description for point vortices on the sphere in terms of pairs of complex
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numbers. We first review the Lagrangian description for point vortices in the plane
(see e.g. Chapman 1978; Newton 2001; Rowley and Marsden 2002) and then show
via a simple topological argument that no (linear) Lagrangian exists for the dynamics
of point vortices on the two-dimensional sphere S

2.
We then use the Hopf fibration, a distinguished submersion from the three-sphere

S
3 to the two-sphere S

2, to pull back the Hamiltonian description to S
3, where the

topological obstruction for the existence of a linear Lagrangian vanishes. We explic-
itly construct this Lagrangian and we show that the equations of motion give rise to
a (finite-dimensional) non-linear Schrödinger equation on S

3 with gauge freedom.
These equations bear a remarkable similarity to the equations of motion for point
vortices in the complex plane, only now the location of each point vortex is specified
by a pair of complex numbers (or equivalently, a (unit) quaternion) instead of a single
one.

In the second part of the paper, we design a variational numerical integrator for
point vortices on the sphere using the linear Lagrangian on S

3. We use the identi-
fication between the 3-sphere S

3 and the Lie group SU(2) of special unitary 2-by-2
matrices to write the update equation for the integrator as a fixed-point equation in the
Lie algebra su(2), and we show how the discrete equations of motion are symplectic,
self-adjoint, second-order, and preserve the unit-length constraint in S

3. At the end
of the paper, we compare our integrator to the classical fourth-order Runge–Kutta
method, as well as to a number of geometric integration methods. We show that the
geometric integrators, and in particular the Hopf variational integrator, outperform
Runge–Kutta in the medium run, even though they are only second-order accurate.

1.2 Background and Historical Overview

Linear Lagrangian Formulation for Planar Vortices We review here the Lagrangian
and Hamiltonian descriptions of point vortices in the plane. The Hamiltonian descrip-
tion of point vortices on the sphere will be reviewed in Sect. 3.

For point vortices in the plane, the equations of motion are given in complex form
by

żα = −2i
∂H

∂z∗
α

. (1.1)

Here, the zα (α = 1, . . . ,N ) represent the locations in the complex plane of each of
the vortices, and Γα is a real parameter which specifies the circulation around each
vortex. The Hamiltonian function is given by

H(z1, . . . , zN) = − 1

4π

∑

α<β

ΓαΓβ log |zα − zβ |2. (1.2)

These equations can be derived from a Lagrangian which is linear in the velocities
(see Chapman 1978) and is given by

L = 1

2i

N∑

α=1

Γα

(
z∗
αżα − zαż∗

α

) − H(z1, . . . , zN). (1.3)
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For future reference, we point out that the linear part of the Lagrangian can be written
as

∑
Γαθ(zα, żα), where θ is the one-form given by

θ = 1

2
Im

(
z∗ dz

)
. (1.4)

The exterior derivative of θ is nothing but the area form on the complex plane:

dθ = 1

2
Im

(
dz∗ ∧ dz

) = dx ∧ dy. (1.5)

It can be shown that the flow of the point-vortex equations (1.1) preserves a weighted
sum of such area forms, given by

N∑

α=1

Γα dθα =
∑

α=1

Γα dxα ∧ dyα,

where dθα refers to the area form (1.5) expressed in the coordinates of the αth vortex.
This is an example of a symplectic form on the phase space C

N .
The advantage of having a Lagrangian description for the dynamics of point vor-

tices is that the standard results for the construction of Lagrangian variational inte-
grators (see Marsden and West 2001 for an overview) can now be applied. This is the
key observation of Rowley and Marsden (2002), who constructed a class of second-
order variational integrators by discretizing the Lagrangian (1.3) using centered finite
differences.

Before turning to the case of point vortices on the sphere, we point out that many
non-canonical Hamiltonian systems can be rephrased as Euler–Lagrange equations
that come from a Lagrangian which is linear in the velocities. This observation was
made by Birkhoff (1966) in his study of Pfaffian systems and was used in Faddeev
and Jackiw (1988) as a starting point for the description of Hamiltonian systems
with constraints. Linear Lagrangians also appear in the description of the non-linear
Schrödinger equation and the KdV equation.

The Dynamics of Point Vortices on the Sphere The equations of motion for N point
vortices with strengths Γi , i = 1, . . . ,N on the unit sphere S

2 can be written as fol-
lows (see Newton 2001). If we denote the position vector of the ith vortex by xi (so
that ‖xi‖ = 1), the point-vortex equations can be written in Euclidian form as

ẋk = 1

4π

∑

j �=k

Γj

xj × xk

1 + σ 2 − xk · xj

, (1.6)

where σ is a small regularization parameter which is added to ensure that the limit
of the right-hand side exists when xk tends to xj . Note that Eqs. (1.6) conserve the
vortex moment, defined as

M =
N∑

i=1

Γixi .
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We also point out that due to topological reasons, the total vorticity on the sphere must
be zero (see Newton 2001; Boatto and Koiller 2008). If the sum of the strengths of
the point vortices is not zero,

∑N
i=1 Γi �= 0, then the full vorticity field on the sphere

will have counterrotating point vortices or patches of vorticity to balance the effect
of the point vortices.

Non-existence of a Linear Lagrangian for Vortices on the Sphere In Sect. 3, we will
review the Hamiltonian formulation for the point-vortex equations (1.6). We now dis-
cuss the Lagrangian formulation, and in particular we argue that no linear Lagrangian
exists for the dynamics of point vortices on S

2. This can be seen by the fact that a lin-
ear Lagrangian on (S2)N would necessarily have to be of the form L = AΓ −H , with
AΓ a one-form on (S2)N . The symplectic form preserved by the flow of the Euler–
Lagrange equations would then be dAΓ , which is by definition exact. However, a
simple topological argument can be used to show that on (S2)N , or on any compact
manifold, any symplectic form must be non-exact. We reproduce this argument for
the case of point vortices below; see McDuff and Salamon (1998) for the general
case.

For point vortices on the sphere, the phase space is the product (S2)N of N copies
of the unit sphere S

2, equipped with a symplectic form BΓ which is a weighted sum
of the area forms on the individual spheres:

BΓ =
N∑

i=1

ΓiΩi,

where Ωi is the area form on the ith copy of S2.
As (S2)N is compact, this form cannot be exact. The argument to see this is as

follows (see McDuff and Salamon 1998): integrate the symplectic volume form

BN
Γ := 1

N !BΓ ∧ · · · ∧BΓ =
(

N∏

i=1

Γi

)
Ω1 ∧ · · · ∧ ΩN

over the entire phase space to get

∫

(S2)N
BN

Γ = (4π)N

(
N∏

i=1

Γi

)
�= 0.

On the other hand, if the symplectic form BΓ were exact, BΓ = dAΓ , then BN
Γ would

be exact too, since in this case BN
Γ = 1/N !d(AΓ ∧ BΓ ∧ · · · ∧ BΓ ). In this case,

integrating over (S2)N would result in zero symplectic volume because of Stokes’
theorem, a contradiction.

One way out is as follows. Below, we will see that the area symplectic form Ω on
S

2 can be pulled back to an exact two-form on the three-sphere S3. This will allow us
to construct a linear Lagrangian for vortical structures on (S3)N , and the solutions of
the Euler–Lagrange equations for this Lagrangian will be seen to project down onto
solutions of the point-vortex equations on (S2)N . By discretizing the Lagrangian vari-
ational principle on (S3)N (using the techniques from Marsden and West (2001) and
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Lee et al. (2007)), we will then be able to construct a variational integrator for point
vortices which is automatically symplectic, second-order, and unit-length preserving.

Other Approaches to the Numerical Integration of Point Vortices The use of sym-
plectic methods in vortex dynamics was pioneered by Pullin and Saffman (1991),
who used a fourth-order symplectic Runge–Kutta scheme to integrate the equations
of motion for four vortices in the plane. It is not clear, however, how to extend their
method to the case of vortices on the sphere.

Hamiltonian variational principles have been developed by Oh (1997) in the con-
text of Floer homology and by Novikov (1982) for Morse theory (see also Cendra and
Marsden 1987). On the numerical front, geometrical numerical integration of Hamil-
tonian systems was described in Brown (2006), Ma and Rowley (2010) and Leok
and Zhang (2011), but all of these references assume that the underlying symplectic
manifold is exact. For non-exact symplectic forms (e.g. the case of point vortices on
the sphere) it is as of yet not clear how to discretize the Hamiltonian variational prin-
ciple so that the resulting numerical algorithms share some of the properties of the
continuous system (such as symplecticity and momentum preservation).

We do remark that Ma and Rowley (2010) perform a similar pullback as in this
paper, but using the Lie algebra of the rotation group SO(3) instead of the special
unitary group SU(2), in order to make the dynamics of point vortices on the sphere
amenable to geometric integration.

2 The Hopf Fibration

In this section, we introduce our notation and review some aspects of the geometry
of the spheres S

2,S3 and the Hopf fibration. This material is standard and can be
found in any geometric physics textbook, for instance Frankel (2004). More infor-
mation about the Hopf fibration and its role in physics and geometry can be found in
Montgomery (2002), Urbantke (2003), Lemaître (1948) and the references therein.

Notation We will denote vectors in C
2 and their Hermitian conjugates by

ϕ :=
[
z

u

]
, and ϕ† := [

z∗, u∗] ,

where z∗ is the complex conjugate of z ∈ C. The Hermitian conjugate of a complex
matrix A will be denoted by A†.

Lowercase Roman letters a, b, . . . will refer to the components ϕa of a vector ϕ in
C

2. The Greek letters α,β, . . . will refer to the Cartesian components xα of a vector
x ∈ R

3. The imaginary unit will be denoted by i.
The Hermitian inner product on C

2 is given by

〈ϕ1, ϕ2〉 := ϕ
†
1ϕ2 = z∗

1z2 + u∗
1u2.

Note that the Euclidian inner product on C
2 can be expressed as

Re〈ϕ1, ϕ2〉 = Re
(
z∗

1z2 + u∗
1u2

)
. (2.1)
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The Geometry of S2 We think of the two-sphere S
2 as the set of all unit-length

vectors x in R
3. The tangent plane TxS

2 at an element x ∈ S
2 consists of all vectors,

denoted by δx ∈ R
3, which are orthogonal to x:

TxS
2 = {

δx ∈ R
3 : x · δx = 0

}
.

In Cartesian coordinates, the area form Ω on S
2 can be described as follows: Ω is

the differential two-form given by

Ω(x)(δx, δy) = x · (δx × δy), (2.2)

for all x ∈ S
2 and δx, δy ∈ TxS

2. In spherical coordinates, Ω = sin θ dθ ∧ dφ. Note
that Ω is not exact.

The Geometry of S3 and the Group SU(2) We let S3 be the unit sphere in C
2:

S
3 = {

(z, u) ∈ C
2 : |z|2 + |u|2 = 1

}
.

The tangent plane at an element ϕ ∈ S
3 is given by the set of all vectors, denoted by

δϕ ∈ C
2, which are orthogonal to ϕ:

TϕS
3 := {

δϕ ∈ C
2 : Re〈δϕ,ϕ〉 = 0

}
, (2.3)

where we have expressed the orthogonality between ϕ and δϕ using the inner product
(2.1) in C

2.
The unit sphere S

3 can be embedded into the complex 2-by-2 matrices by means
of the mapping

[
z

u

]
∈ S

3 	→
[
z −u∗
u z∗

]
∈ M2(C),

whose range is precisely the Lie group SU(2) consisting of all Hermitian matrices
(U† = U ) with unit determinant (detU = 1). The Lie algebra of SU(2) is the vector
space su(2), consisting of all 2-by-2 matrices A which are anti-Hermitian (A† = −A)
and traceless (trA = 0). The identification of S3 with SU(2) provides a convenient
description for the tangent spaces (2.3): we have δϕ ∈ TϕS

3 if and only if there is a
matrix A ∈ su(2) such that

δϕ = Aϕ. (2.4)

To see this, note that A† = −A implies that 〈ϕ,Aϕ〉 is purely imaginary, so that
Re〈ϕ,Aϕ〉 = 0.

The Lie algebra su(2) has dimension 3 and a convenient basis is given by the
matrices τα = iσα , α = 1,2,3, where the σα are the Pauli spin matrices:

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, and σ3 =

[
1 0
0 −1

]
. (2.5)
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Given a matrix A ∈ su(2), we will denote its components in this basis by aα ,
α = 1,2,3, and we put a := (a1, a2, a3). Explicitly,

A = a · (iσ ) =
3∑

α=1

aα(iσα), (2.6)

where σ represents the vector (σ 1, σ 2, σ 3). We will refer to a ∈ R
3 as the vector

representation of the matrix A ∈ su(2).
The Pauli matrices satisfy a number of useful identities: the multiplication identity

is

σασβ = δαβI + i
3∑

γ=1

εαβγ σγ , (2.7)

for α,β = 1,2,3, where I is the 2-by-2 unit matrix and εαβγ the Levi-Civita permu-
tation symbol. Secondly, there is the completeness property

3∑

α=1

(σα)ab(σα)cd = 2δadδbc − δabδcd , (2.8)

for all a, b, c, d = 1,2. Proofs of these identities can be found in any standard text-
book on quantum mechanics.

The Hopf Fibration The group U(1) ∼= S
1 of unit complex numbers acts on S

3 by
the diagonal action: eiθ · (z, u) = (eiθ z, eiθu) for all eiθ ∈ S

1 and (z, u) ∈ S
3. In terms

of SU(2)-matrices, this action is described as
[
z −u∗
u z∗

]
· eiθ =

[
z −u∗
u z∗

][
eiθ 0
0 e−iθ

]
. (2.9)

The orbit space of this action, S3/S1, can be identified with the two-sphere S
2.

Explicitly, there exists a surjective submersion π : S3 → S
2, called the Hopf fibration,

given by

π(z,u) = (
2 Re

(
z∗u

)
,2 Im

(
z∗u

)
, |z|2 − |u|2), (2.10)

and the fibers of π coincide with the orbits of the group S
1 in S

3. In geometrical
terms, the map π : S3 → S

2 makes S
3 into the total space of a right principal fiber

bundle with structure group S
1 over S2. We will refer to the orbits of the S

1-action
(2.9) as the S

1-fibers of S3.
The Hopf map can be expressed conveniently in terms of the Pauli matrices as fol-

lows. We let σ be the vector (σ1, σ2, σ3). The Hopf map (2.10) can then be described
as

π(ϕ) = ϕ†σϕ. (2.11)

The right-hand side should be interpreted as a vector x in R
3, whose components are

given by xα := ϕ†σαϕ, α = 1,2,3.
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The inner product of two vectors x,y ∈ R
3 can be given a convenient description

using the Hopf map. Let x = ϕ†σϕ and y = ψ†σψ . A straightforward consequence
of (2.8) is then that

x · y = 2
(
ϕ†ψ

)(
ψ†ϕ

) − (
ϕ†ϕ

)(
ψ†ψ

)
. (2.12)

Connection One-Form and Curvature On S
3, there is a distinguished one-form A

which will play a crucial role in obtaining the Lagrangian formulation for point vor-
tices. Explicitly, it is given by

A(ϕ) = Im
(
ϕ† dϕ

)
,

and we denote the contraction of A(ϕ) with a vector ϕ̇ = (ż, u̇) by

A(ϕ) · ϕ̇ = Im
(
ϕ†ϕ̇

) = Im
(
z∗ż + u∗u̇

)
. (2.13)

Note the similarity between A and the one-form θ given in (1.4).
The form A is the connection one-form of a principal fiber bundle connection, but

we will just treat it as a one-form. The curvature of A is given by

dA = Im
(
dϕ† ∧ dϕ

) = Im
(
dz∗ ∧ dz + du∗ ∧ du

)
,

and it can be shown that the area form Ω on S
2, given by (2.2), satisfies

π∗Ω = 2 dA. (2.14)

This result states that the two-form Ω , which is not exact, nevertheless becomes exact
when pulled back along the Hopf map to S

3. This will allow us to construct a linear
Lagrangian for point vortices on S

3.

3 Hamiltonian Formulation of the Vortex Equations

In this section, we review the Hamiltonian description of the equations of motion
(1.6) for point vortices on the unit sphere. This system of first-order ODEs can be
written in Hamiltonian form, where the phase space is the Cartesian product (S2)N

of N copies of the unit sphere S
2, equipped with the symplectic form

BΓ (x1, . . . ,xN) =
N∑

i=1

ΓiΩ(xi ), (3.1)

where Ω is the standard symplectic area form on S
2, given by (2.2).

The Hamiltonian function is given by

H = − 1

4π

∑

i<j

ΓiΓj log
(
2σ 2 + l2

ij

)
, (3.2)
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where lij := ‖xi − xj‖ is the chord distance between the ith and the j th vortex and
σ is the cutoff parameter introduced in (1.6).

Hamilton’s equations are then given by iẋBΓ = dH . Explicitly, we are looking for
a curve t 	→ x(t) ∈ (S2)N such that, for any variation δx(t) ∈ Tx(t)(S

2)N , we have

BΓ (ẋ, δx) = dH(x) · δx.

Using the expression (2.2) for the symplectic form, this can be written as

N∑

i=1

Γixi (ẋi × δxi ) =
N∑

i=1

∇xi
H (x) · δxi ,

so that

Γi(xi × ẋi ) = ∇xi
H (x) + λixi , (3.3)

where the Lagrange multipliers λi , i = 1, . . . ,N , have been introduced to enforce the
constraint that the variations δxi be tangent to the unit sphere, so that xi · δxi = 0 for
all i = 1, . . . ,N . Taking the cross product of (3.3) with xi then results in

Γi(xi × ẋi ) × xi = ∇xi
H (x) × xi ,

and after expanding the double cross product and using the fact that ‖xi‖ = 1, we
obtain

Γi ẋi = ∇xi
H (x) × xi , (3.4)

which is equivalent to (1.6).

4 Lagrangian Formulation of the Vortex Equations on S
3

In this section, we show how the Hamiltonian equations (1.6) for point vortices can
be given a Lagrangian formulation. To do this, we lift the point-vortex system from
the two-sphere S

2 to the three-sphere S
3 using the Hopf fibration.

Pullback of the Hamiltonian H Using the projection π given in (2.10), we may pull
back the Hamiltonian function on S

2 to S
3. If we denote the Hamiltonian function

(3.2) by HS2 and the pullback by HS3 , then we have HS3 = π∗HS2 , or explicitly,

HS3(ϕ1, . . . , ϕN) = HS2

(
π(ϕ1), . . . , π(ϕN)

)
, (4.1)

for all ϕ1, . . . , ϕN ∈ S
3. Here, as in the remainder of the text, we have suppressed the

dependence of HS3 on the conjugate variables ϕ
†
1 , . . . , ϕ

†
N .

A straightforward computation shows that HS3 is given by

HS3(ϕ1, . . . , ϕN) := − 1

4π

∑

i<j

ΓiΓj log
[
2σ 2 + 4

(
1 − ∣∣〈ϕi,ϕj 〉

∣∣2)]
. (4.2)
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In the remainder, we will drop the subscript ‘S3’ on the Hamiltonian function, de-
noting HS3 simply as H . Note that H is invariant under multiplication by eiθ ∈ S

1 in
each argument separately:

H
(
. . . , eiθϕk, . . .

) = H(. . . , ϕk, . . .), (4.3)

for k = 1, . . . ,N . The infinitesimal version of this symmetry is

∂H

∂ϕk

ϕk − ϕ
†
k

∂H

∂ϕ
†
k

= 0, (4.4)

where there is no sum over the index k.
Since multiplying ϕk by a phase factor eiθ corresponds to moving along the S

1-
fiber through ϕk , we see that H depends only on the chord distance between the
S

1-fibers through ϕ1, . . . , ϕN . This can be shown explicitly in (4.2) by expressing
the inner product |〈ϕi,ϕj 〉| in terms of the Euclidian distance D(ϕi, ϕj ) between the
S

1-fibers through ϕi and ϕj , where

D(ϕi, ϕj ) = 2
(
1 − ∣∣〈ϕi,ϕj 〉

∣∣).

The Linear Lagrangian and the Equations of Motion We now have all the elements
to formulate a Lagrangian description for point vortices using S

3. Recall that a linear
Lagrangian has the general form L = Θ − H , where dΘ is the symplectic form. The
symplectic structure on (S3)N is given by the pullback of the symplectic structure on
(S2)N ,

π∗
(

N∑

i=1

ΓiΩi

)
= d

(
2

N∑

i=1

ΓiAi

)
,

so it follows that Θ = 2
∑N

i=1 ΓiAi . Therefore, we obtain

L = 2
N∑

i=1

ΓiA(ϕi) · ϕ̇i − H(ϕ1, . . . , ϕN), (4.5)

where ϕi ∈ S
3 for i = 1, . . . ,N . This generalizes the expression (1.3) for the linear

Lagrangian for point vortices in the plane.
The action functional is defined as

S
(
ϕ(·)) =

∫ t1

t0

L
(
ϕ(t), ϕ̇(t)

)
dt, (4.6)

where ϕ(t) := (ϕ1(t), . . . , ϕN(t)) is a curve in (S3)N defined on the interval [t0, t1],
and its variation is given explicitly by

δS =
N∑

i=1

δϕ
†
i

(
−2iΓiϕ̇i + ∂H

∂ϕ
†
i

)
+

N∑

i=1

(
2iΓiϕ̇

†
i + ∂H

∂ϕi

)
δϕi, (4.7)
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where the infinitesimal variations δϕi and δϕ
†
i need to be prescribed carefully. Since

ϕi is an element of S
3, the variations δϕi are elements of TϕS

3. Specifically, we
find that δϕi is orthogonal to ϕi . This relation may be incorporated using Lagrange
multipliers λi , resulting in the Euler–Lagrange equations

2iΓiϕ̇i = ∂H

∂ϕ
†
i

+ λiϕi, (4.8)

together with their Hermitian conjugates and the unit-length constraints

〈ϕi,ϕi〉 = 1. (4.9)

This equation is the analogue of (1.1) for vortices on S
3 and can be seen as a non-

linear Schrödinger equation on the product space (S3)N . The analogy with (1.1) can
be made more striking by interpreting ϕi as a unit quaternion, so that (4.8) becomes
(up to a constant) the quaternionic version of the complex equation (1.1).

We will refer to Eqs. (4.8), or one of their equivalent forms below, as the Hopf-
lifted system on (S3)N .

Determining the Lagrange Multipliers A curious feature of these equations is that
the multipliers λi reflect gauge degrees of freedom, that is, any choice of λi will
preserve the unit-length constraint equally well. To see this, take the time derivative
of (4.9) and substitute the equations of motion; the result is

1

2iΓi

(
−∂H

∂ϕi

− λiϕ
†
i

)
ϕi + 1

2iΓi

ϕ
†
i

(
∂H

∂ϕ
†
i

+ λiϕi

)
= 0,

which simplifies to

∂H

∂ϕi

ϕi − ϕ
†
i

∂H

∂ϕ
†
i

= 0,

from which λi is absent. This expression is nothing but the infinitesimal symmetry
relation (4.4) and is therefore identically satisfied.

With hindsight, it is not surprising that there is some indeterminacy in the solutions
of (4.8). After all, these equations arise as pullbacks of equations on S

2. From this
point of view, changing the multipliers λi will change the dynamics in the direction
of the S

1-fibers, but will leave the horizontal dynamics (which projects down to S
2)

unchanged.
This is similar to the un-reduction approach of Bruveris et al. (2011), in which a

complicated dynamical system on a manifold X is mapped into a simpler problem
on the total space of a principal fiber bundle over X. Another conceptually related
approach is presented in Lee et al. (2009), which considers continuous and discrete
Lagrangian systems on S2 by viewing S2 as a homogeneous space with a transitive
SO(3) action, and lifting the Lagrangian on S2 to SO(3). This leads to a Lagrangian
system on SO(3) with non-isolated solutions parameterized by the isotropy subgroup,
but a unique extremizing curve on SO(3) can be obtained by restricting to horizontal
curves with respect to a principle bundle connection. However, the projection of the
curve onto S2 is independent of the choice of the connection.
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Relation with the Equations on (S2)N By construction, the flow of Eqs. (4.8) on
(S3)N will project down onto the flow of the point-vortex equations (1.6) on (S2)N .
It is instructive, however, to see this explicitly.

We start again from the variational principle (4.7), but now we do not introduce a
Lagrange multiplier to incorporate the unit-length constraint. For the sake of clarity,
we suppress the explicit index i in (4.7) to arrive at

δS = δϕ†
(

−2iΓ ϕ̇ + ∂H

∂ϕ†

)
+

(
2iΓ ϕ̇† + ∂H

∂ϕ

)
δϕ. (4.10)

As the variation δϕ is tangent to S
3, it can be written as δϕ = Aϕ, where A ∈ su(2);

see (2.4). Similarly, we have δϕ† = ϕ†A† = −ϕ†A. Upon substituting these expres-
sions in (4.10), we arrive at

δS = −ϕ†A

(
−2iΓ ϕ̇ + ∂H

∂ϕ†

)
+

(
2iΓ ϕ̇† + ∂H

∂ϕ

)
Aϕ

= 2 Re

[(
2iΓ ϕ̇† + ∂H

∂ϕ

)
Aϕ

]
,

so that δS = 0 for all A ∈ su(2) if and only if

Re

[(
2iΓ ϕ̇† + ∂H

∂ϕ

)
iσαϕ

]
= 0, α = 1,2,3, (4.11)

where the σα are the Pauli matrices (2.5). Note that these equations are equivalent to
(4.8).

We now let x ∈ S
2 be the image of ϕ ∈ S

3 under the Hopf map, and we recall from
(2.11) that the components of x are given by xα = ϕ†σαϕ. Taking the time derivative,
we obtain

ẋα = 2 Re
(
ϕ̇†σαϕ

)
. (4.12)

Similarly, we recall that the Hamiltonian functions HS2 and HS3 are related by (4.1),
or explicitly HS3(ϕ) = HS2(ϕ†σαϕ). Taking the derivative with respect to ϕ yields

∂HS3

∂ϕ
= ∂HS2

∂xβ

ϕ†σβ, (4.13)

and a small calculation, involving the multiplication identity (2.7), then shows that

Re

[
i
∂H

∂ϕ
σαϕ

]
=

∑

β,γ

εαβγ

∂HS2

∂xβ

xγ = (∇xHS2 × x)α.

Substituting this expression and (4.12) into (4.11) then results in the following vector
equations: Γ ẋ = ∇xHS2 × x, which, upon restoring the sum over all vortices, are
nothing but the point-vortex equations (3.4).
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Singular Vorticity Distributions on S
3 The solutions of Eqs. (4.8) on (S3)N project

down onto the solutions of the point-vortex equations on (S2)N . One can therefore
view Eqs. (4.8) on (S3)N as describing singular vorticity fields supported along the
S

1-fibers of the Hopf fibration. These fibers are well known to be pairwise linked, but
we do not know of any consequences of this fact for the dynamics of point vortices.

The interpretation of singular distributions of vorticity supported along fibers of
the Hopf fibration agrees with the results of Shashikanth (2012), Khesin (2012), who
show that a singular vorticity distribution must necessarily be of codimension 2 or
less.

Pre-symplectic Formulation of the Lifted Equations In this concluding paragraph,
we show how Eqs. (4.8) on (S3)N can be written in pre-symplectic form, and we
finish with some remarks on the relation between the indeterminacy of the Lagrange
multipliers in (4.8) and the appearance of gauge freedom. The pre-symplectic point
of view is useful to shed further light on the nature of Eqs. (4.8), but we will not use
it in the remainder of the paper. This paragraph can therefore be omitted on a first
reading.

We recall first of all that, given a Lagrangian L : T Q → R, the Euler–Lagrange
equations can be written intrinsically as

iXΩL = dEL, (4.14)

where ΩL is the pullback (FL)∗Ω of the canonical symplectic form Ω on T ∗Q
along the Legendre transformation FL, and EL is the Lagrangian energy, defined
as EL(q, v) = 〈v,FL(q, v)〉 − L(q, v). Below, instead of pulling everything back by
the Legendre transform, we will work directly on the primary constraint submanifold,
defined as the image of the Legendre transform in T ∗Q.

For the Hopf system, we begin by calculating the Legendre transform FL :
T (S3)N → T ∗(S3)N . This map is given by

FL : (ϕi, ϕ̇i) 	→ (ϕi,πi), where πi = ∂L

∂ϕ̇i

= 2ΓiA(ϕi).

The primary constraint submanifold is the image of FL and is clearly seen to be a
submanifold of T ∗(S3)N which is diffeomorphic to (S3)N . For the pullback of the
canonical symplectic form on T ∗(S3)N to the primary constraint submanifold we
now obtain

B(S3)N =
N∑

i=1

dπi ∧ dϕi = 2
N∑

i=1

Γi dA(ϕi) ∧ dϕi.

Note that, as the notation suggests, B(S3)
N is the pullback to (S3)N of the point-vortex

symplectic form B given in (3.1): B(S3)
N = π∗B, with π : S3 → S

2 the Hopf map. As
a result, B(S3)

N is a pre-symplectic form: its kernel consists of all vectors which are
tangent to the fibers of the Hopf fibration, and a small calculation shows that

kerB(S3)
N = span

{
∂

∂ϕk

ϕk − ϕ
†
k

∂

∂ϕ
†
k

, k = 1, . . . ,N

}
.
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Furthermore, it can easily be checked that the Lagrangian energy EL induces a
function on the primary constraint submanifold which is nothing but the lifted Hamil-
tonian function HS3 . The Euler–Lagrange equations (4.14) now become

iΓ B(S3)
N = dHS3 . (4.15)

These equations do not determine the dynamics completely: given any solution Γ of
(4.15), we may add to it an arbitrary element of kerB(S3)

N without changing the phys-
ical degrees of freedom. In the literature on degenerate Lagrangians (see for instance
Gotay 1979), the elements of kerB(S3)

N are referred to as gauge vector fields for pre-
cisely this reason. As the gauge vector fields generate in this case a flow along the
fibers of the Hopf fibration, we see that the physical degrees of freedom take values
in the quotient space (S3/S1)N ∼= (S2)N . This is of course nothing but a restatement
of the fact that the Hopf-lifted system arose by lifting point-vortex dynamics from S

2

to S
3.

Lastly, we may resolve the issue of gauge indeterminacy by replacing S
3 by its

symplectification, which is the product manifold S
3 × R

+ equipped with the sym-
plectic form

B̃ = d(rA),

where r is the coordinate on the R
+-factor. The motion of point vortices on this

twice-enlarged space projects down to the motion of point vortices on S
2, and can be

viewed, paraphrasing the terminology of Kostant (2005), as a version of “prequantum
vortex dynamics.”1

5 Variational Integrators on SU(2)N

In this section, we propose a discrete version of the Hopf-lifted system on (S3)N . We
begin by discretizing the linear Lagrangian (4.5) using centered finite differences. By
taking discrete variations, we then obtain a discrete version of Eqs. (4.8) where the
constraints are enforced using a Lagrange multiplier. These equations can be seen as
a version of the Moser–Veselov equations (see Moser and Veselov 1991) on (S3)N .

By projecting onto the annihilator space of the constraint forces, we then obtain
a discrete version of the projected equations (4.11). Finally, we use the isomorphism
between S

3 and SU(2) to write the discrete equations of motion in the form of a ho-
mogeneous space variational integrator (see Lee et al. 2009) on SU(2) and we argue
that this form of the equations is especially well-suited for numerical implementation.

5.1 Discrete Lagrangian and Discrete Equations of Motion

Let M be the number of discrete time steps, with constant time increment h > 0,
and denote the variables at time tn := nh by ϕn := (ϕn

1 , . . . , ϕn
N) ∈ (S3)N . We now

propose a discrete counterpart of the linear Lagrangian L in (4.5) by approximating

1We thank M. Gotay for bringing this point to our attention.
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the action functional (4.6) over the interval [tn, tn+1] by using piecewise linear inter-
polants and the midpoint rule (see Marsden and West 2001). In this way, we construct
a discrete Lagrangian Ld : (S3)N × (S3)N →R of the form

Ld
(
ϕn,ϕn+1) = hL

(
ϕn + ϕn+1

2
,
ϕn+1 − ϕn

h

)
. (5.1)

Explicitly, the discrete linear Lagrangian is given by

Ld
(
ϕn,ϕn+1) =2

N∑

i=1

ΓiA
(
ϕ

n+1/2
i

) · (ϕn+1
i − ϕn

i

) − hH
(
ϕn+1/2), (5.2)

where ϕn+1/2 := (ϕn + ϕn+1)/2.
The discrete action sum is now defined as

Sd
(
ϕ1, . . . , ϕM

) =
M−1∑

i=1

Ld
(
ϕn,ϕn+1),

and taking variations with respect to ϕn
i and (ϕn

i )† yields

δSd =
N∑

k=1

M−1∑

n=1

δ
(
ϕn

k

)†
[
−iΓk

(
ϕn+1

k − ϕn−1
k

) − hλn
kϕ

n
k

+ h

2

(
D

ϕ
†
k
H

(
ϕn−1/2) + D

ϕ
†
k
H

(
ϕn+1/2))

]
+ (c.c.), (5.3)

where “(c.c.)” stands for the complex conjugate of the expression preceding it. Here,
and in the remainder of the paper, Dϕk

denotes the derivative with respect to ϕk , and
similarly for D

ϕ
†
k
.

The discrete Euler–Lagrange equations are hence

−iΓk

(
ϕn+1

k − ϕn−1
k

) + h

2

(
D

ϕ
†
k
H

(
ϕn−1/2) + D

ϕ
†
k
H

(
ϕn+1/2)) − hλn

kϕ
n
k = 0,

(5.4)
together with their Hermitian conjugates and the unit-length constraints

〈
ϕn+1

i , ϕn+1
i

〉 = 1, (5.5)

and can be viewed as the discrete analogues of the continuous equations (4.8).
In contrast to the continuous case, the Lagrange multipliers λn

k in (5.4) are no
longer arbitrary. Instead, they can be found by substituting the discrete equations
of motion into the unit-length constraint (5.5) and solving the resulting system of
quadratic equations for λn

k .
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Other Discretizations Instead of the midpoint quadrature formula, leading to the
discrete Lagrangian (5.1), we could have chosen another approximation for the dis-
crete Lagrangian, leading to a different set of discrete equations. Although these
equations formally exhibit the same properties (symplecticity, preservation of the
unit-length constraint, etc.) as the midpoint method introduced previously, some of
them suffer from undesirable side-effects. A particularly revealing example is ob-
tained by using the trapezoid rule instead of the midpoint rule, leading to the discrete
Lagrangian

Ld
(
ϕn,ϕn+1) = h

2

(
L

(
ϕn,

ϕn+1 − ϕn

h

)
+ L

(
ϕn+1,

ϕn+1 − ϕn

h

))
,

which gives rise to the discrete Euler–Lagrange equations

−iΓk

(
ϕn+1

k − ϕn−1
k

) + hD
ϕ

†
k
H

(
ϕn

) = hλn
kϕ

n
k , (5.6)

together with unit-length constraints (5.5). This system, however, is equivalent to the
2-step symmetric explicit midpoint integrator (see Hairer et al. 2002, Sect. XV.3.2),
which is well known to exhibit parasitic solutions which grow linearly in time. The
same observation is true for the integrator of Rowley and Marsden (2002) with σ = 0
or 1;2 see Appendix A for details.

5.2 The Projected Midpoint Equations

In this section, we show how the discrete Euler–Lagrange equations (5.4) can be
significantly simplified under a number of modest assumptions. The process of sim-
plifying the equations proceeds as follows:

1. We first show how the discrete Euler–Lagrange equations can be written in pro-
jected form, i.e. without reference to the Lagrange multipliers. The result is (5.7)
below.

2. We then show how this discrete second-order equation may be written as the com-
position of two first-order equations which are mutually adjoint, resulting in (5.8),
(5.9).

3. Lastly, in the case of a S
1-invariant Hamiltonian, we show that both first-order

equations can be solved by solving a simple implicit midpoint method on S
3, as

in (5.10).

The first two simplifications can be made for any Hamiltonian system on S
3. The

last simplification can be only be made when the Hamiltonian on S
3 is S

1-invariant
(and hence is the pullback of a Hamiltonian function on S

2). This is the case for
point-vortex dynamics and in fact for the majority of physical systems on S

3 (such as
spin-1/2 systems), and is therefore not a very restrictive assumption.

2Here σ refers to the interpolation parameter used in Rowley and Marsden (2002), and should not be
confused with the cutoff parameter used in the rest of the current paper.
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First Simplification: The Projected Euler–Lagrange Equations To obtain an equiv-
alent version of Eqs. (5.4) which does not involve the Lagrange multipliers λn

k , we
return to the discrete variational principle (5.3), given by

δSd =
M−1∑

n=1

δ
(
ϕn

)†
[
−iΓ

(
ϕn+1 − ϕn−1) + h

2

(
Dϕ†H

(
ϕn−1/2) + Dϕ†H

(
ϕn+1/2))

]

+ (c.c.),

where we have suppressed the vortex index k. Instead of introducing a Lagrange mul-
tiplier to enforce the unit-length constraint, we impose the condition that the varia-
tions δϕ and δϕ† are tangent to the sphere, so that they can be written as

δϕ = Aϕ, and δϕ† = −ϕ†A,

where A ∈ su(2) is arbitrary; see (2.4). Similar constrained variations were adopted
in Lee et al. (2009). Proceeding as in the case of the continuous variational principle,
we then arrive at the following discrete equations:

Re

[(
ϕn

)†
(iσα)

×
(

−iΓ
(
ϕn+1 − ϕn−1) + h

2

(
Dϕ†H

(
ϕn−1/2) + Dϕ†H

(
ϕn+1/2))

)]
= 0,

(5.7)
for α = 1,2,3. These equations are supplemented by the unit-length constraint (5.5).
Note that Eqs. (5.7) are the discrete version of the continuous projected vortex equa-
tions (4.11). Another way to arrive at these equations is simply to project the discrete
Euler–Lagrange equations (5.4) onto the subspace orthogonal to ϕn, which is equiv-
alent to applying the discrete null space method of Leyendecker et al. (2008).

Second Simplification: The Equivalent First-Order System Equations (5.7) are
second-order discrete equations: given (ϕn−1, ϕn), the equations can be solved to
find ϕn+1. The discrete equations of motion are hence not self-starting: given the
initial positions ϕ0 for the point vortices, a standard one-step integrator needs to be
used to find the positions ϕ1 at the intermediate time t1 = h. Afterwards, the discrete
equations of motion can be used to integrate the system forwards in time.

In the next paragraph, we will find a way to recast the second-order equations
as an equivalent first-order system, which is self-starting. We begin by writing the
two-step method (5.7) as the composition of two one-step methods, which turn out
to be mutually adjoint. That this decomposition is possible is a consequence of the
fact that the Lagrangian (4.5) is linear in the velocities, and will be analyzed further
in Appendix A. For now, we just focus on the computations for the point-vortex
equations.

We first write Eqs. (5.7) as

Re

[(
ϕn

)†
(iσα)

(
−iΓ

(
ϕn+1 − ϕn

) + h

2
Dϕ†H

(
ϕn+1/2)

)]
= −dn

α, (5.8)
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where the slack variables dn
α depend on the configurations ϕn and ϕn−1 only and are

given by

dn
α := Re

[(
ϕn

)†
(iσα)

(
−iΓ

(
ϕn − ϕn−1) + h

2
Dϕ†H

(
ϕn−1/2)

)]
. (5.9)

One way of solving these equations is to start with initial conditions (ϕn−1, ϕn),
compute the slack variables dn

α from (5.9), and to find ϕn+1 from (5.8). We will
discuss this approach further in Appendix B, but below we discuss an important sim-
plification which can be made whenever the Hamiltonian H is S1-symmetric.

Final Simplification: The Equivalence with the Implicit Midpoint Method For the
point-vortex system, one important further simplification can be made. It turns out
that the system (5.8), (5.9) of first-order equations, with dn

α = 0, is equivalent to the
implicit midpoint method Ψh : ϕn 	→ ϕn+1, where ϕn+1 is given by

−iΓ
(
ϕn+1 − ϕn

) + h

2
Dϕ†H

(
ϕn+1/2) = 0. (5.10)

As this method is extremely easy to implement, this is a drastic improvement over
the previous formulations of the discrete Euler–Lagrange equations. As we shall see
below, this approach is only applicable if the Hamiltonian H is S1-invariant, as is the
case for point vortices. In Appendix B, we sketch an alternative approach to deal with
the case of Hamiltonians that are not invariant.

A first noteworthy property of the midpoint method (5.10) is that it is length pre-
serving, without the need for spurious projections. To see this, multiply both sides of
the equation by i(ϕn+1/2)†, and take the real part to obtain

Γ Re
[(

ϕn+1/2)†(
ϕn+1 − ϕn

)] = −h

2
Re

[(
ϕn+1/2)†

Dϕ†H
(
ϕn+1/2)].

The right-hand side of this equation vanishes because of the S
1-symmetry invariance

property (4.4), and we are left with

0 = Γ Re
[(

ϕn+1/2)†(
ϕn+1 − ϕn

)] = Γ

2

(∥∥ϕn+1
∥∥2 − ∥∥ϕn

∥∥2)
,

which shows that the method is length preserving. We summarize this in the following
proposition.

Proposition 5.1 If the Hamiltonian H is S
1-invariant in each of its arguments (i.e.

(4.4) holds), then the implicit midpoint method (5.10) is length preserving.

To prove the equivalence between the implicit midpoint method (5.10) and the
first-order equations (5.8), (5.9) with dn

α = 0, we proceed as follows. It is clear that a
solution of (5.10) is a solution of (5.8) and (5.9) with dn

α = 0, since the latter are just
the projection of the implicit midpoint method on the tangent spaces at ϕn and ϕn+1,
respectively.



J Nonlinear Sci

To prove the converse, we assume first that (ϕn−1, ϕn) ∈ S
3 × S

3 is a solution of
Eq. (5.9) with dn

α = 0. This is equivalent to

−iΓ
(
ϕn − ϕn−1) + h

2
Dϕ†H

(
ϕn−1/2) = λϕn,

for some real-valued Lagrange multipliers λ. We now again multiply both sides by
i(ϕn+1/2)† and take the real part. After performing essentially the same manipulations
as before, we then arrive at

Cλ = Γ

2

(∥∥ϕn
∥∥2 − ∥∥ϕn−1

∥∥2) = 0,

where C = Re[i(ϕn+1/2)†ϕ1]. As C �= 0, this implies that λ = 0 so that (ϕn−1, ϕn)

solves the implicit midpoint method (5.10). The same approach can also be used to
show that the solutions of (5.8) coincide with the solutions of the implicit midpoint
method (5.10).

Proposition 5.2 If the Hamiltonian H is S1-invariant in each of its arguments, then
the solutions of the implicit midpoint method (5.10) coincide with the solutions of the
projected equations (5.8), (5.9).

Aside: Adjointness of the First-Order Equations The first-order equations (5.8) and
(5.9) share a particular structure with other methods derived from linear Lagrangians,
as we shall see in Appendix A. We now discuss some of this structure but as the re-
mainder of this paragraph does not affect the development of the variational integra-
tor, it can safely be omitted on a first reading.

By viewing (5.8) as an equation for ϕn+1 we may introduce a map Φh : S3 → S
3

defined by the property that Φh(ϕ
n) = ϕn+1 if and only (ϕn,ϕn+1) satisfies (5.8),

where the slack variables dn
α are viewed as parameters. Likewise, (5.9) can be viewed

as an equation for ϕn given ϕn−1, and we let Ψh : S3 → S
3 be the map which takes

ϕn−1 into ϕn.
A small calculation then shows that Φh and Ψh are each other’s adjoint, that is,

Ψh

(
ϕn−1) = ϕn if and only if Φ−h

(
ϕn

) = ϕn−1.

The full discrete Euler–Lagrange equations (5.7) can therefore be solved by compos-
ing the one-step methods Ψh and Ψ ∗

h = Φh. As these methods are each others adjoint,
the result is symmetric and guaranteed to be of second order. In Appendix A we ar-
gue that this decomposition of a two-step method into a system of adjoint one-step
methods is a general feature of numerical methods derived from a linear Lagrangian.

5.3 Properties of the Variational Integrator

The Symplectic Form Since we have started from the midpoint discretization of a
continuous Hamiltonian, the resulting integrator will be second-order accurate, sym-
plectic, and (by construction) unit-length preserving (see Marsden and West 2001).
The symplectic form preserved by the numerical algorithm is not the weighted area
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form on (S2)N given in (3.1) but the two-form

Im

(
∂2Ld

∂(ϕ
(0)
k )†∂ϕ

(1)
k

d
(
ϕ

(0)
k

)† ∧ dϕ
(1)
k

)
,

where Ld is the discrete Lagrangian given in (5.2), which is an O(h) perturbation
of it (see also Rowley and Marsden 2002). The fact that the integrator is symplectic
explains—through backward error analysis (see, for example, Benettin and Giorgilli
1994; Hairer 1994; Hairer and Lubich 1997; Reich 1999)—its good near-energy
preservation properties.

The Moment of Vorticity The discrete Lagrangian (5.2) has a symmetry which has
gone unnoticed up to this point: if we translate ϕ0 and ϕ1 by the same element U ∈
SU(2), then the Lagrangian stays invariant:

Ld
(
Uϕ0,Uϕ1) = Ld

(
ϕ0, ϕ1), for all U ∈ SU(2).

This symmetry gives rise via Noether’s theorem to a conserved quantity J, whose
components are given by

Jα

(
ϕ0, ϕ1) = Re

(
D1L

(
ϕ0, ϕ1)†(iσαϕ0))

= Re

((
iΓ

(
ϕ1)† + h

2
DϕH

(
ϕ1/2)

)
iσαϕ0

)
,

where the first expression is the standard expression for the discrete momentum map,
see e.g. Marsden and West (2001), and D1L refers to the derivative of the Lagrangian
with respect to the first argument.

The conserved quantity J can be rewritten further by taking the complex conjugate
of the term inside the brackets and writing

Jα = −Re

((
ϕ0)†iσα

(
−iΓ

(
ϕ1 − ϕ0) + h

2
Dϕ†H

(
ϕ1/2)

))
+ Γ Re

((
ϕ0)†

σαϕ0
)
.

An important simplification now occurs: the first term involves the expression (5.10)
for the discrete equations of motion to Jα , and hence vanishes along the trajectories
of the equations of motion. We are left with

Jα = Γ Re
((

ϕ0)†
σαϕ0

) = Γ x0
α,

where x0 ∈ R
3 is the projection under the Hopf fibration of ϕ0.

We summarize these developments in the following proposition, where we have
restored the index k labeling the individual vortices.

Proposition 5.3 Along the solutions of the discrete equations of motion (5.10), the
moment of vorticity

J =
N∑

k=1

Γkxk

is exactly preserved.
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6 Numerical Results

Throughout this section, we will compare the behavior of the Hopf integrator with a
number of other integrators:

1. A standard, non-variational integrator: we chose a standard explicit fourth-order
Runge–Kutta method (RK4), composed with projection onto the unit sphere in
order to preserve the unit-length constraint. It is well known (see e.g. Hairer et al.
2002) that the resulting method is still fourth-order in time. For the numerical
order comparisons in Sect. 6.1 we instead use the projected version of Heun’s
method, which we labeled as RK2.

2. The implicit midpoint method on S
2, given by

xn+1
k − xn

k

h
= 1

4π

∑

j �=k

Γj

xn+1/2
j × xn+1/2

k

1 + σ 2 − xn+1/2
k · xn+1/2

j

. (6.1)

This is just the standard midpoint method, applied to the vortex equations (1.6).
Note that for this vector field, the implicit midpoint method in fact stays on the
unit sphere without the need for an explicit projection. To see this, take the dot
product of both sides of the equation with xn+1/2

k and observe that the right-hand
side vanishes, so that we get

(
xn+1
k − xn

k

) · xn+1/2
k = 0,

which is equivalent to ‖xn
k‖ = ‖xn+1

k ‖, i.e., the length is preserved. This is not a
general feature of the midpoint method, but is a consequence of the particular form
of the point-vortex equations. Furthermore, the midpoint method is symmetric
under the interchange xn

k ↔ xn+1
k , h ↔ −h, and as a result the method seems to

have good long-term conservation properties.
We note that, despite the similarities, the midpoint method on the sphere is

not exactly equal to the Hopf method. For the midpoint method, the gradient of
the Hamiltonian is evaluated at the midpoint xn+1/2, which is not exactly on the
surface of the sphere, whereas for the Hopf integrator, the gradient is evaluated at
the projection π(ϕn+1/2) which is on the surface of the sphere.

3. The Lie–Poisson method of Engø and Faltinsen (2002), applied to the point-vortex
equations of Sect. 3. This second-order method preserves the vortex moment ex-
plicitly, and is a self-adjoint Lie group method, resulting in bounded energy er-
ror. However, this method is not symplectic (see Zhong and Marsden 1988). This
method is implemented by solving

y1 = Ad∗
exp(−ξ)(y0), with ξ = h

2

(∇H(y0) + ∇H(y1)
)
,

where H is the point-vortex Hamiltonian (3.2), y0, y1 are the point-vortex loca-
tions in R

3, viewed as the dual so(3)∗ of the Lie algebra of the rotation group, and
Ad∗

g(y0) = gy0g
−1.
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Our conclusion is that of all four methods, the Hopf integrator and the midpoint
method on S

2 do a good job of preserving the geometric structure of the point-vortex
equations. Both methods preserve the vortex moment exactly, while the Hopf integra-
tor exhibits in addition the bounded energy error associated with symplectic integra-
tors. While the Hopf integrator is a little less accurate than the midpoint method for a
given step size, it is also somewhat faster, so that both methods perform comparably.
The fourth-order Runge–Kutta method and the Lie–Poisson method generally exhibit
a linear drift in the conserved quantities.

On the whole, the conservation properties of the midpoint algorithm seem to be
somewhat coincidental, and rely on the fact that for the point-vortex equations, the
algorithm stays on the unit sphere without reprojecting. It is therefore not clear how to
generalize this algorithm to obtain, for instance, higher-order integrators with similar
conservation properties. By contrast, for the variational Hopf integrator it suffices to
start from a higher-order version of the discrete Lagrangian (5.1) to obtain a higher-
order variational Hopf integrator.

We implemented our algorithm using various routines from the NUMPY and
SCIPY scientific libraries (see Oliphant 2007). A version of our code can be found at
https://github.com/jvkersch/hopf_vortices.

6.1 Stable Relative Equilibria of Vortex Rings

Polvani and Dritschel (1993) have investigated the behavior of a ring of N equidis-
tant vortices with the same strength Γ , placed on a circle of fixed latitude on the
sphere (see Fig. 1). They found that this configuration is a stable relative equi-
librium, provided that N ≤ 7 and that the colatitude is below a certain critical
value (dependent on N ). For the case N = 6, the critical colatitude is given by
θc = arccos(2/

√
5) ≈ 0.464 and the stable relative equilibria satisfy θ0 < θc. The vor-

tex ring rotates around the z-axis with angular velocity Ω = (N − 1) Γ
4π

z0
1−z2

0
, where

z0 = cos θ0.
For our simulation, we choose N = 6, Γ = 1/6 and θ0 = 0.40, so that Ω ≈ 0.397

and the period T ≈ 15.819. The motion of the first vortex over a number of periods
is illustrated in Fig. 1.

Comparison with Other Integrators We next turn to the energy and momentum
conservation properties of the numerical integrator. We simulate the motion of the
Polvani–Dritschel vortex ring with time step h = 0.1 and regularization parameter
σ = 0.0, for T = 1000 units of time, using all four integrators.

In Fig. 2 we have plotted the absolute energy error �E := |E(tn) − E(t0)| (left)
and the moment error �M := ‖M(tn) − M(t0)‖ (right) as a function of time. The
Hopf integrator preserves the energy and vortex moment to machine precision, while
the other three integrators exhibit drifts in both conserved quantities at various rates.

Numerical Order Calculation We know from theoretical considerations that the
Hopf integrator is second-order accurate, and so are the two other geometric methods.
We now illustrate this statement by comparing the solution trajectories generated by
the Hopf integrator with the exact trajectories. For 10 choices of time step h between

https://github.com/jvkersch/hopf_vortices
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Fig. 1 Left: Initial conditions for the 6-vortex Polvani–Dritschel vortex ring. Right: x, y and z-component
of the first vortex in the Polvani–Dritschel simulation, where the time step h = 0.1. The trajectory is clearly
seen to be periodic

Fig. 2 Comparison of the energy and momentum preservation between all four methods for the stable
Polvani–Dritschel vortex ring. The Hopf integrator preserves both invariants up to machine precision,
while the other integrators exhibit a clear drift. Here h = 0.1 and σ = 0.0

10−4 and 10−1 we run the simulation over T = 100 units of time and we compute
the absolute error between the numerical and the exact solution. We consider only the
first vortex, since the trajectories of the other vortices differ from the first by a rigid
rotation. More precisely, for each integrator we do the following: if xexact(tn) is the
exact position of the first vortex at time tn = nh and xn,h

int is the numerical trajectory,
then we compute

�h := max
n

∥∥xexact(tn) − xn,h
int

∥∥

for each of the selected time steps. For the sake of comparison, we have also included
the simulation results for the second-order Heun’s method composed with projection
onto S

2, which is labeled on the figure as RK2.
Figure 3 (left) shows a plot of absolute errors versus time steps for the three ge-

ometric integrators as well as RK2. All four integrators are of second-order. On the
right pane of Fig. 3, we have plotted the obtained accuracy for each of the methods
as a function of the expended CPU time.

We see that, apart from a transient regime for large step sizes in which the Hopf in-
tegrator is an order of magnitude slower, all three geometric methods perform compa-
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Fig. 3 Left: Absolute error for each of the four integrators for the Polvani–Dritschel vortex ring over
T = 100 units of time. All four integrators are second-order accurate in time. Right: Absolute error as a
function of CPU time expended, again for T = 100 units of time. All three geometric integrators exhibit
very similar behavior in accuracy vs. computational cost, and Runge–Kutta is much cheaper than the
geometric integrators for the same accuracy

rably. In relative terms, RK2 clearly outperforms all three geometric methods, since
with modest computational expense many orders of accuracy are obtained. This is
partly a result of the fact that the Polvani–Dritschel vortex ring is a relatively simple,
periodic vortex system. We will see in the examples below that for non-equilibrium
configurations, the energy and vortex moment slowly drift from their true values
when integrated with a non-symplectic integrator.

6.2 The Spherical von Kármán Vortex Street

An important class of relative equilibria consists of the single and double von Kármán
vortex streets on the sphere described by Chamoun et al. (2009). The single vortex
street consists of two staggered arrays of vortices, each consisting of N equidistant
vortices of strength Γ , at fixed colatitudes φ = φ1 and φ = π −φ1, together with vor-
tices of strength Γn and Γs at the north and the south pole, respectively (see Fig. 4a).

For the simulations in this section, we take the number of vortices in each ring to be
N = 5, and we set the colatitude equal to φ1 = π/3. The vortex strength for the ring
vortices is set equal to unity, Γ = 1, while the polar vortices satisfy Γn = −Γs = 1/2.
This configuration forms a relative equilibrium which rotates around the z-axis with
period T = 10.85. Based on the behavior of the planar Von Kármán vortex street,
it is believed that this relative equilibrium is unstable, although no rigorous stability
analysis exists, to the best of our knowledge.

In the simulation, the equilibrium becomes unstable and breaks up after a short
amount of time, leading to aperiodic motion of the vortices. In this regime, the energy
is not exactly preserved by the Hopf integrator, but exhibits bounded oscillations, as
is to be expected from a symplectic integrator. For this simulation, we used time step
h = 0.5 and regularization parameter σ = 0.25 and we ran the simulation for 10 000
time units.

In Fig. 4b, we have plotted the error in the vortex moment. By construction, the
Hopf integrator and the midpoint method on S

2 are exactly moment-preserving, and
their error in the moment is seen to vanish, whereas the moment error for the Lie–
Poisson and the RK4 method grows linearly. In Figs. 4c and 4d we have plotted the
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Fig. 4 Long-term simulation of the spherical von Kármán vortex street. (a) Initial configuration of the vor-
tices. (b) Long-term conservation of the moment of vorticity. The Hopf and midpoint integrators preserve
the moment exactly while RK4 and the Lie–Poisson method exhibit a linear drift. (c) and (d) Long-term en-
ergy preservation of the Hopf and RK4 integrator (left) and the Lie–Poisson and midpoint method (right).
Of the four integrators, the Hopf integrator is the only one to exhibit bounded energy oscillations over long
integration times

energy error for each of the integrators. Of the four integrators, the Hopf integrator is
the only one that exhibits bounded error in the energy, with energy oscillations of the
order of 10−2. The energy errors for the RK4 method and the Lie–Poisson method
grow secularly, while the energy for the midpoint method on S

2 resembles a random
walk.

6.3 Self-similar Collapse of Three Vortices

It is well known that certain configurations of point vortices on the sphere will col-
lapse to a point in finite time. For three vortices, necessary and sufficient conditions
for collapse were given by Kidambi and Newton (1998) while Sakajo (2008) identi-
fied an open set of initial conditions for collapse of four vortices. We focus here on
the case of three vortices.

We simulate the motion of three vortices with strengths Γ1 = Γ2 = 1, Γ3 = −1/2
placed at the vertices of a triangle with side lengths l12 = √

3/2, l23 = √
2/2
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Fig. 5 Trajectories of three
colliding vortices, for the initial
conditions described in the text

Fig. 6 Energy (left) and moment (right) conservation for the geometric integrators and fourth-order
Runge–Kutta close to vortex collapse, which happens for the unregularized system at t ≈ 8.45. While
RK4 conserves the energy and moment better than the geometric integrator up to the collapse, the energy
and moment settle down in a different value after collapse. Here, h = 0.1 and σ = 0.1

Fig. 7 Numerical simulation of colliding point vortices for T = 500 units of time, where h = 0.1 and
σ = 0.10. At regular instances of time, there are collapse events, indicated by the spikes in the figures.
Whereas the Hopf and the midpoint method preserve energy and the vortex moment reasonably well away
from collapse events, the energy increases with each collapse for RK4, and the moment increases with
each collapse for both the Lie–Poisson and RK4 method

and l31 = 1. For this configuration, it can be calculated that collapse occurs after
τ− ≡ 4π(

√
23 − √

17) ∼= 8.4537 units of time. The trajectories of the colliding vor-
tices are shown in Fig. 5. Note that these initial conditions are for the unregularized
system, i.e. (1.6) with σ = 0. Adding some regularization to the system effectively
amounts to imposing a minimum distance on the vortices and will prevent the vortex
configuration from collapsing to a single point.
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We simulate the system first with a moderate time step, h = 0.1, and some amount
of regularization, σ = 0.10, for T = 15 units of time. On Fig. 6 we see that the geo-
metric integrators, including the Hopf integrator, perform a better job of preserving
the energy and vortex moment than Runge–Kutta: while all integrators show some
buildup in the energy and moment error around the time of the collapse, the energy
and moment return to their original values after the collapse for the geometric inte-
grators, but settle down at a slightly different value for Runge–Kutta.

For long-term simulations, this effect is more pronounced. After the near-collapse,
the three vortices travel past each other and (nearly) collapse again at a later time, a
situation which repeats itself periodically afterwards. Figure 7 shows that for every
collapse event, the Runge–Kutta simulation incurs a jump in the energy and the mo-
ment, whereas the geometric integrators manage to preserve these invariants without
any noticeable secular trend. Note also that the period of time between two collapse
events increases gradually for Runge–Kutta, but stays (roughly) constant for the geo-
metric integrators. This, in particular, is an indication of the fact that the energy drift
exhibited by RK4 changes the qualitative nature of the dynamics.

6.4 Large Ensembles of Vortices

For our last example, we return to the numerical simulation of vortex rings on the
sphere, as in Sect. 6.1. We put 40 vortices of strength Γ = 1/8 at equal distances
from each other on a circle with colatitude θ0 = arccos(0.9). This configuration ap-
proximates a vortex sheet on the sphere, and exhibits the typical Kelvin–Helmholtz
instability associated with vortex sheets.

We simulate this system with a fairly large time step, h = 0.1, and some amount
of regularization, σ = 0.1. In Fig. 9 we have plotted the energy and moment error for
moderate integration times. While the Hopf integrator does not preserve the energy
any better than the other geometric methods, it preserves the vortex ring somewhat
longer than the other integrators: whereas for the non-symplectic integrators instabil-
ity sets in around t = 15, the Hopf integrator preserves stability until t = 30.

Around t = 32, we see on Fig. 8 that the vortex ring deforms into a pentagonal
configuration, which then curls up around t = 34 and breaks up for t ≥ 35. For a the-
oretical interpretation of the Kelvin–Helmholtz instability on the sphere, see Sakajo
(2004).

7 Conclusions and Outlook

In this paper, we have used the Hopf fibration to construct a linear Lagrangian on the
three-sphere S

3, whose Euler–Lagrange equations project down to the point-vortex
equations on S

2. In the second part of the paper, we have used this Lagrangian for-
mulation to construct a variational integrator for point vortices on the sphere. Below,
we discuss some possibilities for future research.

Extension to Higher-Order Integrators Our Lagrangian approach to the construc-
tion of discrete point-vortex integrators can be extended without major difficulties to
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Fig. 8 Kelvin–Helmholtz instability of a vortex sheet on the sphere, approximated by 40 point vortices
of strength 1/8. A sequence of snapshots is shown around the onset of instability. For the purpose of
visualization, the sphere has been projected onto the plane by means of stereographic projection from the
North pole, but the simulation is done directly on the sphere

Fig. 9 Plot of the energy error (left) and the moment error (right) for the vortex sheet approximated by 40
point vortices. The onset of instability for Hopf integrator is around t = 30, while for the other integrators
instability sets in much earlier, around t = 15. After the breakup of the relative equilibrium, the vortices
move in a non-equilibrium manner, as witnessed by the (bounded) error in the energy

the construction of integrators whose numerical order is higher than two. It suffices to
take a discretization in (5.1) which is of higher than second-order. The standard the-
ory of Lagrangian variational integrators (see Marsden and West 2001) then ensures
that the resulting discrete equations of motion will have the same order of accuracy
as the discrete Lagrangian.

Other Lie Group Methods We have constructed a Lie group variational integra-
tor by directly discretizing the linear Lagrangian (4.5). Another approach is due to
Bou-Rabee and Marsden (2009) (see also Kobilarov and Marsden 2011). Here the
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Lagrangian is first written in a left-trivialization of TSU(2) ∼= SU(2)× su(2) by map-
ping (g, ġ) to (g, ξ), where g−1ġ = ξ , and this equation is then discretized and added
to the variational principle using a Lagrange multiplier, giving rise to the so-called
Hamilton–Pontryagin variational principle. A similar variational principle, known as
the Clebsch variational principle, was pioneered in Cotter and Holm (2009). It would
be of considerable interest to discretize our linear Lagrangian (4.5) using these aug-
mented variational principles and to compare the properties of the resulting discrete
mechanical system with our straightforward discretization.

Statistical Mechanics of Large Numbers of Point Vortices The statistical theory of
vortex motion set forth in Onsager (1949) predicts that, under certain energetic con-
ditions, like-signed vortices will tend to cluster over time. We have not attempted to
extract any statistical information from the simulation of large number of vortices on
the sphere, but it would be interesting to do so. To alleviate the O(N2)-cost of com-
puting the point-vortex Hamiltonian while maintaining the symplectic nature of the
integrator, a geometric fast multipole method like the one developed in Chartier et al.
(2010) could be used.

Vorticity Distributions on the Sphere and Other Surfaces Point vortices represent
the simplest non-trivial distributions of vortices on the sphere. The methods proposed
in this paper are expected to generalize without any significant difficulty to the case
of vortex blobs or patches of vorticity on the sphere (see Chorin 1973; Newton 2001).

To treat vortical distributions on other surfaces, the following construction from
prequantization could be used. Recall that the Hopf fibration is the fiber bundle as-
sociated to the quantum line bundle on S

2 associated with the area form; see e.g.
Woodhouse (1992). For the motion of point vortices on a surface Σ with integral
area form, one can follow a similar route and lift the motion of the vortices to (the
principal fiber bundle associated to) the quantum line bundle, for which a similar
relation as (2.14) will continue to hold.

Moreover, PDEs such as the KdV and non-linear Schrödinger equation can also
be formulated using a linear Lagrangian, and we hope that the methods introduced in
this paper may be useful for these systems as well.
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Appendix A: Analysis of a Planar Vortex Integrator

In this appendix, we show that the integrator of Rowley and Marsden (2002) for point
vortices in the plane shares a number of remarkable features with the Hopf integrator,
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which stems from the fact that both systems are derivable from a linear Lagrangian.
Similar observations, but for the numerical integration of canonical Hamiltonian sys-
tems, were made by Brown (2006).

Decomposition into One-Step Methods Rowley and Marsden (2002) start from the
linear Lagrangian (1.3), which they discretize by setting

Ld(z0, z1) = hL

(
(1 − α)z0 + αz1,

z1 − z0

h

)
,

where α ∈ [0,1] is a real interpolation parameter. The equations of motion derived
from this Lagrangian are given by

zn+2 − zn

2h
= αf (zn+α) + (1 − α)f (zn+1+α), (A.1)

where zn+α := (1 − α)zn + αzn+1 and f (z) is the right-hand side of the vortex equa-
tions (1.1). It turns out that for α = 1/2, they can be written as the composition of a
one-step method and its adjoint. To see this, we specialize to the case α = 1/2 and
use the fact that the original Lagrangian L is linear in the velocities to write

Ld(z0, z1) = L(z1/2, z1) − L(z1/2, z0),

and we define Ld,+(z0, z1, h) := L(z1/2, z1) and Ld,−(z0, z1, h) := −L(z1/2, z0), so
that Ld = Ld,+ + Ld,−. Consider the adjoint L∗

d of a discrete Lagrangian Ld, which
is defined by L∗

d(z0, z1, h) := −Ld(z1, z0,−h) (see Marsden and West 2001). Then,
we have

L∗
d,+(z0, z1, h) = Ld,−(z0, z1, h),

and vice versa. This definition is motivated by the fact that the adjoint of the dis-
crete Euler–Lagrange flow of a discrete Lagrangian is given by the discrete Euler–
Lagrange flow of the adjoint discrete Lagrangian.

The composition of the discrete Euler–Lagrange flow of two discrete Lagrangians
is given by the discrete Euler–Lagrange flow of a composition discrete Lagrangian
that is the sum of the two original discrete Lagrangians. As a result, the discrete
Euler–Lagrange flow for Ld is given by the composition of the discrete Euler–
Lagrange flows for Ld,+ and its adjoint L∗

d,+ = Ld,−. These discrete flows can be
viewed as one-step methods, and are typically only first-order accurate, but their com-
position is symmetric and therefore has even order of accuracy, and is, in particular,
second-order accurate.

Lastly, we remark that for the point-vortex Lagrangian (1.3) the discrete La-
grangians Ld,+ and Ld,− coincide, which means that each of them is individually
self-adjoint. As a result, the underlying one-step method is second-order. In fact, it
can easily be seen that for α = 1/2, the point-vortex equations (A.1) can be written
as the composition of the implicit midpoint method

zn+1 − zn

h
= f (zn+1/2)
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Fig. 10 For the four-vortex
problem described in the text,
the energy error exhibits a linear
drift for the integrator with
α = 1 (solid line) but stays
bounded whenever α �= 1; here
α = 0.9 is shown (dashed line)

with itself. This method is clearly second-order accurate.
For the case of point vortices on the sphere the Lagrangians Ld,+ and Ld,− still

coincide, but in order to recover the equations of motion (5.4) and to enforce the
constraint 〈ϕn+1, ϕn+1〉 = 1, different constraint forces have to added to the discrete
flow. As a result, the underlying one-step methods, which are the maps Φh and Ψh

defined at the end of Sect. 5.2, no longer coincide and are individually only first-
order accurate (unless the underlying Hamiltonian is S

1-invariant), although their
composition is second-order accurate.

The Choice α = 0,1 for the Interpolation Parameter The method (A.1) is implicit
for all choices of α except α = 0,1, in which case the equations become

zn+2 − zn

2h
= f (zn+1). (A.2)

This method turns out to be the symmetric explicit midpoint method (see Hairer et al.
2002), which is well known to exhibit parasitic oscillatory solutions. These solutions
can easily be observed in the dynamics of point vortices: in Fig. 10, we have plot-
ted the energy error for a simulation of a four-vortex problem with vortex strengths
Γ = (0.1,0.3,−0.2,−0.4) and initial conditions z = (0,0.5i,1,0.7 + 0.6i). For the
simulation where α = 0.9 the energy error is bounded, while for the simulation em-
ploying α = 1.0 there is a clear linear drift in the energy error. The time step used for
both simulations was h = 0.1.

This is in clear contrast to the construction of variational integrators for nondegen-
erate Lagrangians, for which any choice of interpolation parameter α will result in a
stable, second-order integrator.

Similar instabilities exist for the case of point vortices on the sphere: the discrete
equations (5.6), for instance, exhibit the same instabilities as (A.2), despite being
variational.

Appendix B: A Variational Integrator for Non-S1-invariant Hamiltonians

In Sect. 5.2 we were able to obtain the implicit midpoint version (5.10) of the Hopf
integrator on S

3 based on the assumption that the Hamiltonian H is invariant under
the action of (S1)N on (S3)N . When the Hamiltonian is not invariant, this simplifi-
cation is no longer possible, and Eqs. (5.8) and (5.9) must be solved directly. In this
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appendix, we outline a strategy for doing so, based on the geometry of the group
SU(2).

Implementing the Unit-Length Constraint: The Cayley Map Given initial conditions
(ϕn−1, ϕn), we first compute the slack variables dn

α using (5.9). We must now solve
(5.8) for ϕn+1, and we need to impose the unit-length constraint (5.5). This can be
done conveniently using the geometry of SU(2): we write the update map ϕn 	→ ϕn+1

as

ϕn+1 = Unϕn, (B.1)

where Un is an element of SU(2). This ensures that the length of ϕn stays constant
over time, since

(
ϕn+1)†

ϕn+1 = (
ϕn

)†(
Un

)†
Unϕn = (

ϕn
)†

ϕn,

so that, in particular, ‖ϕn‖ = 1 implies that ‖ϕn+1‖ = 1.
Equations (5.8) for ϕn+1 can now be expressed as

Re

[(
ϕn

)†
(iσα)

(
−iΓ

(
Un − I2×2

)
ϕn + h

2
Dϕ†H

(
ϕn+1/2)

)]
= −dn

α, (B.2)

where ϕn+1/2 in the Hamiltonian can be expressed in terms of Un and ϕn by

ϕn+1/2 = 1

2

(
ϕn + ϕn+1) = 1

2

(
I + Un

)
ϕn.

These equations can be solved for Un directly, but a computationally more advan-
tageous approach is as follows. As long as the step size h is small, the update matrix
Un will be in a neighborhood of the identity element in SU(2). We now parametrize
that neighborhood by means of the Cayley transform Cay : su(2) → SU(2), given by

Cay(A) = (I + A)(I − A)−1.

That is, we search for an element An ∈ su(2) such that Un = Cay(An) will solve
(B.2). The advantage is that su(2) is a linear space, and that no constraints need
to be imposed on An, as the range of the Cayley map is automatically contained
within SU(2). A standard non-linear solver can therefore be used to find An. This
is analogous to the approach used in Lee et al. (2009) to implement the unit-length
constraint on S2 by updating the solution on the sphere using a SO(3) action that is
parametrized by the Cayley transform from so(3) to SO(3).

Computational Savings Significant computational savings can be obtained by
rewriting the Cayley map in a more convenient form. We recall from (2.6) that su(2)

is isomorphic with R
3, and we denote the vector representation of An by an ∈ R

3.
A small calculation then shows that the Cayley transform can be expressed as

Un = Cay
(
An

) = 1

1 + ‖an‖2

((
1 − ∥∥an

∥∥2)
I + 2An

)
, (B.3)
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so that

Un − I2×2 = 2

1 + ‖an‖2

(
An − ∥∥an

∥∥2
I2×2

)
.

The terms proportional to Γ in (B.2) can then be written as

Re
[
Γ

(
ϕn

)†
σα

(
Un − I2×2

)
ϕn

]

= 2Γ

1 + ‖an‖2
Re

[(
ϕn

)†
σα

(
An − ∥∥an

∥∥2
I2×2

)
ϕn

]

= 2Γ

1 + ‖an‖2

(
Re

[(
ϕn

)†
σαAnϕn

] − ∥∥an
∥∥2 Re

[(
ϕn

)†
σαϕn

])

= −2Γ

1 + ‖an‖2

(
an × xn + ∥∥an

∥∥2xn
)
α
, (B.4)

where we have used the expression (2.11) for the Hopf fibration to write xn
α =

(ϕn)†σαϕn, as well as the identity

(
ϕn

)†
σαAnϕn = i

3∑

β=1

(
an

)
β

(
ϕn

)†
σασβϕn

= i
(
an

)
α

− (
an × xn

)
α
,

which follows easily from (2.7).
Similarly, the terms in (B.2) involving the derivatives of the Hamiltonian can be

written using (4.13) as

Re
((

ϕn
)†

(iσα)Dϕ†H
(
ϕn+1/2))

= 1

1 + ‖an‖2

(
xn × ∇H

n+1/2
S2 − (

an · xn
)∇H

n+1/2
S2 − (

an × xn
) × ∇H

n+1/2
S2

)
α
,

where HS2 is the original point-vortex Hamiltonian (3.2).
Combining this expression with (B.4), we see that the first-order equations (B.2)

for Un are equivalent to the following non-linear equation for an:

− 2Γ
(
an × xn + ∥∥an

∥∥2xn
) + h

2

(
xn × ∇H

n+1/2
S2 − (

an · xn
)∇H

n+1/2
S2

− (
an × xn

) × ∇H
n+1/2
S2

)

= −(
1 + ∥∥an

∥∥2)dn. (B.5)

The first-order equations (5.9) can be rewritten in a similar fashion as a vector
equation involving xn−1,xn and an−1. However, as there is no need to solve these
equations directly (they merely serve to determine the slack variable dn), we will not
go in further detail.
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Summary To solve the discrete equations of motion (5.8) and (5.9) in the case of a
non-S1-invariant Hamiltonian, we proceed as follows:

1. Given initial conditions (ϕn−1, ϕn) ∈ S
3 × S

3, compute the slack dn from (5.9).
2. For this dn, find an from (B.5).
3. Once an is known, update ϕn to find ϕn+1 using the Cayley map (B.1).

The advantage of computing ϕn+1 indirectly via an is that (B.5) is a non-linear
equation defined on su(2)N . As this is a vector space, a standard non-linear solver
can be used to solve (B.5). While Owren and Welfert (2000) developed an extension
of Newton’s method that preserves the Lie group structure, it is much more compu-
tationally involved.
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