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Abstract In this paper, we develop the theoretical foundations of discrete Dirac
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of Dirac integrators.
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1 Introduction

Dirac structures, which can be viewed as simultaneous generalizations of symplectic
and Poisson structures, were introduced in Courant [12, 13]. In the context of geo-
metric mechanics [1, 3, 35], Dirac structures are of interest as they can directly incor-
porate Dirac constraints that arise in degenerate Lagrangian systems [16–18, 20–22,
28], interconnected systems [10, 45], and nonholonomic systems [6], and thereby
provide a unified geometric framework for studying such problems.

From the Hamiltonian perspective, these systems are described by implicit Hamil-
tonian systems; see Bloch and Crouch [7] and van der Schaft [44] for applications
of such a formulation to LC circuits and nonholonomic systems, and Dalsmo and
van der Schaft [14] for a comprehensive review of Dirac structures in this setting. This
approach is motivated by earlier work on almost-Poisson structures that describe non-
holonomic systems using brackets that fail to satisfy the Jacobi identity [46]. These
ideas are further extended to define port-Hamiltonian systems, which are intended to
model interconnected systems (see van der Schaft [45] for a survey of such applica-
tions).

On the Lagrangian side, degenerate, interconnected, and nonholonomic sys-
tems can be described by Lagrange–Dirac (or implicit Lagrangian) systems intro-
duced by Yoshimura and Marsden [50] in the context of Tulczyjew’s triple [42, 43]
and a certain class of representations of Dirac structures called induced Dirac
structures [14]. The resulting Lagrange–Dirac equations generalize the Lagrange–
d’Alembert equations for nonholonomic systems. The corresponding variational de-
scription of Lagrange–Dirac systems was developed in Yoshimura and Marsden [51],
with the introduction of the Hamilton–Pontryagin principle on the Pontryagin bundle
T Q⊕T ∗Q, which yields the generalized Legendre transformation, as well as Hamil-
ton’s principle for Lagrangian systems and Hamilton’s phase space principle for
Hamiltonian systems. Yoshimura and Marsden [51] also introduced the Lagrange–
d’Alembert–Pontryagin principle, a generalization of the Hamilton–Pontryagin prin-
ciple, which yields Lagrange–Dirac systems with nonholonomic constraints. It also
generalizes the Lagrange–d’Alembert principle for nonholonomic systems (see, e.g.,
Bloch [6]).

In the context of geometric numerical integration [23, 30], which is concerned
with the development of numerical methods that preserve geometric properties of
the corresponding continuous flow, variational integrators that preserve the symplec-
tic structure can be systematically derived from a discrete Hamilton’s principle [36],
and can be extended to asynchronous variational integrators [33] that preserve the
multisymplectic structure of Hamiltonian partial differential equations. The discrete
variational formulation of Hamiltonian mechanics was developed by Lall and West
[29] as the dual, in the sense of optimization, to discrete Lagrangian mechanics. Dis-
crete analogues of the Hamilton–Pontryagin principle were introduced in [8, 26] for
particular choices of discrete Lagrangians. Discrete Lagrangian, Hamiltonian, and
nonholonomic mechanics have also been generalized to Lie groupoids [24, 34, 41,
49].

Contributions of This Paper In this paper, we introduce discrete analogues of Tul-
czyjew’s triple and induced Dirac structures, and show how they describe discrete
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Lagrange–Dirac and nonholonomic Hamiltonian systems. The construction relies on
the observation that Tulczyjew’s triple arises from symplectic maps between the it-
erated tangent and cotangent bundles T ∗T Q, T T ∗Q, and T ∗T ∗Q. By analogy, we
construct discrete analogues of Tulczyjew’s triple that are derived from properties of
symplectic maps between discrete analogues of the iterated tangent and cotangent
bundles. We then demonstrate that they yield discrete Lagrange–Dirac and nonholo-
nomic Hamiltonian systems, and recover nonholonomic integrators that are typically
derived from a discrete Lagrange–d’Alembert principle.

We also introduce discrete analogues of the Lagrange–d’Alembert–Pontryagin and
Hamilton–d’Alembert variational principles, which provide a variational characteri-
zation of discrete Lagrange–Dirac and nonholonomic Hamiltonian systems that we
previously described in terms of the discrete analogues of Tulczyjew’s triple and in-
duced Dirac structures. The discrete Lagrange–Dirac and nonholonomic Hamiltonian
systems recover the standard Lagrangian variational integrators (see, e.g., Marsden
and West [36]), Hamiltonian variational integrators of Lall and West [29], and non-
holonomic integrators (see, e.g., Cortés and Martínez [11] and McLachlan and Perl-
mutter [38]).

Discrete Hamiltonian mechanics [29] is not intrinsic, due to its dependence on
Type 2 or 3 generating functions of symplectic maps. Since discrete Dirac mechanics
encompasses discrete Hamiltonian mechanics, we first limit our discussions to the
cases where the configuration manifold Q is a vector space. We then introduce a
retraction, a map from T Q to Q, to extend the ideas to the more general case where Q

is a manifold. Specifically, we extend the Lagrange–d’Alembert–Pontryagin principle
to this case, and show that it yields, using a certain class of coordinate charts specified
by the retraction, the same coordinate expressions for Lagrange–Dirac systems as
in the linear case. This gives a firm theoretical foundation and a prescription for
performing computations with Lagrange–Dirac systems on manifolds.

Outline of This Paper The paper is organized as follows. In Sect. 2, we review in-
duced Dirac structures, Tulczyjew’s triple, and Lagrange–Dirac systems with an LC
circuit as a motivating example. In Sects. 3 and 4, we construct discrete analogues
of Tulczyjew’s triple and induced Dirac structures. These discrete analogues lead us
to the development of discrete Dirac mechanics, i.e., discrete Lagrange–Dirac and
nonholonomic Hamiltonian systems, in Sect. 5. We then come back to the LC cir-
cuit example in Sect. 6: We discretize the LC circuit and describe it as a discrete
Lagrange–Dirac system to obtain a numerical method; we also test the method nu-
merically and compare the result with an exact solution. In Sect. 7, we briefly come
back to the continuous-time setting to review the Lagrange–d’Alembert–Pontryagin
and Hamilton–d’Alembert principles for Lagrange–Dirac and nonholonomic Hamil-
tonian systems. Then, in Sect. 8, we define the discrete analogues of the variational
principles. In Sect. 9, we extend our results to computations on manifolds.

2 Dirac Structures, Tulczyjew’s Triple, and Lagrange–Dirac Systems

We first briefly review the induced Dirac structures that give rise to Lagrange–Dirac
systems, taking an LC circuit as an example (see [50, 51, 53]). Lagrange–Dirac
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Fig. 1 LC circuit—example of
degenerate Lagrangian system
with constraints (see [50])

systems are particularly useful in formulating systems with degenerate Lagrangians
and/or constraints. LC circuits are a class of examples that is particularly well suited
for the formulation as Lagrange–Dirac systems, since they often involve degenerate
Lagrangians and also constraints arising from the Kirchhoff laws.

2.1 LC Circuit—Example of Degenerate Lagrangian System with Constraints

Following Yoshimura and Marsden [50], consider the LC circuit with an inductor �

and three capacitors c1, c2, and c3 shown in Fig. 1. The configuration space is the
4-dimensional vector space Q = {(q�, qc1, qc2, qc3)}, which represents charges in
the circuit elements. Then, an element fq = (f �, f c1, f c2, f c3) in the tangent space
TqQ represents the currents in the corresponding circuit elements; hence the tangent
bundle T Q is a charge-current space. The Lagrangian L : T Q → R is given by

L(q,f ) = �

2

(
f �

)2 − (qc1)2

2c1
− (qc2)2

2c2
− (qc3)2

2c3
. (2.1)

The Lagrangian is clearly degenerate:

det

(
∂2L

∂f i∂f j

)
= 0,

which corresponds to the fact that not every circuit component has inductance. There-
fore, the Legendre transformation FL : T Q → T ∗Q, with T ∗Q being the cotangent
bundle of Q, defined by

FL : f �→ ∂L

∂f i
dqi,

is not invertible, and hence it is impossible to write the system as a Hamiltonian
system in the conventional sense. Notice also that the Kirchhoff current law imposes
the constraints −f � +f c2 = 0 and −f c1 +f c2 −f c3 = 0. This defines the constraint
distribution ΔQ ⊂ T Q given by

ΔQ = {
f ∈ T Q

∣∣ ωa(f ) = 0, a = 1,2
}
, (2.2)

with the constraint one-forms {ω1,ω2} defined as

ω1 = −dq� + dqc2, ω2 = −dqc1 + dqc2 − dqc3 . (2.3)
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Then, one can write the constraints simply as f ∈ ΔQ. If we introduce the annihilator
distribution (or codistribution) Δ◦

Q ⊂ T ∗Q of ΔQ ⊂ T Q by

Δ◦
Q(q) := {

αq ∈ T ∗
q Q

∣∣ ∀vq ∈ ΔQ, 〈αq, vq〉 = 0
}
, (2.4)

then we have Δ◦
Q = span{ω1,ω2}.

2.2 Induced Dirac Structures

The key idea in formulating Lagrange–Dirac systems for systems with constraints
like the above LC circuits is to introduce a Dirac structure induced by the above
constraints. Let us first recall the basic definitions and results following Yoshimura
and Marsden [50].

Definition 2.1 (Dirac structures on vector spaces) Let V be a vector space and V ∗
be its dual. For a subspace D ⊂ V ⊕ V ∗, we define

D⊥ := {
(v,α) ∈ V ⊕ V ∗ ∣∣ 〈α′, v〉 + 〈α,v′〉 = 0 for any (v′, α′) ∈ D

}
, (2.5)

where 〈·, ·〉 : V ∗ × V → R is the natural pairing. A subspace D of V ⊕ V ∗ is called
a Dirac structure on V if D⊥ = D.

This definition naturally extends to manifolds.

Definition 2.2 (Dirac structures on manifolds) Let M be a manifold and T M and
T ∗M be its tangent and cotangent bundles. For a subbundle D ⊂ T M ⊕ T ∗M , we
define

D⊥ := {
(v,α) ∈ T M ⊕ T ∗M

∣∣ 〈α′, v〉 + 〈α,v′〉 = 0 for any (v′, α′) ∈ D
}
, (2.6)

where ⊕ is the Whitney sum, and 〈·, ·〉 : T ∗M × T M → R is the natural pairing.
A subbundle D over M of T M ⊕ T ∗M is called a (generalized) Dirac structure on
M if D⊥ = D.

A particularly important class of Dirac structures is the induced Dirac structure on
a cotangent bundle defined in the following way: Let Q be a manifold, πQ : T ∗Q →
Q be the cotangent bundle projection, and Ω	 : T T ∗Q → T ∗T ∗Q be the flat map
associated with the standard symplectic structure Ω on T ∗Q.

Proposition 2.3 (The induced Dirac structure on T ∗Q; see [14, 44, 50]) Given a
constant-dimensional distribution ΔQ ⊂ T Q on Q, define the lifted distribution

ΔT ∗Q := (T πQ)−1(ΔQ) ⊂ T T ∗Q, (2.7)

and let Δ◦
T ∗Q ⊂ T ∗T ∗Q be its annihilator, which is also given by Δ◦

T ∗Q = π∗
Q(Δ◦

Q).
Then, the subbundle DΔQ

⊂ T T ∗Q ⊕ T ∗T ∗Q defined by

DΔQ
:= {

(v,α) ∈ T T ∗Q ⊕ T ∗T ∗Q
∣∣ v ∈ ΔT ∗Q, α − Ω	(v) ∈ Δ◦

T ∗Q
}

(2.8)

is a Dirac structure on T ∗Q.
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In the above LC circuit example, the Kirchhoff current law constraints ΔQ in (2.2)
induce the Dirac structure DΔQ

. In coordinates, we write an element in T ∗Q as (q,p)

with p = (p�,pc1,pc2,pc3) and then by noting that Ω = dq ∧ dp, we have

DΔQ
(q,p) = {

(q̇, ṗ, αq,αp) ∈ T T ∗Q⊕T ∗T ∗Q
∣∣ q̇ ∈ ΔQ, q̇ = αp, ṗ+αq ∈ Δ◦

Q

}
,

where Δ◦
Q ⊂ T ∗Q is the annihilator of ΔQ defined in (2.4).

2.3 Tulczyjew’s Triple

Following Tulczyjew [42, 43] and Yoshimura and Marsden [50], let us introduce
Tulczyjew’s triple, i.e., the diffeomorphisms Ω	, κQ, and γQ := Ω	 ◦ κ−1

Q defined
between the iterated tangent and cotangent bundles as follows:

T ∗T Q

πT Q

γQ

T T ∗Q
Ω	κQ

τT ∗QT πQ

T ∗T ∗Q

πT ∗Q

T Q T ∗Q

(2.9a)

(q, δq, δp,p) (q,p, δq, δp) (q,p,−δp, δq)

(q, δq) (q,p)

(2.9b)

The maps Ω	 and κQ induce symplectic forms on T T ∗Q in the following way:
Let ΘT ∗T ∗Q and ΘT ∗T Q be standard symplectic one-forms on the cotangent bun-
dles T ∗T ∗Q and T ∗T Q, respectively. One defines one-forms χ and λ on T T ∗Q
by

χ := (Ω	)∗ΘT ∗T ∗Q = −δp dq + δq dp, λ := (κQ)∗ΘT ∗T Q = δp dq + p d(δq),

and, using these one-forms, define the two-form ΩT T ∗Q on T T ∗Q by

ΩT T ∗Q := −dλ = dχ = dq ∧ d(δp) + d(δq) ∧ dp.

Then, this gives a symplectic form on T T ∗Q.

2.4 Lagrange–Dirac Systems

To define a Lagrange–Dirac system, it is necessary to introduce the Dirac differential
of a Lagrangian function: Given a Lagrangian L : T Q → R, we define the Dirac
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differential DL : T Q → T ∗T ∗Q by

DL := γQ ◦ dL.

In local coordinates,

DL(q, v) =
(

q,
∂L

∂v
,−∂L

∂q
, v

)
.

Now we are ready to define a Lagrange–Dirac system:

Definition 2.4 (Lagrange–Dirac systems) Suppose that a Lagrangian L : T Q → R

and a Dirac structure D ⊂ T T ∗Q ⊕ T ∗T ∗Q are given. Let X ∈ X(T ∗Q) be a vector
field on T ∗Q. Then a Lagrange–Dirac system is defined by

(X,DL) ∈ D. (2.10)

In particular, if D is the induced Dirac structure DΔQ
given in (2.8), the Lagrange–

Dirac system can be written as follows:

T πQ(X) ∈ ΔQ, Ω	(X) − DL ∈ Δ◦
T ∗Q,

or in local coordinates, by setting X = q̇ ∂q + ṗ ∂p ,

q̇ ∈ ΔQ, q̇ = v, p = ∂L

∂v
, ṗ − ∂L

∂q
∈ Δ◦

Q. (2.11)

Example 2.5 (LC circuit) With the Dirac structure DΔQ
in (2.8) induced by the con-

straints ΔQ in (2.2), the Lagrange–Dirac system (X,DL) ∈ DΔQ
gives

q̇ ∈ ΔQ, q̇ = f, p = ∂L

∂f
, ṗ − ∂L

∂q
= μ1ω

1 + μ2ω
2 (2.12a)

with the Lagrange multipliers μ1,μ2 ∈ R; to be more explicit,

q̇� = q̇c2, q̇c1 = q̇c2 − q̇c3,

q̇� = f �, q̇c1 = f c1, q̇c2 = f c2, q̇c3 = f c3,

p� = �f �, pc1 = pc2 = pc3 = 0,

ṗ� = −μ1, ṗc1 + qc1

c1
= −μ2, ṗc2 + qc2

c2
= μ1 + μ2,

ṗc3 + qc3

c3
= −μ2.

(2.12b)

This formulation recovers the equations given by circuit theory.

Remark 2.6 Notice that this formulation by Yoshimura and Marsden [50] does not
use the Kirchhoff voltage law; it instead uses the Kirchhoff current law with the
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symplectic structure on T ∗Q to define the Dirac structure DΔQ
⊂ T T ∗Q ⊕ T ∗T ∗Q.

On the other hand, the formulation by Bloch and Crouch [7] and van der Schaft [44]
uses the Dirac structure D ⊂ T P ⊕ T ∗P , with a different configuration space P ,
defined by both the Kirchhoff voltage and current laws, without using any additional
geometric (symplectic) structure.

2.5 Implicit and Nonholonomic Hamiltonian Systems

One can define an implicit Hamiltonian system in an analogous way as shown by
van der Schaft [44] and Dalsmo and van der Schaft [14]:

Definition 2.7 Suppose that a Hamiltonian H : T ∗Q → R and a Dirac structure D ⊂
T T ∗Q ⊕ T ∗T ∗Q are given. Let X ∈ X(T ∗Q) be a vector field on T ∗Q. Then an
implicit Hamiltonian system (IHS) is defined by

(X,dH) ∈ D.

In particular, if D is the induced Dirac structure DΔQ
given in (2.8), the IHS gives

the nonholonomic Hamilton’s equations (see, e.g., Bates and Sniatycki [4], van der
Schaft and Maschke [46], and Koon and Marsden [27]):

T πQ(X) ∈ ΔQ, Ω	(X) − dH ∈ Δ◦
T ∗Q,

or in local coordinates, by setting X = q̇ ∂q + ṗ ∂p ,

q̇ ∈ ΔQ, q̇ = ∂H

∂p
, ṗ + ∂H

∂q
∈ Δ◦

Q.

To keep the exposition in this section concise, we will not go into details about IHS
here. We would like to point the reader to the references cited above for details and
examples of IHS.

3 Discrete Analogues of Tulczyjew’s Triple

In this section, we construct discrete analogues of Tulczyjew’s triple shown in (2.9)
that retain the key geometric properties, especially the symplecticity of the maps
involved. This makes it possible to formulate a natural structure-preserving discrete
analogue of Lagrange–Dirac systems. The discussion here is limited to the case where
the configuration space Q is a vector space.

To give the big picture of what we would like to do in this section, constructing a
discrete analogue of Tulczyjew’s triple involves replacing, for example, the tangent
bundle T Q in (2.9) by the product Q×Q in accordance with the basic idea of discrete
mechanics (see, e.g., [36]); likewise T T ∗Q is replaced by T ∗Q × T ∗Q; the role of
T ∗Q in discrete mechanics is quite subtle in general, but since Q is assumed to be
a vector space, we can replace it with Q × Q∗. Figure 2 gives a rough picture of a
discrete analogue of Tulczyjew’s triple. We work out the details of how to obtain the
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Fig. 2 A rough picture of a
discrete analogue of Tulczyjew’s
triple.

maps κd
Q and Ω

	
d in the sections to follow. The guiding principle here is to make use of

symplectic maps associated with generating functions instead of smooth symplectic
flows.

3.1 Discrete Mechanics and Generating Functions

Let us first review some basic facts on generating functions. Consider a map F :
T ∗Q → T ∗Q written as (q0,p0) �→ (q1,p1). Note that, since Q is assumed to be a
vector space here, the cotangent bundle is trivial, i.e., T ∗Q ∼= Q×Q∗, and so one can
write F : Q × Q∗ → Q × Q∗ as well. One then considers the following four maps
associated with F :

(i) F1 : Q × Q → Q∗ × Q∗; (q0, q1) �→ (p0,p1)

(ii) F2 : Q × Q∗ → Q∗ × Q; (q0,p1) �→ (p0, q1)

(iii) F3 : Q∗ × Q → Q × Q∗; (p0, q1) �→ (q0,p1)

(iv) F4 : Q∗ × Q∗ → Q × Q; (p0,p1) �→ (q0, q1)

The Type i generating function with i = 1,2,3,4 (using the terminology set by Gold-
stein et al. [19]) is a scalar function Si defined on the range of the map Fi that exists
if and only if the map F is symplectic. Let us look at the first three cases (the fourth
one is not important here) and their relationship to discrete analogues of the map κQ

and Ω	 in the sections to follow.

3.2 Generating Function of Type 1 and the Map κd
Q

This section relates the Type 1 generating function with a discrete analogue κd
Q of the

map κQ in Tulczyjew’s triple, (2.9).
First, we regard (p0,p1) as functions of (q0, q1) as indicated in the definition of

the map F1 above, and then define iF1 : Q × Q → T ∗Q × T ∗Q by

iF1 : (q0, q1) �→ (
(q0,p0), (q1,p1)

)
where (p0,p1) = F1(q0, q1).

Now recall that the map F : (q0,p0) �→ (q1,p1) is symplectic if and only if
dq0 ∧dp0 = dq1 ∧dp1, or equivalently d(−p0 dq0 +p1 dq1) = 0. Then, the Poincaré
lemma states that this is true if and only if there exists some function S1 : Q×Q → R,
a Type 1 generating function, such that

−p0 dq0 + p1 dq1 = dS1(q0, q1).
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This relates the (p0,p1) with the generating function S1:

p0 = −D1S1(q0, q1), p1 = D2S1(q0, q1). (3.1)

Then, this gives rise to the map κd
Q : T ∗Q × T ∗Q → T ∗(Q × Q) so that the diagram

T ∗Q × T ∗Q
κd
Q

T ∗(Q × Q)

Q × Q

iF1 dS1

((q0,p0), (q1,p1)) (q0, q1,−p0,p1)

(q0, q1)

(3.2)

commutes, i.e., we obtain

κd
Q : ((q0,p0), (q1,p1)

) �→ (q0, q1,−p0,p1). (3.3)

3.3 Generating Function of Type 2 and the Map Ω
	
d+

Next, we would like to relate the Type 2 generating function with one of the two
discrete analogues of the map Ω	 in Tulczyjew’s triple, (2.9).

First, we regard (p0, q1) as functions of (q0,p1) as indicated in the definition of
the map F2 above, and then define iF2 : Q × Q∗ → T ∗Q × T ∗Q by

iF2 : (q0,p1) �→ (
(q0,p0), (q1,p1)

)
where (p0, q1) = F2(q0,p1).

The map F : (q0,p0) �→ (q1,p1) is symplectic if and only if dq0 ∧ dp0 = dq1 ∧ dp1,
or equivalently d(p0 dq0 + q1 dp1) = 0. Then, the Poincaré lemma states that this is
true if and only if there exists some function S2 : Q × Q∗ → R, a Type 2 generating
function, such that

p0 dq0 + q1 dp1 = dS2(q0,p1).

This relates the (p0, q1) with the generating function S2:

p0 = D1S2(q0,p1), q1 = D2S2(q0,p1). (3.4)
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Then, this gives rise to the map Ω
	
d+ : T ∗Q × T ∗Q → T ∗(Q × Q∗) so that the

diagram

T ∗Q × T ∗Q
Ω

	
d+

T ∗(Q × Q∗)

Q × Q∗
iF2 dS2

((q0,p0), (q1,p1)) (q0,p1,p0, q1)

(q0,p1)

(3.5)

commutes, i.e., we obtain

Ω
	
d+ : ((q0,p0), (q1,p1)

) �→ (q0,p1,p0, q1). (3.6)

3.4 Generating Function of Type 3 and the Map Ω
	
d−

The other discrete analogue of the map Ω	 follows from the Type 3 generating func-
tion.

In this case, we regard (q0,p1) as functions of (p0, q1) as indicated in the defini-
tion of the map F3 above, and then define iF3 : Q∗ × Q → T ∗Q × T ∗Q by

iF3 : (p0, q1) �→ (
(q0,p0), (q1,p1)

)
where (q0,p1) = F3(p0, q1).

The map F : (q0,p0) �→ (q1,p1) is symplectic if and only if dq0 ∧ dp0 = dq1 ∧ dp1,
or equivalently d(−q0 dp0 − p1 dq1) = 0. Then, again by the Poincaré lemma, this is
true if and only if there exists some function S3 : Q∗ × Q → R such that

−q0 dp0 − p1 dq1 = dS3(p0, q1).

This relates the (q0,p1) with the generating function S3:

q0 = −D1S3(p0, q1), p1 = −D2S3(p0, q1). (3.7)
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Then, this gives rise to the map Ω
	
d− : T ∗Q × T ∗Q → T ∗(Q∗ × Q) so that the

diagram

T ∗Q × T ∗Q
Ω

	
d−

T ∗(Q∗ × Q)

Q∗ × Q

iF3 dS3

((q0,p0), (q1,p1)) (p0, q1,−q0,−p1)

(p0, q1)

(3.8)

commutes, i.e., we obtain

Ω
	
d− : ((q0,p0), (q1,p1)

) �→ (p0, q1,−q0,−p1). (3.9)

3.5 (+)-Discrete Tulczyjew Triple

Combining the diagrams in (3.2) and (3.5), we obtain the following (+)-discrete
Tulczyjew triple.

T ∗(Q × Q)

πQ×Q

γ d+
Q

T ∗Q × T ∗Q
Ω

	
d+κd

Q

τ d+
T ∗Q

πQ×πQ

T ∗(Q × Q∗)

πQ×Q∗

Q × Q Q × Q∗

(3.10a)

(q0, q1,−p0,p1) ((q0,p0), (q1,p1)) (q0,p1,p0, q1)

(q0, q1) (q0,p1)

(3.10b)

The maps κd
Q and Ω

	
d+ inherit the properties of κQ and Ω	 discussed in Sect. 2.3

in the following sense: Let ΘT ∗(Q×Q∗) and ΘT ∗(Q×Q) be the symplectic one-forms

on T ∗(Q × Q∗) and T ∗(Q × Q), respectively. The maps κd
Q and Ω

	
d+ induce two
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symplectic one-forms on T ∗Q × T ∗Q. One is

χd+ := (
Ω

	
d+

)∗
ΘT ∗(Q×Q∗) = p0 dq0 + q1 dp1,

and the other is

λd+ := (
κd
Q

)∗
ΘT ∗(Q×Q) = −p0 dq0 + p1 dq1.

Then, using these one-forms, define the two-form ΩT ∗Q×T ∗Q by

ΩT ∗Q×T ∗Q = −dλd+ = dχd+ = dq1 ∧ dp1 − dq0 ∧ dp0.

This is a natural symplectic form defined on the product of two cotangent bundles
(see Abraham and Marsden [1, Proposition 5.2.1 on p. 379]).

3.6 (−)-Discrete Tulczyjew Triple

Combining the diagrams in (3.2) and (3.8), we obtain the following (−)-discrete
Tulczyjew triple.

T ∗(Q × Q)

πQ×Q

γ d−
Q

T ∗Q × T ∗Q
Ω

	
d−κd

Q

τ d−
T ∗Q

πQ×πQ

T ∗(Q∗ × Q)

πQ∗×Q

Q × Q Q∗ × Q

(3.11a)

(q0, q1,−p0,p1) ((q0,p0), (q1,p1)) (p0, q1,−q0,−p1)

(q0, q1) (p0, q1)

(3.11b)

As in the (+)-discrete case, the maps κd
Q and Ω

	
d− inherit the properties of κQ and

Ω	: Let ΘT ∗(Q∗×Q) be the symplectic one-form on T ∗(Q∗ × Q). Then, we have

χd− := (
Ω

	
d−

)∗
ΘT ∗(Q∗×Q) = −p1 dq1 − q0 dp0,

and

λd− := (
κd
Q

)∗
ΘT ∗(Q×Q) = −p0 dq0 + p1 dq1.

Then, they induce the same symplectic form ΩT ∗Q×T ∗Q as above:

ΩT ∗Q×T ∗Q := −dλd− = dχd− = dq1 ∧ dp1 − dq0 ∧ dp0.
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4 Discrete Analogues of Induced Dirac Structures

Recall from Sect. 2.2 that, given a constraint distribution ΔQ ⊂ T Q, we first defined
the distribution ΔT ∗Q ⊂ T T ∗Q and then constructed the induced Dirac structure
DΔQ

⊂ T T ∗Q⊕T ∗T ∗Q. This section develops a discrete analogue of this construc-
tion.

4.1 Discrete Constraint Distributions

Given the fact that the tangent bundle T Q is replaced by the product Q × Q in the
discrete setting, a natural discrete analogue of a constraint distribution ΔQ ⊂ T Q is
a subset Δd

Q ⊂ Q×Q. We follow the approach of Cortés and Martínez [11] (see also

McLachlan and Perlmutter [38]) to construct discrete constraints Δd
Q ⊂ Q×Q based

on given (continuous) constraints ΔQ ⊂ T Q.
Let Δ◦

Q ⊂ T ∗Q be the annihilator distribution (or codistribution) of ΔQ ⊂ T Q

and m := dimTqQ − dimΔQ(q) for each q ∈ Q. Then, one can find a set of m

constraint one-forms {ωa}ma=1 that spans the annihilator:

Δ◦
Q = span

{
ωa

}m

a=1.

In local coordinates, we may write

ωa(q, v) = Aa
i (q)vi, (4.1)

where (Aa
i (q)) is an m × n full-rank matrix for each q ∈ Q, i.e., rankA(q) = m.

Then, using the one-forms ωa and a retraction R : T Q → Q (see Sect. 9.1), we
define functions ωa

d± : Q × Q → R by

ωa
d+(q0, q1) := ωa

(
q0, R−1

q0
(q1)

)
, ωa

d−(q0, q1) := ωa
(
q1,−R−1

q1
(q0)

)
, (4.2)

and then define the discrete constraints Δd±
Q ⊂ Q × Q by

Δd±
Q := {

(q0, q1) ∈ Q × Q
∣∣ ωa

d±(q0, q1) = 0, a = 1,2, . . . ,m
}
. (4.3)

The following proposition suggests that it is natural to think of q1 as a discrete ana-
logue of the velocity vq0 ∈ Tq0Q when imposing the constraint (q0, q1) ∈ Δd+

Q , and

q0 a discrete analogue of vq1 ∈ Tq1Q when imposing (q0, q1) ∈ Δd−
Q :

Proposition 4.1 The discrete constraints defined by (q0, q1) ∈ Δd±
Q ⊂ Q × Q are

constraints only on the variable q1 and q0, respectively; i.e., pr1(Δ
d+
Q ) = Q and

pr2(Δ
d−
Q ) = Q, where pri : Q × Q → Q with i = 1,2 is the projection to the ith

component.

Proof Let ω : T Q → R
m be the map defined by

ω(q, v) := (
ω1(q, v), . . . ,ωm(q, v)

)
,
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and ωd+ : Q × Q → R
m be the map defined by

ωd+(q0, q1) := (
ω1

d+(q0, q1), . . . ,ω
m
d+(q0, q1)

)
.

In the first equation in (4.2), take the derivative respect to q1 to obtain

D2ωd+(q0, q1) = D2ω
(
q0, R−1

q0
(q1)

) · DR−1
q0

(q1) = A(q0) · DR−1
q0

(q1),

where we used the coordinate expression for ω in (4.1). Since DR−1
q0

is an in-
vertible matrix (see Remark 9.2) and rankA = m, we find that rankD2ωd+ = m.
Therefore, by the implicit function theorem, we may (locally) rewrite the con-
straints ωd+(q0, q1) = 0 as q

il
1 = f l(q0, q

j1
1 , . . . q

jn−m

1 ) with some function f l : R
n ×

R
n−m → R

m for l = 1, . . . ,m, where {i1, . . . , im} ∪ {j1, . . . , jn−m} = {1,2, . . . , n}
and {i1, . . . , im} ∩ {j1, . . . , jn−m} = ∅. Hence q0 is a free variable and so the claim
follows. Similarly for ωd−. �

Next, we introduce discrete analogues of the distribution ΔT ∗Q ⊂ T T ∗Q using the
discrete constraint Δd±

Q defined above. Natural discrete analogues of ΔT ∗Q would be

Δd±
T ∗Q ⊂ T ∗Q × T ∗Q defined by

Δd±
T ∗Q := (πQ × πQ)−1(Δd±

Q

)

= {(
(q0,p0), (q1,p1)

) ∈ T ∗Q × T ∗Q
∣∣ (q0, q1) ∈ Δd±

Q

}
,

which is analogous to the continuous distribution ΔT ∗Q := (T πQ)−1(ΔQ) in (2.7).
We will also need discrete analogues of the annihilator Δ◦

T ∗Q defined in (2.7);
natural discrete analogues of it would be annihilator distributions on Q × Q∗ and
Q∗ × Q. We use the projections πd+

Q : Q × Q∗ → Q and πd−
Q : Q∗ × Q → Q to

define annihilator distributions Δ◦
Q×Q∗ ⊂ T ∗(Q × Q∗) and Δ◦

Q∗×Q ⊂ T ∗(Q∗ × Q)

by

Δ◦
Q×Q∗ := (

πd+
Q

)∗(
Δ◦

Q

) = {
(q,p,αq,0) ∈ T ∗(Q × Q∗) ∣∣ αq dq ∈ Δ◦

Q(q)
}
,

Δ◦
Q∗×Q := (

πd−
Q

)∗(
Δ◦

Q

) = {
(p, q,0, αq) ∈ T ∗(Q∗ × Q

) ∣∣ αq dq ∈ Δ◦
Q(q)

}
,

which is analogous to the expression for the continuous annihilator distribution
Δ◦

T ∗Q = π∗
Q(Δ◦

Q).

4.2 Discrete Induced Dirac Structures

Now we are ready to define discrete analogues of the induced Dirac structures DΔQ

shown in Proposition 2.3.

Definition 4.2 (Discrete Induced Dirac Structures) Given a discrete constraint distri-
bution Δd+

Q ⊂ Q × Q, we define the (+)-discrete induced Dirac structure by

Dd+
ΔQ

:= {((
z, z+)

, αẑ

) ∈ (T ∗Q × T ∗Q) × T ∗(Q × Q∗)
∣∣

(
z, z+) ∈ Δd+

T ∗Q, αẑ − Ω
	
d+

(
z, z+) ∈ Δ◦

Q×Q∗
}
,
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where if z = (q,p) and z+ = (q+,p+) then ẑ := (q,p+) ∈ Q×Q∗. Likewise, given
a discrete constraint distribution Δd−

Q ⊂ Q × Q, we define the (−)-discrete induced
Dirac structure as follows:

Dd−
ΔQ

:= {((
z−, z

)
, αz̃

) ∈ (T ∗Q × T ∗Q) × T ∗(Q∗ × Q)
∣∣

(
z−, z

) ∈ Δd−
T ∗Q, αz̃ − Ω

	
d−

(
z−, z

) ∈ Δ◦
Q∗×Q

}
,

where if z = (q,p) and z− = (q−,p−) then z̃ := (p−, q) ∈ Q∗ × Q.

5 Discrete Dirac Mechanics

Now that we have discrete analogues of both Tulczyjew’s triple and induced Dirac
structures at our disposal, we are ready to define discrete analogues of Lagrange–
Dirac and nonholonomic Hamiltonian systems. As we shall see, two types of dis-
crete Lagrange–Dirac/nonholonomic Hamiltonian systems will follow from the (±)-
discrete Tulczyjew triples and (±)-discrete induced Dirac structures.

5.1 (+)-Discrete Dirac Mechanics

5.1.1 (+)-Discrete Lagrange–Dirac Systems

Let us first introduce a discrete analogue of the Dirac differential: Define γ d+
Q :

T ∗(Q × Q) → T ∗(Q × Q∗) by

γ d+
Q := Ω

	
d+ ◦ (

κd
Q

)−1
,

and, for a given discrete Lagrangian Ld : Q × Q → R, define the (+)-discrete Dirac
differential D+Ld : Q × Q → T ∗(Q × Q∗) by

D
+Ld := γ d+

Q ◦ dLd.

In coordinates, we have

D
+Ld

(
qk, q

+
k

) = (
qk,D2Ld,−D1Ld, q

+
k

)
.

Definition 5.1 ((+)-Discrete Lagrange–Dirac System) Suppose that a discrete La-
grangian Ld : Q × Q → R and the constraint distribution ΔQ ⊂ T Q are given; and
so (4.3) gives the discrete constraint distribution Δd+

Q ⊂ Q × Q. Let

Xk
d = (

(qk,pk), (qk+1,pk+1)
) ∈ T ∗Q × T ∗Q (5.1)

be a discrete analogue of a vector field on T ∗Q. Then, a (+)-discrete Lagrange–
Dirac system is a triple (Ld,ΔQ,Xd) with

(
Xk

d,D
+Ld

(
qk, q

+
k

)) ∈ Dd+
ΔQ

. (5.2)
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Remark 5.2 The variable q+
k in (5.2) is a discrete analogue of v in (2.11). See Propo-

sition 4.1.

Let us find a coordinate expression for a (+)-discrete Lagrange–Dirac sys-
tem: (5.2) gives

(qk, qk+1) ∈ Δd+
Q , D

+Ld − Ω
	
d+

(
Xk

d

) ∈ Δ◦
Q×Q∗ ,

where

Ω
	
d+

(
Xk

d

) = (qk,pk+1,pk, qk+1).

Thus, we obtain the following set of equations:

(qk, qk+1) ∈ Δd+
Q , qk+1 = q+

k ,

pk+1 = D2Ld
(
qk, q

+
k

)
, pk + D1Ld

(
qk, q

+
k

) ∈ Δ◦
Q(qk),

(5.3a)

or more explicitly, with the Lagrange multipliers μa ,

ωa
d+(qk, qk+1) = 0, qk+1 = q+

k ,

pk+1 = D2Ld
(
qk, q

+
k

)
, pk + D1Ld

(
qk, q

+
k

) = μaω
a(qk),

(5.3b)

where a = 1,2, . . . ,m. We shall call them the (+)-discrete Lagrange–Dirac equa-
tions; they recover the nonholonomic integrator of Cortés and Martínez [11] (see also
McLachlan and Perlmutter [38]).

Consider the special case ΔQ = T Q. In this case, Δd+
Q = Q × Q and Δ◦

Q = 0,
and so the above equations reduce to

qk+1 = q+
k , pk+1 = D2Ld

(
qk, q

+
k

)
, pk = −D1Ld

(
qk, q

+
k

)
. (5.4)

These are equivalent to the discrete Euler-Lagrange equations (see Marsden and West
[36]).

5.1.2 (+)-Discrete Nonholonomic Hamiltonian System

A nonholonomic discrete Hamiltonian system is defined analogously:

Definition 5.3 ((+)-Discrete Nonholonomic Hamiltonian System) Suppose that a
(+)-discrete Hamiltonian (referred to as the right discrete Hamiltonian in [29]) Hd+ :
Q × Q∗ → R and the constraint distribution ΔQ ⊂ T Q are given; and so (4.3) gives
the discrete constraint distribution Δd+

Q ⊂ Q × Q. Let Xk
d be a discrete analogue of

a vector field on T ∗Q as in (5.1). Then, a (+)-discrete nonholonomic Hamiltonian
system is a triple (Hd+,ΔQ,Xd) with

(
Xk

d,dHd+(qk,pk+1)
) ∈ Dd+

ΔQ
. (5.5)
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A coordinate expression is obtained in a similar way:

(qk, qk+1) ∈ Δd+
Q , qk+1 = D2Hd+(qk,pk+1),

pk − D1Hd+(qk,pk+1) ∈ Δ◦
Q(qk),

(5.6a)

or more explicitly

ωa
d+(qk, qk+1) = 0, qk+1 = D2Hd+(qk,pk+1),

pk − D1Hd+(qk,pk+1) = μaω
a(qk),

(5.6b)

where a = 1,2, . . . ,m. We shall call them the (+)-discrete nonholonomic Hamilton’s
equations.

If ΔQ = T Q, then Δd+
Q = Q×Q and Δ◦

Q = 0; and so the above equations reduce
to

qk+1 = D2Hd+(qk,pk+1), pk = D1Hd+(qk,pk+1), (5.7)

which are the right discrete Hamilton’s equations in Lall and West [29].

5.2 (−)-Discrete Dirac Mechanics

5.2.1 (−)-Discrete Lagrange–Dirac Systems

Let us first introduce the (−)-version of the Dirac differential. Define γ d−
Q :

T ∗(Q × Q) → T ∗(Q∗ × Q) by

γ d−
Q := Ω

	
d− ◦ (

κd
Q

)−1
,

and, for a given discrete Lagrangian Ld : Q × Q → R, define the (−)-discrete Dirac
differential D−Ld : Q × Q → T ∗(Q∗ × Q) by

D
−Ld := γ d−

Q ◦ dLd.

In coordinates, we have

D
−Ld

(
q−
k+1, qk+1

) = (−D1Ld, qk+1,−q−
k+1,−D2Ld

)
.

Definition 5.4 ((−)-Discrete Lagrange–Dirac System) Suppose that a discrete La-
grangian Ld : Q × Q → R and the constraint distribution ΔQ ⊂ T Q are given; and
so (4.3) gives the discrete constraint distribution Δd−

Q ⊂ Q × Q. Let Xk
d be a discrete

analogue of a vector field on T ∗Q as in (5.1). Then, a (−)-discrete Lagrange–Dirac
system is a triple (Ld,ΔQ,Xd) with

(
Xk

d,D
−Ld

(
q−
k+1, qk+1

)) ∈ Dd−
ΔQ

. (5.8)

Remark 5.5 The variable q−
k+1 in (5.8) is a discrete analogue of v in (2.11). See

Proposition 4.1.
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Let us find a coordinate expression for a (−)-discrete Lagrange–Dirac system:
(5.8) gives

(qk, qk+1) ∈ Δd−
Q , D

−Ld − Ω
	
d−

(
Xk

d

) ∈ Δ◦
Q∗×Q.

where

Ω
	
d−(Xk

d) = (pk, qk+1,−qk,−pk+1).

Thus, we obtain the following set of equations:

(qk, qk+1) ∈ Δd−
Q , qk = q−

k+1,

pk = −D1Ld
(
q−
k+1, qk+1

)
, pk+1 − D2Ld

(
q−
k+1, qk+1

) ∈ Δ◦
Q(qk+1),

(5.9a)

or more explicitly

ωa
d−(qk, qk+1) = 0, qk = q−

k+1,

pk = −D1Ld
(
q−
k+1, qk+1

)
, pk+1 − D2Ld

(
q−
k+1, qk+1

) = μaω
a(qk+1),

(5.9b)

where a = 1,2, . . . ,m. We shall call them the (−)-discrete Lagrange–Dirac equa-
tions; they again recover the nonholonomic integrator of Cortés and Martínez [11]
(see also McLachlan and Perlmutter [38]).

If ΔQ = T Q, then Δd−
Q = Q×Q and Δ◦

Q = 0; and so the above equations reduce
to

qk = q−
k+1, pk = −D1Ld

(
q−
k+1, qk+1

)
, pk+1 = D2Ld

(
q−
k+1, qk+1

)
. (5.10)

This is a slightly different (but equivalent) expression for (5.4).

5.2.2 (−)-Discrete Nonholonomic Hamiltonian System

The corresponding discrete nonholonomic Hamiltonian system is defined analo-
gously:

Definition 5.6 ((−)-Discrete Nonholonomic Hamiltonian System) Suppose that a
(−)-discrete Hamiltonian (referred to as the left discrete Hamiltonian in [29]) Hd− :
Q∗ × Q → R and the constraint distribution ΔQ ⊂ T Q are given; and so (4.3) gives
the discrete constraint distribution Δd−

Q ⊂ Q × Q. Let Xk
d be a discrete analogue of

a vector field on T ∗Q as in (5.1). Then, a (−)-discrete nonholonomic Hamiltonian
system is a triple (Hd−,ΔQ,Xd) with

(
Xk

d,dHd−(pk, qk+1)
) ∈ Dd−

ΔQ
. (5.11)

A coordinate expression is obtained in a similar way: We obtain the following set
of equations, which we shall call the (−)-discrete nonholonomic Hamilton’s equa-
tions:

(qk, qk+1) ∈ Δd−
Q , qk = −D1Hd−(pk, qk+1),

pk+1 + D2Hd−(pk, qk+1) ∈ Δ◦
Q(qk+1),

(5.12a)
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or more explicitly

ωa
d−(qk, qk+1) = 0, qk = −D1Hd−(pk, qk+1),

pk+1 + D2Hd−(pk, qk+1) = μaω
a(qk+1),

(5.12b)

where a = 1,2, . . . ,m.
If ΔQ = T Q, then Δd−

Q = Q×Q and Δ◦
Q = 0; and so the above equations reduce

to

qk = −D1Hd−(pk, qk+1), pk+1 = −D2Hd−(pk, qk+1), (5.13)

which are the left discrete Hamilton’s equations in Lall and West [29].

6 Example of Discrete Lagrange–Dirac System—LC Circuit

6.1 Formulation

We apply the above formulation of discrete Dirac mechanics, in particular discrete
Lagrange–Dirac systems, to the LC circuit example from Sect. 2.

Choose the retraction R : T Q → Q (see Sect. 9.1 for more details) defined by

Rq(v) := q + vh, (6.1)

where h is the time step; hence we have

R−1
q0

(q1) = q1 − q0

h
.

Then, we define the discrete Lagrangian Ld : Q × Q → R in terms of the continuous
Lagrangian, (2.1), by

Ld
(
qk, q

+
k

) := hL
(
qk, R−1

qk

(
q+
k

))

= h

[
�

2

(
q

+,�
k − q�

k

h

)2

−
3∑

i=1

(q
ci

k )2

2ci

]

. (6.2)

This is a discretization that corresponds to the symplectic Euler method (see, e.g.,
[36]).

We also introduce the discrete constraints Δd+
Q using (4.2) with the original con-

straint one-forms {ω1,ω2} given in (2.3):

ωa
d+(qk, qk+1) := 〈

ωa(qk), R−1
qk

(qk+1)
〉
.

Simple computations show that

ω1
d+(qk, qk+1) = 1

h

[−(
q�
k+1 − q�

k

) + (
q

c2
k+1 − q

c2
k

)]
,
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ω2
d+(qk, qk+1) = 1

h

[−(
q

c1
k+1 − q

c1
k

) + (
q

c2
k+1 − q

c2
k

) − (
q

c3
k+1 − q

c3
k

)]
.

Then, (4.3) gives

Δd+
Q := {

(qk, qk+1) ∈ Q × Q
∣
∣ ωa

d+(qk, qk+1) = 0, a = 1,2
}

= {
(qk, qk+1) ∈ Q × Q

∣∣ −q�
k+1 + q

c2
k+1 = −q�

k + q
c2
k ,

− q
c1
k+1 + q

c2
k+1 − q

c3
k+1 = −q

c1
k + q

c2
k − q

c3
k

}
.

Note that the original constraints are holonomic, i.e., the one-forms ωa are exact, and
the above expression for the discrete constraints are the integral form of the original
constraints.

Then the (+)-discrete Lagrange–Dirac equations (5.3) give

q�
k+1 − q�

k = q
c2
k+1 − q

c2
k , q

c1
k+1 − q

c1
k = (

q
c2
k+1 − q

c2
k

) − (
q

c3
k+1 − q

c3
k

)
,

q�
k+1 = q

+,�
k , q

ci

k+1 = q
+,ci

k (i = 1,2,3),

p�,k+1 = �
q

+,�
k − q�

k

h
, pci ,k+1 = 0 (i = 1,2,3),

p�,k − �
q

+,�
k − q�

k

h
= −μ1,

pci ,k − hq
+,ci

k

2ci

= −μ2 (i = 1,3), pc2,k − hq
+,c2
k

2c2
= μ1 + μ2,

(6.3)

where μa are Lagrange multipliers, and we used the fact that Δ◦
Q = span{ω1,ω2}

with ω1 and ω2 defined in (2.3).

6.2 Numerical Result

Assume the initial condition

q�(0) = qc1(0) = qc2(0) = qc3(0) = 0, q̇�(0) = q̇c2(0) = 10,

q̇c1(0) = q̇c3(0) = 0.

Applying elementary circuit theory to the example, we obtain the exact solution

q�
ex(t) = 10

c
sin ct,

where

c :=
√

c1 + c2 + c3

c2(c1 + c3)L
,

and thus the period of the solution is T := 2π/c. With the choice of the parameters

� = 3

4
, c1 = 1, c2 = 2, c3 = 3,
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Fig. 3 Comparison of exact and numerical solutions (40 points per period) for LC circuit

Table 1 Convergence of the
numerical method: number of
time intervals per period N

vs. error at t = 5T = 10π

N 20 40 80 160

|q�
5N

− q�
ex(5T )| 1.31915 0.324829 0.0808631 0.0201938

we have c = 1, and so the period T becomes 2π .
Figure 3 compares the exact solution with the numerical solution for time step size

h = 2π/40 � 0.157, i.e., 40 time intervals per period.
Table 1 shows how the error at t = 5T = 10π converges as N , the number of

time intervals per period, increases. The method clearly exhibits second-order con-
vergence behavior, whereas the discretization corresponds to the symplectic Euler
method, which is first-order accurate.

Remark 6.1 One possible explanation for the second-order convergence rate is the
following: As one can see from (6.3), the {q�

k } are the only variables explicitly in-
volved with the time evolution1 and the other variables could be determined from
the constraints. Since {q�

k } are not present in the potential term in the discrete La-
grangian, (6.2), only the first term (that corresponds to the inductance energy or “ki-
netic energy” with the electrical-mechanical analogy) is relevant to the time evolu-
tion. However, since the coefficient of this term is constant, the approximation of
the “kinetic energy” term in the discrete Lagrangian, (6.2), is the same as that of the
midpoint rule, i.e., the approximation given by the discrete Lagrangian of the form

LMP
d (qk, q

+
k ) = hL

(
qk + q+

k

2
,
q+
k − qk

h

)
,

which yields a second-order accurate method.

1This is due to the fact that the original Lagrangian, (2.1), is degenerate, i.e., its f -dependence is only

through the �-component f � .
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Remark 6.2 Eliminating p and μ from (2.12), we obtain

� q̈� = −qc3

c3
− qc2

c2
, q̇c2 = q̇�, (c1 + c3) q̇c3 = c3 q̇c2,

If we apply the central difference approximation to q̈� and forward difference to
all the first-order derivatives in the above equations, we obtain the same numerical
method defined by (6.3) (after pk and μ are eliminated).

In this paper, we do not delve into the issue of accuracy of the numerical methods
defined by discrete Lagrange–Dirac systems; instead, we leave it as a topic for future
studies.

7 Variational Structure for Lagrange–Dirac and Nonholonomic Hamiltonian
Systems

In this section we briefly come back to the continuous setting discussed in Sect. 2 to
review variational formulations of Lagrange–Dirac and nonholonomic Hamiltonian
systems, again following Yoshimura and Marsden [51]. This section is a precursor to
the development of the corresponding discrete analogues to follow in the next section.

7.1 Lagrange–d’Alembert–Pontryagin Principle and Lagrange–Dirac Systems

Definition 7.1 Suppose that a Lagrangian L : T Q → R and a constraint distribution
ΔQ ⊂ T Q are given. The Lagrange–d’Alembert–Pontryagin principle is the aug-
mented variational principle on the Pontryagin bundle T Q ⊕ T ∗Q defined by

δ

∫ b

a

[
L(q, v) + p(q̇ − v)

]
dt = 0, (7.1)

with the constraint q̇ ∈ ΔQ; we assume that the variation δq vanishes at the endpoints,
i.e., δq(a) = δq(b) = 0, and also impose δq ∈ ΔQ after taking the variations inside
the integral sign.

The Lagrange–Dirac system follows from the Lagrange–d’Alembert–Pontryagin
principle: In a local trivialization, Q is represented by an open set U in a linear
space E, so the Pontryagin bundle is represented by (U × E) ⊕ (U × E∗) ∼= U ×
E × E∗, with local coordinates (q, v,p). If we consider q , v, and p as independent
variables, we have

δ

∫ b

a

[
L(q, v) + p(q̇ − v)

]
dt

=
∫ b

a

[
∂L

∂q
δq +

(
∂L

∂v
− p

)
δv + (q̇ − v) δp + p δq̇

]
dt

=
∫ b

a

[(
∂L

∂q
− ṗ

)
δq +

(
∂L

∂v
− p

)
δv + (q̇ − v) δp

]
dt,
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where we used integration by parts, and the fact that the variation δq vanishes at
the endpoints. Taking account of the constraints δq ∈ ΔQ, (7.1) gives the Lagrange–
Dirac equation (2.11):

q̇ ∈ ΔQ, q̇ = v, p = ∂L

∂v
, ṗ − ∂L

∂q
∈ Δ◦

Q. (7.2)

7.2 Hamilton–d’Alembert Principle in Phase Space and Nonholonomic
Hamiltonian Systems

Definition 7.2 Suppose that a Hamiltonian H : T ∗Q → R and a constraint distribu-
tion ΔQ ⊂ T Q are given. The Hamilton–d’Alembert principle in phase space is the
variational principle defined by

δ

∫ b

a

[
p q̇ − H(q,p)

]
dt = 0, (7.3)

with the constraint q̇ ∈ ΔQ; we assume that the variation δq vanishes at the endpoints,
i.e., δq(a) = δq(b) = 0, and also impose δq ∈ ΔQ after taking the variations inside
the integral sign.

The nonholonomic Hamiltonian system follows from the Hamilton–d’Alembert
principle in phase space: (7.3) gives

0 = δ

∫ b

a

[
p q̇ − H(q,p)

]
dt =

∫ b

a

(
q̇ δp + p δq̇ − ∂H

∂q
δq − ∂H

∂p
δp

)
dt

=
∫ b

a

[(
−ṗ − ∂H

∂q

)
δq +

(
q̇ − ∂H

∂p

)
δp

]
dt,

which, under the constraints δq ∈ ΔQ, yields

q̇ ∈ ΔQ, q̇ = ∂H

∂p
, ṗ + ∂H

∂q
∈ Δ◦

Q. (7.4)

8 Discrete Variational Structure for Discrete Lagrange–Dirac and
Nonholonomic Hamiltonian Systems

This section develops discrete analogues of the variational structure discussed in
the last section. It is shown that the discrete versions of Lagrange–d’Alembert–
Pontryagin principle and Hamilton–d’Alembert principle in phase space yield dis-
crete Lagrange–Dirac and nonholonomic Hamiltonian systems, respectively.

8.1 Discrete Pontryagin Bundles

Let us first introduce discrete analogues of the Pontryagin bundle T Q ⊕ T ∗Q:



Found Comput Math

Definition 8.1 ((±)-Discrete Pontryagin Bundles) The (+)-discrete Pontryagin bun-
dle is defined by

(Q × Q) ⊕ (Q × Q∗) = {((
qk, q

+
k

)
, (qk,pk+1)

)}
,

or, by identifying the first Q of each, we have

(Q × Q) ⊕ (
Q × Q∗) ∼= Q × Q × Q∗ = {(

qk, q
+
k ,pk+1

)}
.

Similarly, the (−)-discrete Pontryagin bundle is defined by

(Q × Q) ⊕ (
Q∗ × Q

) = {((
q−
k+1, qk+1

)
, (pk, qk+1)

)}
,

or, by identifying the second Q of each, we have

(Q × Q) ⊕ (Q∗ × Q) ∼= Q × Q∗ × Q = {(
q−
k+1,pk, qk+1

)}
.

8.2 Discrete Lagrange–d’Alembert–Pontryagin Principle and Discrete
Lagrange–Dirac Systems

Definition 8.2 ((±)-Discrete Lagrange–d’Alembert–Pontryagin Principle) Suppose
that a discrete Lagrangian Ld : Q × Q → R and the constraint distribution ΔQ ⊂
T Q are given; and so (4.3) gives the discrete constraint distributions Δd±

Q ⊂
Q × Q. Then, the (±)-discrete Lagrange–d’Alembert–Pontryagin principle is the
discrete augmented variational principle defined by

δ

N−1∑

k=0

[
Ld

(
qk, q

+
k

) + pk+1
(
qk+1 − q+

k

)] = 0 (8.1)

or

δ

N−1∑

k=0

[
Ld

(
q−
k+1, qk+1

) − pk

(
qk − q−

k+1

)] = 0, (8.2)

with the constraint (qk, qk+1) ∈ Δd±
Q respectively; we assume that the variations δqk

vanish at the endpoints, i.e., δq0 = δqN = 0, and also impose δqk ∈ ΔQ(qk) after
taking the variations inside the summation.

Proposition 8.3 The (±)-discrete Lagrange–d’Alembert–Pontryagin principles yield
the (±)-discrete Lagrange–Dirac equations (5.3) and (5.9), respectively.

Proof First taking the variations in (8.1) and (8.2), we have

0 = δ

N−1∑

k=0

[
Ld

(
qk, q

+
k

) + pk+1
(
qk+1 − q+

k

)]

=
N−1∑

k=1

[
D1Ld

(
qk, q

+
k

) + pk

]
δqk
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+
N−1∑

k=0

{[
D2Ld

(
qk, q

+
k

) − pk+1
]
δq+

k + (
qk+1 − q+

k

)
δpk+1

}
,

and

0 = δ

N−1∑

k=0

[
Ld

(
q−
k+1, qk+1

) − pk

(
qk − q−

k+1

)]

=
N−2∑

k=0

[
D2Ld

(
q−
k+1, qk+1

) − pk+1
]
δqk+1

+
N−1∑

k=0

{[
D1Ld

(
q−
k+1, qk+1

) + pk

]
δq−

k+1 + (
q−
k+1 − qk

)
δpk

}
,

where we used δq0 = 0 and δqN = 0. Taking account of the corresponding constraints
on the variations in each of the above equations, we obtain (5.3) and (5.9), respec-
tively. �

8.3 Discrete Hamilton–d’Alembert Principle in Phase Space and Discrete
Nonholonomic Hamiltonian Systems

Definition 8.4 ((±)-Discrete Hamilton–d’Alembert principle in phase space) Sup-
pose that a (±)-discrete Hamiltonian Hd+ : Q × Q∗ → R or Hd− : Q∗ × Q → R

and the constraint distribution ΔQ ⊂ T Q are given; and so (4.3) gives the discrete
constraint distributions Δd±

Q ⊂ Q × Q. Then, the (±)-discrete Hamilton–d’Alembert
principle in phase space is the discrete variational principle defined by

δ

N−1∑

k=0

[
pk+1qk+1 − Hd+(qk,pk+1)

] = 0 (8.3)

or

δ

N−1∑

k=0

[−pkqk − Hd−(pk, qk+1)
] = 0, (8.4)

with the constraint (qk, qk+1) ∈ Δd±
Q respectively; we assume that the variations δqk

vanish at the endpoints, i.e., δq0 = δqN = 0, and also impose δqk ∈ ΔQ(qk) after
taking the variations inside the summation.

Proposition 8.5 The (±)-discrete Hamilton–d’Alembert principles yield the (±)-
discrete nonholonomic Hamilton’s equations (5.6) and (5.12), respectively.

Proof First taking the variations in (8.3) and (8.4), we have

0 = δ

N−1∑

k=0

[
pk+1qk+1 − Hd+(qk,pk+1)

]
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=
N−1∑

k=0

[
qk+1 − D2Hd+(qk,pk+1)

]
δpk+1 +

N−1∑

k=1

[
pk − D1Hd+(qk,pk+1)

]
δqk

and

0 = δ

N−1∑

k=0

[−pkqk − Hd−(pk, qk+1)
]

= −
N−1∑

k=0

[
qk + D1Hd−(pk, qk+1)

]
δpk −

N−2∑

k=0

[
pk+1 + D2Hd−(pk, qk+1)

]
δqk+1,

where we used δq0 = 0 and δqN = 0. Taking account of the constraints on the varia-
tions δqk in each of the above equations, we obtain (5.6) and (5.12), respectively. �

9 Extension to Computations on Manifolds

This section presents a means to apply the preceding theory to computations for the
case when Q is a manifold. We do not attempt a full extension of the theory to mani-
folds since discrete Hamiltonian mechanics [29] is not intrinsic: Recall that the (+)-
discrete Hamiltonian Hd+ is a Type 2 generating function (see Lall and West [29]
and also Sect. 3.1), which is based on the idea of generating the pair (p0, q1) with
the pair (q0,p1) fixed. However, this does not make intrinsic sense, since fixing p1
in T ∗Q requires that its corresponding base point q1 is fixed as well.

Instead, we make use of the idea of retractions and introduce the notion of retrac-
tion compatible coordinate charts to provide a means of applying the results in the
linear theory to computations on manifolds, in a semi-globally compatible fashion.
Retraction compatible coordinate charts provide a generalization of the canonical co-
ordinates of the first kind on Lie groups (see, e.g., Varadarajan [48, Sect. 2.10] and
also Example 9.5 below) to more general configuration manifolds. By semi-global,
we mean that the discrete flow is well-defined on a neighborhood of the diagonal of
Q × Q, which corresponds to a restriction on the size of the time step.

In particular, on a retraction compatible coordinate chart, the discrete flow is de-
scribed, in local coordinates, by the vector space expressions. This has non-trivial im-
plications for geometric numerical integration, since naïvely applying a linear space
numerical integrator on different charts may lead to poor global properties, as dis-
cussed in [5]. By restricting ourselves to retraction compatible coordinate charts, we
ensure that the local conservation properties of the geometric numerical integrators
we introduce in this paper persist globally as well.

9.1 Retractions

Let us first recall the definition of a retraction:

Definition 9.1 (Absil et al. [2, Definition 4.1.1 on p. 55]) A retraction on a manifold
Q is a smooth mapping R : T Q → Q with the following properties: Let Rq : TqQ →
Q be the restriction of R to TqQ for an arbitrary q ∈ Q; then,
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(i) Rq(0q) = q , where 0q denotes the zero element of TqQ.
(ii) With the identification T0q TqQ � TqQ, Rq satisfies

T0q Rq = idTqQ, (9.1)

where T0q Rq is the tangent map of Rq at 0q ∈ TqQ.

Remark 9.2 Equation (9.1) implies that the map Rq : TqQ → Q is invertible in some
neighborhood of 0q in TqQ.

It is convenient to introduce R̃ : T Q → Q × Q defined by

R̃(vq) := (
q, Rq(vq)

)
. (9.2)

It is easy to see from the above expression and the above remark that R̃ : T Q →
Q × Q is also invertible in some neighborhood of 0q ∈ T Q for any q ∈ Q.

Let us introduce a special class of coordinate charts that are convenient to work
with:

Definition 9.3 (Retraction compatible coordinate charts and atlas) Let Q be an n-
dimensional manifold equipped with a retraction R : T Q → Q. A coordinate chart
(U,ϕ) with U an open subset in Q and ϕ : U → R

n is said to be retraction compatible
at q ∈ U if

(i) ϕ is centered at q , i.e., ϕ(q) = 0.
(ii) The compatibility condition

R(vq) = ϕ−1 ◦ Tqϕ(vq) (9.3)

holds, where we identify T0R
n with R

n as follows. Let ϕ = (x1, . . . , xn) with
xi : U → R for i = 1, . . . , n. Then

vi ∂

∂xi
�→ (

v1, . . . , vn
)
, (9.4)

where ∂/∂xi is the unit vector in the xi -direction in T0R
n.

An atlas for the manifold Q is retraction compatible if it consists of retraction com-
patible coordinate charts.

Remark 9.4 In (9.3), we assumed that Tqϕ(vq) ∈ ϕ(U) ⊂ R
n and so strictly speaking

Rq is defined on (Tqϕ)−1(ϕ(U)) ⊂ TqQ. However, it is always possible to define a
coordinate chart such that ϕ(U) = R

n by “stretching out” the open set ϕ(U) to R
n so

that (9.3) is defined for any vq ∈ TqQ.

Example 9.5 (Retraction and canonical coordinates of the first kind on a Lie group)
Let G be a (finite-dimensional) Lie group and g be its Lie algebra. The exponential
map exp : g → G (see, e.g., Marsden and Ratiu [35, Sect. 9.1] and Varadarajan [48,
Sect. 2.10]) is a diffeomorphism on an open neighborhood u of the origin of g. Let U
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be the neighborhood of the identity e in G defined by U := exp(u) ⊂ G, and restrict
the domain of the exponential map to redefine exp : u → U for notational simplicity.
Then, it is a diffeomorphism and so we have the inverse exp−1 : U → u.

Now let us define Rg : TgG → G for any g ∈ G by2

Rg := Lg ◦ exp◦TgLg−1,

where Lg : G → G is the left translation by g. This indeed gives a retraction: Since
exp(0) = e, we have Rg(0g) = g; we also have, with the identification T0gTgG �
TgG,

T0g Rg = TeLg ◦ T0 exp◦T0gTgLg−1 = TeLg ◦ TgLg−1 = idTgG,

where we used the fact that T0 exp : T u � g → g is the identity (see [48, (2.10.17) on
p. 88]), and also that T0gTgLg−1 = TgLg−1 with the above identification.3

The exponential map also induces the canonical coordinates of the first kind on
the Lie group G as follows (see, e.g., Varadarajan [48, Sect. 2.10] and Marsden et al.
[37]). For any g ∈ G, let Ug := Lg(U) and define a chart ϕg : Ug → g by

ϕg := exp−1 ◦Lg−1 .

Then, the chart ϕg is retraction compatible: we have

ϕg(g) = exp−1 ◦Lg−1(g) = exp−1(e) = 0,

and also, with the identification T u � g,

ϕ−1
g ◦ Tgϕg = Lg ◦ exp◦Te exp−1 ◦TgLg−1

= Lg ◦ exp◦TgLg−1 = Rg,

where we used the fact that Te exp−1 = idg, which follows from T0 exp = idg men-
tioned above.

Calculations involving a retraction are particularly simple with a retraction com-
patible chart:

Proposition 9.6 Let (U,ϕ) be a retraction compatible chart at a point q ∈ U . Take
an arbitrary point r in U and let (r1, . . . , rn) := ϕ(r) ∈ R

n. Then

R−1
q (r) = ri ∂

∂xi

∣
∣∣∣
q

(9.5)

where

∂

∂xi

∣∣
∣∣
q

:= T0ϕ
−1

(
∂

∂xi

)
∈ TqQ.

2Strictly speaking, Rg is defined only on TeLg(u) ⊂ TgG.
3The derivative of a linear map at the origin is the linear map itself.
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Furthermore, let dxi |q ∈ T ∗
q Q be the dual basis to ∂/∂xi |q ∈ TqQ, i.e.,

dxi |q(∂/∂xj |q) = δi
j . Then, for any pq = pi dxi |q ∈ T ∗

q Q, we have

〈
pq, R−1

q (r)
〉 = 〈

pq, R̃−1(q, r)
〉 = pir

i, (9.6)

where 〈 · , · 〉 is the natural pairing between elements in T ∗Q and T Q.

Proof Follows from straightforward calculations. �

9.2 Discrete Lagrange–d’Alembert–Pontryagin Principles with Retraction

Let us use a retraction to reformulate the (±)-discrete Lagrange–d’Alembert–
Pontryagin principle, (8.1), as follows.

Definition 9.7 ((±)-Discrete Lagrange–d’Alembert–Pontryagin principle with re-
traction) Suppose that a discrete Lagrangian Ld : Q×Q → R and the constraint dis-
tribution ΔQ ⊂ T Q are given; and so (4.3) gives the discrete constraint distributions
Δd±

Q ⊂ Q × Q. Then, the (±)-discrete Lagrange–d’Alembert–Pontryagin principle
is the discrete augmented variational principle defined by

δSN
d+ = δ

N−1∑

k=0

[
Ld

(
qk, q

+
k

) + 〈
pk+1, R−1

qk+1
(qk+1) − R−1

qk+1

(
q+
k

)〉]
(9.7)

or

δSN
d− = δ

N−1∑

k=0

[
Ld

(
q−
k+1, qk+1

) − 〈
pk, R−1

qk
(qk) − R−1

qk

(
q−
k+1

)〉]
, (9.8)

with the constraint (qk, qk+1) ∈ Δd±
Q respectively; we assume that the variations δqk

vanish at the endpoints, i.e., δq0 = δqN = 0, and also impose δqk ∈ ΔQ(qk) after
taking the variations inside the summation.

With a retraction compatible coordinate chart, Lemma 9.6 implies that (9.7) and
(9.8) become

SN
d+ =

N−1∑

k=0

[
Ld

(
qk, q

+
k

) + pk+1 · (qk+1 − q+
k

)]

and

SN
d− =

N−1∑

k=0

[
Ld

(
q−
k+1, qk+1

) − pk · (qk − q−
k+1

)]
,

where we slightly abused the notation, i.e., qk+1, q+
k , q−

k+1 are interpreted as both
points in Q as well as their coordinate representations. Therefore, the (±)-discrete
Lagrange–d’Alembert–Pontryagin principle in Definition 9.7, written in terms of re-
traction compatible charts, reduce to those in the linear theory, i.e., Definition 8.2.
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Remark 9.8 Note that R−1
qk

(qk) = 0 by definition, and so the terms of the form

〈
pk, R−1

qk
(qk)

〉 = pk · qk

vanish.

The above discussion implies that the discrete Lagrange–Dirac equations (5.3) and
(5.9) in the linear theory are coordinate representations (using a retraction compat-
ible chart) of the systems defined by the discrete Lagrange–d’Alembert–Pontryagin
principles in Definition 9.7. Therefore, if we have a retraction compatible atlas on Q,
then we may use the coordinate expression, (5.3), in the linear theory to perform a
computation in a single chart, and, if necessary, transform the system to another chart
in the atlas, which again has the same form as (5.3), to continue the computation.

10 Conclusion

In this paper, we developed the theoretical foundations of discrete Dirac mechanics
from two different perspectives: One through discrete analogues of Tulczyjew’s triple
and induced Dirac structures, and the other from the variational point of view.

We exploited the discrete Tulczyjew triples to define discrete analogues of the
Dirac differential, which is a key in defining the discrete Lagrange–Dirac sys-
tems, particularly those with degenerate Lagrangians; and we employed the dis-
crete induced Dirac structures to incorporate discrete constraints. We also introduced
extended discrete variational principles, i.e., the discrete Lagrange–d’Alembert–
Pontryagin and Hamilton–d’Alembert principles that give variational formulations
of discrete Lagrange–Dirac and nonholonomic Hamiltonian systems.

An LC circuit is taken as an example of a system with a degenerate Lagrangian
and constraints, and is modeled as a discrete Lagrange–Dirac system. We performed
numerical computations with the resulting scheme and obtained numerical solutions
that converge to the exact solution obtained by elementary circuit theory.

Several interesting topics for future work are suggested by the theoretical devel-
opments introduced in this paper:

• Application to inter-connected systems. Port-Hamiltonian systems [45] provide
a natural description of modular and interconnected systems, but this does not
naturally lead to geometric structure-preserving discretizations of interconnected
systems. It is therefore desirable to develop a unified port-Lagrangian frame-
work for modeling and simulating interconnected systems based on extensions of
Lagrange–Dirac mechanics and variational discrete Dirac mechanics.

• Hamilton–Jacobi theory for Lagrange–Dirac systems (Leok et al. [32]). Since
Dirac structures are related to Lagrangian submanifolds, which in turn describe
the geometry of the Hamilton–Jacobi equation, it is natural to explore the Dirac
description of Hamilton–Jacobi theory. The resulting theory is expected to give in-
sights into discrete Dirac mechanics as the classical Hamilton–Jacobi theory does
to discrete mechanics [36, Sects. 1.8 and 4.8]; it is also natural to expect it to spe-
cialize to nonholonomic Hamilton–Jacobi theory [9, 15, 25, 39, 40].
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• Discrete reduction theory for discrete Dirac mechanics with symmetry. The Dirac
formulation of reduction (see Yoshimura and Marsden [52, 54]) provides a means
of unifying symplectic, Poisson, nonholonomic, Lagrangian, and Hamiltonian re-
duction theory, as well as addressing the issue of reduction by stages. The discrete
analogue of Dirac reduction will proceed by considering the issue of quotient dis-
crete Dirac structures, and constructing a category containing discrete Dirac struc-
tures that is closed under quotients.

• Discrete multi-Dirac mechanics for Hamiltonian partial differential equations.
Dirac generalizations of multisymplectic field theory (see Vankerschaver et al.
[47]), and their corresponding discretizations will provide important insights into
the construction of geometric numerical methods for degenerate field theories, such
as the Einstein equations of general relativity.

• Variational error analysis of discrete Lagrange–Dirac systems. It is natural, and
desirable, to extend the variational error analysis techniques developed by Marsden
and West [36] for discrete Lagrangian mechanics to the case of discrete Lagrange–
Dirac systems. In particular, this may provide insight into the rather unexpected
convergence behavior observed in Sect. 6.2.
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