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Global Formulations of Lagrangian and Hamiltonian Mechanics
on Two-Spheres

Taeyoung Lee*, Melvin Leok, and N. Harris McClamroch

Abstract— This paper provides global formulations of La-
grangian and Hamiltonian variational dynamics evolving on
the product of an arbitrary number of two-spheres. Four types
of Euler-Lagrange equations and Hamilton’s equations are
developed in a coordinate-free fashion on two-spheres, without
relying on local parameterizations that may lead to singularities
and cumbersome equations of motion. The proposed intrinsic
formulations of Lagrangian and Hamiltonian dynamics are
novel in that they incorporate the geometry of two-spheres,
resulting in equations of motion that are expressed compactly,
and they are useful in analysis and computation of the global
dynamics.

I. INTRODUCTION

The two-sphere is the two-dimensional manifold that is
composed of unit-vectors in R3. There are a wide variety of
dynamical systems that evolve on multiple copies of two-
spheres, for example in robotics [1], earth sciences [2], and
quantum mechanics [3]. In most of the existing literature
on dynamical systems evolving on two-spheres, the unit-
sphere is parameterized by two angles. For example, a
point on the two-sphere is often described by its longitude
and latitude. Parametrizing the two-sphere by two angles is
straightforward, and the angles are typically viewed as being
in an open subset of R2.

However, such parameterizations of the two-sphere suffer
from the following two main issues. First, parameterizations
represent the two-sphere only locally. This can be easily
observed from the fact that the longitude is not well defined
at the north pole and the south pole. This causes a singularity
in representing the kinematics on the two-sphere, especially
when converting the velocity of a curve on the two-sphere
into the time-derivatives of the longitude and the latitude.
This yields numerical ill-conditioning in the vicinity of those
singularities, which cannot be avoided unless one switches
coordinate charts, which becomes problematic when trying
to track motions with large angular deviations.

The second issue is that the equations of motion of
dynamical systems on the two-sphere become exceedingly
complicated when expressed using local coordinates and
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necessarily involve complicated trigonometric expressions.
For example, the dynamics of a multiple spherical pendulum,
written in terms of angles, is extremely complicated.

This paper aims to provide global formulations of dynam-
ics evolving on the product of an arbitrary number of two-
spheres. In particular, we study dynamical systems that can
be viewed as Lagrangian systems or as Hamiltonian systems
that encompass a large class of mechanical systems that
appear in robotics, structural dynamics, quantum mechanics
or meteorology. Most importantly, the unit-vectors on the
two-sphere are regarded as elements of a manifold, and
dynamics are formulated directly on two-spheres in a global
fashion via variational principles.

This geometric formulation is said to be coordinate-free,
as it does not require the use of local charts, coordinates or
parameters that may lead to singularities or ambiguities in
the representation. As such, it can be applied to arbitrarily
large angle rotational maneuvers on the two-spheres globally.
Furthermore, this provides an efficient and elegant way to
formulate, analyze, and compute the dynamics and their
temporal evolutions. The corresponding mathematical model
developed on two-spheres is nicely structured and elegant.
This representational efficiency has a substantial practical ad-
vantage compared with local coordinates for many complex
dynamical systems; this fact has not been appreciated by the
applied scientific and engineering communities.

In short, the main contribution of this paper is provid-
ing geometric formulations of the equations of motion for
Lagrangian and Hamiltonian systems that evolve on two-
spheres using variational methods. The proposed global
formulations, that do not require local charts, have not
been previously studied, even in the well-known literature
on geometric mechanics, such as [4], [5], [6]. Preliminary
results have been given in [7], [8], where Euler-Lagrange
equations are developed for a certain class of mechanical
systems whose kinetic energy is repressed as a quadratic
form with fixed inertia elements. This paper provides both
Euler-Lagrange equations and Hamilton’s equations for ar-
bitrary mechanical systems without such restrictions. Due to
page limit, proofs are relegated to [9].

II. THE TWO-SPHERE
The two-sphere is the two-dimensional manifold of unit-
vectors in R3, i.e.,

$?={q eR?[|lqfl = 1}. (D

It is composed of the set of points that have the unit distance
from the origin in R3. The tangent space of the two-sphere
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at ¢ € S? corresponds to the two-dimensional plane that is
tangent to the sphere at the point ¢, and it is given by

T,S? ={¢eR®|q-£=0}. )

Throughout this paper, the standard dot product between two
vectors is denoted by z -y = 27y for any x,y € R™.
Therefore, for any curve ¢q(t) : R — S? on the two-
sphere parameterized by time ¢, its time derivative satisfies
q(t) - ¢(t) = 0. From now on, we do not explicitly denote
dependence on time for brevity, unless needed. This implies
that there exists an angular velocity w : R — R3 such that

q:wxq:S’(w)q, (3)

where the hat map S(-) : R® — R3*3 is defined such that
S(z)y = z x y and ST(z) = —S(z) for any z,y € R3.
Without loss of generality, the angular velocity is constrained
to be orthogonal to ¢, i.e., w - ¢ = 0. Therefore, the three
vectors ¢, ¢, and w are mutually orthogonal, and the angular
velocity can be written as

w = 5(q)q- 4)
It follows that w = S(¢)¢ and w is perpendicular to q.

III. LAGRANGIAN MECHANICS ON TWO-SPHERES

We consider dynamical systems evolving on the product of
n copies of two-spheres, namely (S?)". The corresponding
Euler-Lagrange equations are first obtained in terms of a
Lagrangian expressed in terms of the configurations and
the time derivatives of the configurations, namely (g, ¢).
A second form of Euler-Lagrange equations is obtained in
terms of a modified Lagrangian expressed in terms of the
configurations and the angular velocities, (g, w).

A. Euler-Lagrange equations in terms of (q,q)

Suppose that a Lagrangian L(q,q¢) : T(S?)" — R!
is given on the tangent bundle of (S?)", where (q,q) =
((g1,---+4n), (d1,---,Gn)) € T(S?*)™. For example, it can be
defined as the difference between a kinetic energy and a po-
tential energy. We derive the corresponding Euler—Lagrange
equations according to Hamilton’s variational principle.

Let g; : [to,tf] — S* be a differentiable curve for i €
{1,...,n}. The variation is a parameterized curve defined as
4 1 (—c,c) X [to, tf] — S? for ¢ > 0, such that ¢?(¢) = ¢;(t)
for any ¢ € [to, ¢;] and gf(to) = ai(to), a(ts) = alts) for
any € € (—c,c).

We can express the variation of the curve ¢; using the
matrix exponential map as follows:

qs(t) = e=S0i) g (1), (5)

for differentiable curves ~; [to,tf] — R3 satisfying
vi(to) = vi(ty) = 0. Since the exponent €S(y;) is skew-
symmetric, the exponential matrix is in the special orthog-
onal group, SO(3) = {R € R¥3|RTR = I, det[R] = 1},
thereby guaranteeing that the variation is a parameterized
curve on S?, i.e., ||gS(t)|| = 1. There is no loss of generality
in requiring that ~;(t) - ¢;(t) = 0 for all ¢ty <t < ¢y; that is,

v; and g; are orthogonal. In short, the variation of the curve
¢; in S? is expressed in terms of a curve in R? via (5).
The corresponding infinitesimal variations are given by

dqi(t) g (t) = S(vi(t))q(t), (6)

e=0

_d
T de
and satisfy dg;(to) = 0¢;(tr) = 0. Since the variation and the
differentiation commute, the expression for the infinitesimal
variations of the time derivatives are given by

d

G°(t) = S(3a(1)qi(t) + S(vi(£))gs(t)- (D)
e=0
These expressions define the infinitesimal variations for a
vector function ¢ = (q1,...,qn) : [to,tf] — (5%)". The
infinitesimal variations are important ingredients to derive
the Euler-Lagrange equations on (S2)". We subsequently
suppress the time argument, thereby simplifying the notation.

The action integral is the integral of the Lagrangian
function along a motion of the system over a fixed time
period, ie., & = ttof L(q, ) dt. The infinitesimal variation
of the action integral is given by

y
d / L(q, ¢%) dt = 0.

de e=0 Yto

06

This can be rewritten in terms of dg; as

b = 0L(g,4) "~ OL(q,q)
G\ 5o N DD 5 gy
{ 3%’ 1 1:21 3%: ¢
(8)

Let f; € R3 be the generalized force acting on ¢;. The
corresponding virtual work is given by

06 =

to =1

W =>"fi-bq;. 9
=1

According to the Lagrange—d’Alembert principle, we have
06 = —d§W for any variations. We now substitute the
expressions for the infinitesimal variations of the motion (6)
and (7) into this, and we simplify the result to obtain the
Euler-Lagrange equations expressed in terms of (g, ¢).

Proposition 1: Consider a Lagrangian L(q,q)
T(S?)» — R for a mechanical system evolving on
the product of two-spheres, with the generalized force f;.
The Euler-Lagrange equations are given by

[ d (0L(g,4)\  OL(g,q4)
(I3 — @i’ ) {dt ( d4; )  dq fl} =0
(10

fori € {1,...,n}. Here, the 3 x 3 identity matrix is denoted
by I3 € R3%3,

Proof: Due to page limit, proof is relegated to [9]. B
In the above equation (10), the expression in the braces
corresponds to the Euler-Lagrange equation for dynamical
systems evolving on R”™. It is interesting to note that the
Euler-Lagrange equations on S? corresponds to its orthog-
onal projection onto the plane normal to ¢;, represented by
the matrix I3 — q;q. .
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Next, we consider the important case that the kinetic
energy is a quadratic function of ¢, and the potential energy
U is given as a function of ¢ as

1 n
L(g.4) =5 D dmu()ix —Ula), (D
Jik=1

where the scalar inertial terms mj; : (S?)" — R! satisfy
the symmetry condition mx(q) = mg;(¢) and the quadratic
form in the time derivatives of the configuration is positive-
definite on (S?)".

Corollary 1: The Euler-Lagrange equations for the La-
grangian given by (11) with the generalized force f; are

mu( ) q; 13 _Qqu Zmlj QJ +mll )quH2QZ
J751
L oU
+ (Is — qiq] ) {Fz’(qa q)+ % - fi} =0, (12

for i € {1,...,n}, where F;(q, (j) e R3is

Zm” )dj — Qaq Z 4; mk(q
Proof: Due to page limit, proof 1s relegated to [9]. W

Note if the inertia terms m;; are independent of the config-
uration ¢, then F;(q,q) = 0.

B. Euler-Lagrange equations in terms of (q,w)

An alternate expression for the Euler—Lagrange equations
is now obtained in terms of the angular velocities introduced
in (4). We express the action integral in terms of the modified
Lagrangian function

L(q,w) = L(g, S(w)q),

where the kinematics equations are given by (3). We use the
notation w = (wy, . ..,wy,) € R3", and we view the modified
Lagrangian L(q,w) as being defined on T(S?)".
Let the modified action integral be & = f:ﬂf Ldt. Tts
infinitesimal variation can be written as
. 5%} dt.

- S~ [ OL(q,w) OL(q,w)
o 15 [0ln) , obtae
to ; { Ow; 9qi
(14)

Next, we derive expressions for the infinitesimal variation
of the angular velocity vectors. From (4), dw; = S(d¢;)¢; +
S(q;)0g;. Substituting (6) and (7) and rearranging,

dwi = (S(7i)ai) x ¢ + S(q:)(S(Vi)ai + S(vi)ds)-
Expanding each term and using the fact that ¢; - ¢; = 1 and
G - ¢; = q; - v; = 0, and substituting (3), this reduces to
Sw; = qiq} (S(vi)ws) + (Is — qiq} ).

The matrix ¢;g! corresponds to the orthogonal projection
along ¢;. But, as both of ~; and w; are orthogonal to ¢;,
S(7;)w; is already parallel to ¢;. Therefore,

dwi = =S (w;)yi + (I3

13)

— 4iq} )i (15)

The infinitesimal variation of w; is composed of two parts:
the first term —S(w;)y; = 75 X w; is parallel to g;, and it
represents the variations due to the change of g;; the second
term corresponds to the orthogonal projection of 7; onto the
orthogonal complement to ¢;, and it is due to the time rate
change of the variation of g;. We now substitute (6) and
(15) into (14), and simplify the result to obtain the Euler—
Lagrange equations expressed in terms of (g, w).
Proposition 2: The Euler-Lagrange equations on (52)"
for the Lagrangian (13) with the generalized force f; are

(I—qiq)) {dt (ang’l )> - QS(wi)aLa(z}’iW)}

dL(g,w)

S(a:) o + z>

Proof: Due to page limit, proof is relegated to [9]. H

This form of the Euler-Lagrange equations on (S?)",
expressed in terms of angular velocities, can be obtained
directly from the Euler-Lagrange equations given in (10) by
viewing the kinematics (3) as defining a change of variables
from ¢ to w. This establishes the equivalence of the Euler—
Lagrange equations in terms of (¢,w) (16) and the Euler—
Lagrange equations in terms of (g, ¢) (10).

Next, we consider the important case that the kinetic
energy is a quadratic form as in (11). Substituting (3)
into (11), and using the fact that w!S(g:)7S(q;)w; =
wl-T (I 3 — qiq;‘r ) w; = wiTwi, the modified Lagrangian is

1 n
= ) Zw?mii(q)w,
i=1

1 n n
+3 D> Wl S(a:) mii(@)S(g)w;
=
Substituting this into (16) yields the corresponding Euler—
Lagrange equations as follows.
Corollary 2: The Euler—Lagrange equations for the mod-
ified Lagrangian given by (17) with the generalized force f;
are

i=1,...,n. (16)

—U(g). (17

mu w1 + Z S Ql ml]( )S(q])wj

— ()5 () o |* a5

+50) { e + 9 - i1 <o as)
fori =1,...,n, where Fj(q,w) € R? is
w) = mij(q)S(w;)g
j=1
Iy Omyr(q)
- 52131;( 7 S()T S (wr)an) =5

Proof: Due to page limit, proof is relegated to [9]. H
Similar to Corollary 1, if the inertial terms are independent
of the configuration, then F;(q,w) = 0.
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IV. HAMILTONIAN MECHANICS ON TWO-SPHERES

We will now introduce the Legendre transformation and
then we derive Hamilton’s equations for dynamics that
evolve on (S?)™. The derivation is based on the phase space
variational principle, a natural modification of Hamilton’s
principle for Lagrangian dynamics. Two forms of Hamilton’s
equations are obtained. One form is expressed in terms of
momentum vectors (fi1, ..., n) € T5(S%)" that are con-
jugate to the velocities (g1, ...,dn) € T4(S%)", where ¢ €
(S?)™. The other form of Hamilton’s equations are expressed
in terms of momentum vectors (71, ...,7,) € R3" that are
conjugate to the angular velocities (wy, .. .,w,) € R3".

A. Hamilton’s equations in terms of (q, jt)

As in the prior section, we begin with a Lagrangian
function L : T(S?)™ — R!, which is a real-valued function
defined on the tangent bundle of the configuration manifold
(S?)™. The Legendre transformation of the Lagrangian func-
tion L(g, ) leads to the Hamiltonian form of the equations
of motion in terms of a conjugate momentum vector. For
¢; € S?, the corresponding conjugate momentum j; lies in
the dual space T S*. We identify the tangent space T,,S?
and its dual space T;SZ by using the usual dot product in
R3. More explicitly, the Legendre transformation is given by

i g = dL(q,q) g
1 1 8q~7/ (3]

for any ¢; € R? orthogonal to ¢;. Since the component of j;
parallel to ¢; has no effect on the inner product above, the
vector representing p; is selected to be orthogonal to ¢;; that
is p; is equal to the projection of %{‘;fn onto T;iSQ. Thus
i = (Is — qiq; ) 20
We assume that the Lagrangian function has the property
that the Legendre transformation is invertible in the sense
that the above n algebraic equations, viewed as a mapping
from T,(S*)" to T;(S%)", is invertible. Since these tangent
and cotangent spaces are embedded in R3", we can view
the Legendre transformation as being the restriction of a
mapping from R3" to R3" that is invertible.
The Hamiltonian function H : T*(S?)" — R! is given by

19)

H(g,p) =Y pi-di — L(g,9), (20)
=1

where the right hand side is expressed in terms of (g, u)
using the Legendre transformation (19).
Consider the action integral in the form,

tf n
®=/ {meﬁ—ﬂ%u)} dt.
to \i=1

Integrating by parts and using the fact that the variation dq
vanishes at £y and ¢, the infinitesimal variation of the action
integral is given by

—~ [ . OH(q,p)
po= 3= [ (- 25a) o

+ (qz-—a}gﬁ"p)> -m}dt:o. @1)

Next, we derive the expression for the variations of p;.
According to the definition of the conjugate momenta u;
given by (19), we have ¢; - u; = 0, which implies that
0q; - i + q; - Op; = 0. To impose this constraint on the
variations explicitly, we decompose Ju; into the sum of
two orthogonal components: one component parallel to g;,
namely § uic = qiq¥ 5115, and the other component orthogonal
to ¢;, namely opuM = (I3x3 — qiql)Sp;. Satisfaction of
the constraint implies that ¢! ou$ = qldu; = —pldq;,
so that §uM = (I3 — qiq?)op; is otherwise unconstrained.
Substituting this and (6) into (21), we obtain Hamilton’s
equations in terms of (g, pt) as follows.

Proposition 3: Hamilton’s equations on (S?)" for the
Hamiltonian given by (20) with the generalized force f; are

) 0H (q,
G = (Isxs — qiq” );i_“), (22)
. 0H (g,
i = —(Isx3 — ¢iql) <3((;sz) - fi)
+ a}gi;“) (s % i) (23)
fori=1,...,n.

Proof: Due to page limit, proof is relegated to [9]. H

When f; = 0, any time-independent Hamiltonian is
preserved along the solution of Hamilton’s equations, since

dH O0H <~0H . 0H

U or Ty g

OH OH (0H 0H
:8754_;6;”'{8 ; X(Nix%)}zat'
Next, we consider the case where the kinetic energy is a
quadratic function of the time derivatives of the configuration
so that the Lagrangian is given by (11). The conjugate
momentum vector is defined by the Legendre transformation

pi = mii(Q)ds + (Is — qia} ) > mij(9)d;-
T
We assume that these algebraic equations, viewed as a
linear mapping from (g1,...,4,) € T4(S*)" C R3" to
(1, ) € Ti(S*)™ C R, can be inverted and
expressed in the form

G = (I —aiq]) Y miz(@)ny, (24)
j=1
where m[; : (S%)" — R®*3. There is no loss of gen-

erality in including the indicated projection in the above
expression since the inverse necessarily guarantees that if
(1, ) € TH(SH™ C R then (Gu,...,¢n) €
T,(S?)™ C R3". The Hamiltonian can be expressed as

1 n
H(q,p) = 5 > wfml (@) +U(g).
Jk=1

(25)
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Corollary 3: Hamilton’s equations for the Hamiltonian
given by (25) with the generalized force f; are (24) and

:Z x (pi % i)
— (Is - qiq}) 2aq ZZMJ
j=1k=1

—(Is — qiq}) (agq@ - ﬁ) (26)

Proof: Due to page limit, [;roof is relegated to [9]. W
B. Hamilton’s equations in terms of (q, )

We now present an alternate version of Hamilton’s equa-
tions using the Legendre transformation of the modified La-
grangian function L(¢,w) to define the conjugate momentum

vector. The Legendre transformation (wy, .. .,w,) € R3" —
(71, ..., m,) € R3 is defined by
dL(g,w)
Is—q . 27
= (Is — qiq) ) —5 — Do @27)
Here m; € R? is viewed as conjugate to w; € R3, i =
1,...,n. We use the notation 7 = (my,...,m,) € R3".

We assume that the modified Lagrangian function has the
property that the Legendre transformation is invertible in
the sense that the above algebraic equations, viewed as a
mapping from R3" to R3", is invertible.

The modified Hamiltonian function is given by

Zﬂ'] wj — L(g, w),

where the right hand side is expressed in terms of (g, )
using the Legendre transformation (27).
Consider the modified action integral of the form,

~ ty n
(’52/ Zﬂj-wj— w) ¢ dt.
to j=1

Take the infinitesimal variation of & and integrate by parts
to obtain

55 — Z/tf< qu; )>~5m

(28)

. OH(q,m
+ (—ﬂ'i + S(w)m; — S(Qz)a(;])> “yidt, (29)
where we use the fact that (I3x3 — q;q} )m; = m; since m; is

orthogonal to g; by the definition (27).

The orthogonality condition 7; - ¢; = 0 also implies that
0q; - m; + q; - 60m; = 0. To impose this constraint on the vari-
ations explicitly, we decompose d7; into a component that
is parallel to ¢;, namely 67¢ = ¢;q7 6;, and a component
that is orthogonal to ¢;, namely 67 = (I3x3 — qiql )om;.

From the above constraint, we have ¢! ém; = —7ldq; =
—nF'S(vi)gi = 7FS(q;)vi. Therefore §7¢ = qiqlém; =
qimi S(a:)vi

Proposition 4: Hamilton’s equations for the modified
Hamiltonian given by (28) with the generalized force f; are

. . OH(g,m)

¢ = —5(q:) “om (30)

— ) 61;(%”) 8FI(Q77T) ) AV

Ty = S(%) 8(]1‘ + o, X m; + S(qz)fza (31)
fori=1,...,n.

Proof: Due to page limit, proof is relegated to [9]. W
When f; = 0, any time-independent modified Hamiltonian
is preserved along the solution of Hamilton’s equations, since

dH 0H ~0H .  0H
oo Ty
OH ~~0H |oH oH
AR '{am ”}at-
We now consider the important case where the kinetic
energy is a quadratic function of the angular velocities in
the form that arises from the Lagrangian given by (13). The

conjugate momentum is defined by the Legendre transfor-
mation

mi =mi(q)wi + Z S(qi) mi;(q)S (q;)w;
j=1
J#i

(32)

We assume these algebraic equations, viewed as a linear

mapping from (w1,...,w,) € R3" to (m,...,m,) € R3"
can be inverted and expressed in the form
= mi;(a)m;, (33)
j=1

where m; : (§%)" — R**3. The modified Hamiltonian

function can be expressed as

ZZW mi;

1171

(¢)m; +U(q). (34)

Corollary 4: Hamilton’s equations for the modified

Hamiltonian given by (34) are

G =—=S(a){ > _mi(a)m; o, (35)
j=1
10 ¢ T, I 6U(Q)
*i = —S(a) 2 dg; Z Ty mk (@ + dq;
7,k=1
+4 > mi(a)m; o x w4 S(a:) fi (36)
j=1
fori=1,...,n.

Proof: Due to page limit, proof is relegated to [9]. H
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V. DYNAMICS ON CHAIN PENDULUM

A chain pendulum is a connection of n rigid links, that are
serially connected by two degree-of-freedom spherical joints.
We assume that each link of the chain pendulum is a rigid rod
with mass concentrated at the outboard end of the link. One
end of the chain pendulum is connected to a spherical joint
that is supported by a fixed base. A constant gravitational
acceleration acts on each link of the chain pendulum. This
may represent a spherical pendulum (n = 1), or a double
spherical pendulum (n = 2) as special cases.

The mass of the ¢-th link is denoted by m; and the link
length is denoted by [;. For simplicity, we assume that the
mass of each link is concentrated at the outboard end of
the link. An inertial frame is chosen such that the first two
axes are horizontal and the third axis is vertical. The origin
of the inertial frame is located at the fixed spherical joint.
Each of the chain links has a body-fixed frame with the
third axis of the body-fixed frame aligned with the axial
direction of the link. The vector q; € S? represents the
direction from the fixed base to the mass element of the
first link, and the vector ¢; € S? represents the direction
from the (¢ — 1)-th spherical joint to the concentrated mass
element of the ¢-th link. Thus, the configuration of the chain
pendulum is the ordered n-tuple of configurations of each
link ¢ = (q1,...,¢,) € (S*)", so that the configuration
manifold is (S?)". The chain pendulum has 2n degrees of
freedom.

Let z; € R? be the position of the outboard end of
the ¢-th link in the inertial frame; it can be written as
T, = Z;Zl l;q;. The total kinetic energy is composed of
the kinetic energy of each mass:

LI .
T(q.q) = 5 Y mill YLl
i=1 j=1

This can be rewritten as
1 n
T(q.w) = 5 D Mililjw! S(q:) " Mijlil; S(g5)w;, (37)
i,j=1
where the real inertia constants M;; are given by

n

M;; = Z mg |,

k=max{%,j}

,j=1,...,n.

The potential energy consists of the gravitational potential
energy of all mass elements. The potential energy can be
written as

n n n
Uq) = Z migegxi = Z ijglieg:qi. (38)
i=1

i=1 j=i

The modified Lagrangian function L : T(S?)” — R! of the
chain pendulum is given by L(q,w) = T(¢,w) — U(q) from
(37) and (38).

Also, suppose that there exist a control torque 7 € R?
acting on the spherical joint connecting the fixed base and
the first link, and a disturbance force d € R3 acting on the

tip of the last link. The corresponding virtual work is given
by

n n
W =917+ > LSO -d=y-7+ Y 7 LiS(q)d.
i=1 i=1
Therefore, the generalized forces are given by fi = 7 +
lls(ql)d, and fj = ZJS(q])d fOI'j Z 2
Substituting this into (18), the Euler—Lagrange equations
for a chain pendulum are given by

Ml + Z Mijlil; ST (4:)S (g5)0;
j=1
=
- Z Mijlil; llw; |1* S(ai)q; — ijgliS(eg)qi = S(q)fi-
j=1 j=i
J#i
(39
Similarly, the Legendre transformation is given by (32),
and from (35), (36), Hamilton’s equations can be written as

ZMsz(Q)’/T] ’
j=1

—5(q:) (40)

qi

. 19 <~ 7y -
= —5(q) 200, j;l m; M (q)me + ;mjgljes

+ 0> M)y ¢ x mi+ S(a:) fi (41)
j=1

These are remarkably compact considering the complexity
of the dynamics, and they are well structured compared with
the equations of motion expressed in terms of angles.

This mathematical model may be applied to a wide class of
other dynamical systems, such as articulated robotic systems.
As they are developed for an arbitrary number of links,
they are readily extended to finite-element approximations
of cables or slender rods after augmenting the potential with
an elastic potential term. The proposed global formulations
avoid singularities associated with local coordinates.
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