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a b s t r a c t

This paper presents an analytical model and a geometric numerical integrator for a
tethered spacecraft model that is composed of two rigid bodies connected by an elastic
tether. This high-fidelity model includes important dynamic characteristics of tethered
spacecraft in orbit, namely the nonlinear coupling among tether deformations, rigid body
rotational dynamics, a reeling mechanism, and orbital dynamics. A geometric numerical
integrator, referred to as a Lie group variational integrator, is developed to numerically
preserve the Hamiltonian structure of the presented model and its Lie group configuration
manifold. This approach preserves the geometry of the configurations, and leads to
accurate and efficient algorithms that have guaranteed accuracy properties that make
them suitable for many dynamic simulations, especially over long simulation times. These
analytical and computational models provide a reliable benchmark for testing the validity
and applicability of the many simplified models in the existing literature, which have
hitherto been used without careful verification that the simplifying assumptions
employed are valid in physically realistic parameter regimes. We present numerical
simulations which illustrate the important qualitative differences in the tethered space-
craft dynamics when the high-fidelity model is employed, as compared to models with
additional simplifying assumptions.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Tethered spacecraft are composed of multiple satellites
in orbit, that are connected by a thin, long cable. Numerous
innovative space missions have been envisaged, such as
propulsion by momentum exchange, extracting energy
from the Earth's magnetic field, satellite de-orbiting, or
Mars exploration [1–3], and several actual missions, such
ll rights reserved.
as TSS, SEDS, or YES2 have been conducted by NASA and
ESA [1,4].

The dynamics of tethered spacecraft involves nonlinear
coupling effects between several dynamic modes evolving
on multiple length and time scales. For example, a full
scale tethered spacecraft may employ tethers with lengths
up to a 100 km, while recently proposed nano-tethered
spacecraft may employ short tethers of several meters in
length. This is in stark contrast to the orbital radius of
tethered spacecraft, which is several thousand kilometers.
The natural frequency of the tether is much higher than
the frequency of the rotational attitude dynamics or the
orbital period of the spacecraft. The rotational dynamics
of spacecraft is nontrivially coupled to the tension of the
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tether, which is affected by the reeling mechanism and
orbital maneuver. Therefore, it is important to accurately
model tether dynamics, attitude dynamics of the space-
craft, reeling mechanisms, gravitational force and the
interactions between them.

Several analytic and numerical models have been
developed for tethered spacecraft. However, due to the
complexities of tethered spacecraft, it is common practice
to use simplified models. Two point masses connected by a
rigid tether were considered in [5]. The dynamics of a
massless, flexible tether was included in [6]. Transverse
vibrations of two point masses connected by a flexible, but
inextensible, tether were studied in [7]. The attitude
dynamics of the payload satellite is considered in [8] in
order to provide insights into the dynamics anomalies in
the actual flight data of the OEDIPUS-A tethered rocket
payload. However, this did not entail a fully coupled
simulation, rather the paper addressed the response of
the payload to prescribed disturbances in the tether
tension, as opposed to explicitly including the dynamic
coupling between the central satellite and the tether.

Vibration mode analysis is provided in [9–11], but a
small vibrational amplitude assumption is imposed on the
controlled tether [9]; the effect of an appendage extending
at a prescribed rate is studied for a single spacecraft in
[10]; and a linearized model of a spacecraft model con-
nected to a fixed-length tether is studied in [11]. These
simplified models allow for rigorous mathematical analy-
sis, but they may fail to accurately predict the behavior of
actual tethered spacecrafts, particularly since tethered
spacecraft operations are typically based on weak non-
linear effects that act over a long time period. Recent
numerical studies consider more sophisticated tethered
spacecraft models including a varying tether length. But, in
these advanced models, rigid body dynamics is ignored
[12,13], and the reeling mechanism is neglected [12,14].

We have been motivated by these previous models to
construct a high-fidelity mathematical and numerical
model for elucidating the dynamics of tethered spacecraft
where the tether is long relative to the dimensions of the
spacecraft. This high-fidelity model can serve as a math-
ematical and computational testbed for exploring the
extent to which nonlinear coupling between the various
dynamic modes result in interesting and unforeseen phe-
nomena that could serve as the basis for novel mission
designs. While simplified models are desirable because of
their computational efficiency and the ease with which
they can be analyzed, as well as their applicability for real-
time model predictive control in embedded applications,
they typically have limited regimes of applicability in
parameter space. Our high-fidelity model provides a reli-
able benchmark for determining the range of validity for
the simplified models that have currently been studied, in
an effort to determine which, if any, of the simplifying
assumptions used in other models provide a valid simpli-
fied model in the parameter regimes for realistic tethered
satellite missions.

For such applications, the primary deployment mechan-
ism is through a reeling mechanism, and a careful model of
the reeling mechanism is essential to resolving the coupled
interactions among tether, reeling, and rotational dynamics.
In particular, this allows us to resolve the elastic waves
propagating along the tether, the dynamics of the reeling
mechanism, rotational dynamics of the satellites, as well as
the external forces arising from solar wind, atmospheric
drag or electrodynamic effects. The long aspect ratio of the
tether also means that there is effectively no resistance to
bending and torsion in the tether, and the main effect is
longitudinal elastic deformation along the tether. While
bending can easily be incorporated by including an addi-
tional term in the potential energy, torsion will require us to
consider a larger configuration space for the model. These
assumptions and observations motivate the modeling
choices that have been made in our model.

More precisely, the goal of this paper is to develop a
high-fidelity analytical model and numerical simulations
for tethered spacecraft. This is an extension of preliminary
work that studies a string pendulum model with a reeling
mechanism [15,16]. The first part of this paper provides a
realistic and accurate analytical tethered spacecraft model
including tether deformations, attitude dynamics of rigid
bodies, and a reeling mechanism. We show that the
governing equations of motion can be developed using
Hamilton's principle.

The second part of this paper deals with a geometric
numerical integrator for tethered spacecraft. Geometric
numerical integration is concerned with developing
numerical integrators that preserve the geometric features
of a system, such as dynamical and geometric invariants,
symmetries, and the structure of nonlinear configuration
spaces [17]. Because these geometric invariants play an
important role in the long-time qualitative and structural
properties of a system, geometric structure-preserving
integrators yield computational trajectories that more
accurately reflect the qualitative and statistical properties
of the system. These methods also exhibit more robust
energy properties, and avoid the artificial numerical dis-
sipation introduced by conventional integrators. A geo-
metric numerical integrator, referred to as a Lie group
variational integrator, has been developed for a Hamilto-
nian system on an arbitrary Lie group in [18]. The pro-
posed method is competitive from the point of view of
computational efficiency. Even though the method
requires a nonlinear solve, this can be efficiently imple-
mented using a fixed-point iteration, and the method only
requires one force evaluation per time-step.

A tethered spacecraft is a Hamiltonian system, and its
configuration manifold is expressed as the product of the
Lie groups SOð3Þ, SEð3Þ, and the space of connected curve
segments on R3. This paper develops a Lie group varia-
tional integrator for tethered spacecraft based on the
results presented in [18]. The proposed geometric numer-
ical integrator preserves symplecticity and momentum
maps, and exhibits desirable energy conservation proper-
ties. It also respects the Lie group structure of the config-
uration manifold, and avoids the singularities and
computational complexities associated with the use of
local coordinates. It can be used to study non-local, large
amplitude and deformation maneuvers of tethered space-
craft accurately over a long time period. This is in contrast
to conventional approaches where small deformations are
superimposed to a simplified, rigid tethered spacecraft
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model and the important coupling effects between various
dynamic modes are ignored.

The main contributions of this paper are summarized
as follows: (i) a realistic mathematical model for tethered
spacecraft that characterize the nonlinear coupling
between the translation dynamics and the rotational
dynamics of spacecraft, the translation and the deforma-
tion of the tether, and the reeling mechanism, (ii) unifying
variational framework to develop equations of motion, (iii)
high-fidelity numerical model to compute complex dynamics
of tethered spacecraft accurately.

This paper is organized as follows. A tethered space-
craft model is described in Section 2. An analytical model
and a Lie group variational integrator are developed in
Sections 3 and 4, respectively, followed by numerical
examples in Section 5.
2. Tethered spacecraft

We consider two rigid spacecrafts connected by an elastic
tether. We assume that the rigid spacecrafts can freely
translate and rotate in a three-dimensional space, and that
the tether is extensible and flexible. The bending stiffness of
the tether is neglected as the diameter of the tether is
assumed to be negligible compared to its length. The tether
is connected to a reeling drum in a base spacecraft, and the
other end of the tether is connected to a sub-spacecraft. The
point where the tether is attached to the spacecraft is
displaced from the center of mass so that the rotational
dynamics of the spacecraft is coupled to the tether deforma-
tions and displacements. This model is illustrated in Fig. 1.

We choose a global reference frame and two body-fixed
frames. The global reference frame is located at the center
of the Earth. The first body-fixed frame is located at the
center of mass of the base spacecraft, and the second
body-fixed frame is located at the end of the tether where
the tether is attached to the sub-spacecraft. Since the
tether is extensible, we need to distinguish between the
arc length for the stretched deformed configuration and
the arc length for the unstretched reference configuration.
We now introduce some notations:

mAR the mass of the base spacecraft, excluding the
reeling mechanism
Fig. 1. Tethered spacecraft model. (a) Reference configuration and
(b) deformed configuration.
JAR3�3 the inertia matrix of the base spacecraft
RASOð3Þ the rotation matrix from the first body-fixed

frame to the reference frame
ΩAR3 the angular velocity of the base spacecraft repre-

sented in its body-fixed frame
xAR3 the location of the center of mass of the base

spacecraft represented in the global reference
frame

dAR the radius of the reeling drum
bAR the length of the guideway
ρAR3 the vector from the center of mass of the base

spacecraft to the beginning of the guideway
represented in its body-fixed frame, ρ¼ ½d;0; b�.

mrAR the mass of the reeling drum
JrAR3�3 the inertia matrix of the reeling drum, Jr ¼ κrd

2

for a matrix κrAR3�3

LAR the total unstretched length of the tether
sA ½0; L� the unstretched arc length of the tether between

the point at which the tether is attached to the
reeling drum and a material point P on the tether

sðs; tÞARþ the stretched arc length of the tether to the
material point located at s

spðtÞA ½b; L� the arc length of the tether between the point
at which the tether is attached to the reeling
drum and the beginning of the guideway

rðs; tÞAR3 the deformed location of a material point P
from the origin of the global reference frame;
rðsp; tÞ ¼ xðtÞþRðtÞρ

θðsÞAR θ¼ ðsp�b�sÞ=d for sA ½0; sp�b�
μAR The mass of the tether per unit unstretched

length
mbAR the total mass of the base spacecraft, including

the reeling mechanism, i.e., mb ¼mþmrþμsp
msAR the mass of the sub-spacecraft
JsAR the inertia matrix of the sub-spacecraft
RsASOð3Þ the rotation matrix from the second body-

fixed frame to the global reference frame
ΩsAR3 the angular velocity of the sub-spacecraft repre-

sented in its body-fixed frame
ρsAR3 the vector from the point where the tether is

attached to the sub-spacecraft to the center of
mass of the sub-spacecraft represented in its
body-fixed frame

uAR control moment applied at the reeling drum

A configuration of this system can be described by the
locations of all the material points of the deployed portion
of the tether, namely rðs; tÞ for sA ½sp; L�, the location and
the attitude of the base spacecraft ðx;RÞASEð3Þ, the
attitude of the sub-spacecraft RsASOð3Þ, and the length
of the undeployed portion of the tether, spAR. So,
the configuration manifold is G¼ C1ð½0; L�;R3Þ � SEð3Þ�
SOð3Þ � R, where C1ð½0; L�;R3Þ denotes the space of
smooth connected curve segments on R3, SOð3Þ ¼
fRAR3�3j RTR¼ I;det½R� ¼ 1g, and SEð3Þ ¼R3 ⓢSOð3Þ [19].

Throughout this paper, we assume that (i) the radius of
a reeling drum and the length of a guideway is small
compared to the length of a tether; (ii) the reeling drum
rotates about the second axis of the first body-fixed frame
attached to the base spacecraft; (iii) the deployed portion
of the tether is extensible, but the portion of the tether on
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the reel and the guideway inside the base spacecraft is
inextensible; (iv) the gravity is uniform over the base
spacecraft and the sub-spacecraft.

The attitude kinematics equation of the base spacecraft
and the sub-spacecraft is given by

_R ¼ RΩ̂; _Rs ¼ RΩ̂s; ð1Þ
where the hat map �̂ : R3-soð3Þ is defined by the condi-
tion that x̂y¼ x� y for any x; yAR3 [18]. The inverse of the
hat map is denoted by the vee map: ð�Þ4 : soð3Þ-R3.
3. Continuous-time analytical model

In this section, we develop continuous-time equations
of motion for a tethered spacecraft using Hamilton's
variational principle.
3.1. Lagrangian

Kinetic energy: The kinetic energy is composed of the
kinetic energy of the base rigid body Tb1 , the kinetic
energy of the reeling mechanism Tb2 , the kinetic energy
of the deployed portion of the tether Tt, and the kinetic
energy of the sub-spacecraft Ts. The kinetic energy of the
base rigid body is given by

Tb1 ¼ 1
2m _x � _xþ1

2Ω � JΩ: ð2Þ
The kinetic energy of the reeling mechanism is given by

Tb2 ¼ 1
2 mrþμsp
� �

_x � _xþ1
2 μsp _s

2
pþ1

2 κ2 _s
2
p; ð3Þ

where κ2 ¼ e2 � κre2. This is obtained by integrating the
infinitesimal kinetic energy of the material points on the
undeployed portion of tether, and ignoring higher-order
terms of b, d due to the assumption that the radius of
reeling drum d and the length of the guideway b is much
less than the length of the tether.

Let _rðs; tÞ be the partial derivative of rðs; tÞ with respect
to t. The kinetic energy of the deployed portion of the
tether is given by

Tt ¼
Z L

sp

1
2
μ _r sð Þ � _r sð Þ ds: ð4Þ

Let ~ρAR3 be the vector from the end of the tether to a
mass element of the sub-spacecraft represented with
respect to its body-fixed frame. The location of the mass
element in the global reference frame is given by rðLÞþRs ~ρ.
Then, the kinetic energy of the sub-spacecraft is given by

Ts ¼
Z
Bs

1
2
J _r Lð ÞþRsΩ̂s ~ρ J2 dm

¼ 1
2
ms _r Lð Þ � _r Lð Þþms _r Lð Þ � RsΩ̂sρsþ

1
2
Ωs � JsΩs: ð5Þ

Here, we use the fact that
R
Bs
~ρ dm¼ ρc, and Js ¼

�R
Bs
ρ̂2s dm. The total kinetic energy is given by

T ¼ Tb1 þTb2 þTtþTs.
Potential energy: From the assumption that the reeling

drum is small relative to the length of the tether, the
gravitational potential of the base spacecraft and the
reeling mechanism can be approximated as follows:

Vb ¼ � mþmrþμsp
� � GM

JxJ
¼ �mb

GM
JxJ

; ð6Þ

where the gravitational constant and the mass of the Earth
are denoted by G and M, respectively.

The strain of the tether at a material point located at
rðsÞ is given by

ϵ¼ lim
Δs-0

ΔsðsÞ�Δs
Δs

¼ s0 sð Þ�1;

where ðÞ0 denotes the partial derivative with respect to s.
The tangent vector at the material point is given by

et ¼
∂rðsÞ
∂s

¼ ∂rðsÞ
∂s

∂s
∂sðsÞ ¼

r0ðsÞ
s0ðsÞ:

Since this tangent vector has unit length, we have
s0ðsÞ ¼ ‖r0ðsÞ‖. Therefore, the strain can be written as
ϵ¼ ‖r0ðsÞ‖�1. Using this, the elastic potential and the
gravitational potential of the deployed portion of the
tether are given by

Vt ¼ 1
2

Z L

sp
EAð‖r0ðsÞ‖�1Þ2 ds�

Z L

sp
μ

GM
JrðsÞJ ds;

ð7Þ

where E and A denote Young's modulus and the sectional
area of the tether, respectively.

The location of the center of mass of the sub-spacecraft
is rðLÞþRsρs in the global reference frame. Since we assume
that the gravity is uniform over each spacecraft body, the
gravitational potential energy of the sub-spacecraft is
given by

Vs ¼ �ms
GM

JrðLÞþRsρs J
: ð8Þ

From (2)–(8), the Lagrangian of the tethered spacecraft
is given by

L¼ ðTb1 þTb2 �VbÞþðTt�VtÞþðTs�VsÞ ð9Þ

L¼ LbþLtþLs: ð10Þ

3.2. Euler–Lagrange equations

Let the action integral be

G¼
Z tf

t0
LbþLtþLs dt ¼GbþGtþGs: ð11Þ

According to the Lagrange–d'Alembert principle, the var-
iation of the action integral is equal to the negative of the
virtual work for fixed boundary conditions, which yields
the forced Euler–Lagrange equations. For the given teth-
ered spacecraft model, there are three aspects that require
careful consideration: (i) the rotation matrices R;Rs that
represents the attitudes lie in the nonlinear Lie group
SOð3Þ; (ii) the domain of the integral depends on the
variable sp(t) at (4); (iii) since the tether is assumed to be
inextensible in the guideway, and it is extensible outsize of
the guideway, there exists a discontinuity in strain at the
beginning of the guideway.

Variation of Gb: The attitudes of spacecraft are repre-
sented by the rotation matrix R;RsASOð3Þ. Therefore, the
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variation of the rotation matrix should be consistent with
the geometry of the special orthogonal group. In [18], it is
expressed in terms of the exponential map as

δR¼ d
dϵ

����
ϵ ¼ 0

Rϵ ¼ d
dϵ

����
ϵ ¼ 0

R exp ϵη̂ ¼ Rη̂; ð12Þ

for ηAR3. The key idea is expressing the variation of a Lie
group element in terms of a Lie algebra element. This is
desirable since the Lie algebra soð3Þ of the special ortho-
gonal group, represented by 3�3 skew-symmetric
matrices, is isomorphic as a Lie algebra to R3. As a result,
the variation of the three-dimensional rotation matrix R is
expressed in terms of a vector ηAR3. We can directly show
that (12) satisfies δðRTRÞ ¼ δRTRþRTδR¼ � η̂þ η̂ ¼ 0. The
corresponding variation of the angular velocity is obtained
from the kinematics equation (1):

δΩ̂ ¼ d
dϵ

����
ϵ ¼ 0

ðRϵÞT _Rϵ ¼ ð_ηþΩ� ηÞ4 : ð13Þ

Using (12) and (13), and integration by parts, the variation
of Gb is given by

δGb ¼
Z tf

t0
�mb €x�μ _sp _x�GMmb

x

JxJ3

� �
� δx

þ � μspþκ2
� �

€spþ1
2 μ _x � _x� _s2pþ2

GM
JxJ

� �� �
δsp

�fJ _ΩþΩ̂JΩg � η dt: ð14Þ

Variation of Gt: The action integral for tether namely Gt

is expressed as a double integral on ðt; sÞA ½t0; tf � � ½spðtÞ; L�,
given by

Gt ¼
Z tf

t0

Z L

spðtÞ

1
2
μ _r sð Þ � _r sð Þ� 1

2
EAð‖r0ðsÞ‖�1Þ2þμ

GM
‖rðsÞ‖ ds dt:

Thus, its variation should take account of the sp(t) varia-
tion:

δGt ¼
Z tf

t0

Z L

sp
μ _r sð Þ � δ_r sð Þ�EA

‖r0ðsÞ‖�1
‖r0ðsÞ‖r0 sð Þ � δr0 sð Þ

�μGM
rðsÞ

JrðsÞJ3
� δr sð Þ ds dt�

Z tf

t0

1
2
μ _r sþp

	 

� _r sþp
	 


:

�

� 1
2
EAð‖r0ðsþp Þ‖�1Þ2þμ

GM
JrðspÞJ

�
δsp dt; ð15Þ

where _rðsþp Þ represents the material velocity at the outside
of the guideway.

Now, we focus on the first term of (15). We cannot
apply integration by parts with respect to s, since the order
of the integrals cannot be interchanged as sp(t) depends on
t. Instead, we use Green's theorem [15]:

∮C _r sð Þ � δr sð Þ ds ¼
Z tf

t0

Z L

sp

d
dt

_r sð Þ � δr sð Þð Þ ds dt; ð16Þ

where ∮C represents the counterclockwise line integral on
the boundary C of the region ½t0; tf � � ½spðtÞ; L�. The bound-
ary C is composed of four lines: ðt ¼ t0; sA ½spðt0Þ; L�Þ,
ðt ¼ tf ; sA ½spðtf Þ; L�Þ, ðtA ½t0; tf �; s ¼ spðtÞÞ, and ðtA ½t0; tf �;
s ¼ LÞ. For the first two lines, δrðsÞ ¼ 0 since t ¼ t0; tf . For
the last line, ds ¼ 0 since s is fixed. Thus, parameterizing
the third line by t, we obtain

∮C _rðsÞ � δrðsÞ ds ¼
Z tf

t0

_rðspðtÞÞ � δrðspðtÞÞ_spðtÞ dt:

Substituting this into (16) and rearranging, we obtainZ tf

t0

Z L

sp

_rðsÞ � δ_rðsÞ ds dt

¼
Z tf

t0

Z L

sp
� €rðsÞ � δrðsÞ dsþ _rðspÞ � δrðspÞ_sp

" #
dt: ð17Þ

Substituting (17) into (15), and using integration by parts,
the variation of Gt can be written as

δGt ¼
Z tf

t0

Z L

sp
�μ €r sð ÞþF 0 sð Þ�μGM

rðsÞ
JrðsÞJ3

( )
� δr sð Þ ds dt

þ
Z tf

t0
� 1

2
μ _r sþp

	 

� _r sþp
	 


þ1
2 EAð‖r0ðsþp Þ‖�1Þ2

�

�μ
GM

JrðspÞJ

�
δsp

þμ _rðsþp Þ � δrðsþp Þ_sp�FðLÞ � δrðLÞþFðspÞ � δrðsþp Þ dt;
ð18Þ

where FðsÞ ¼ EAðð‖r0ðsÞ‖�1Þ=‖r0ðsÞ‖Þr0ðsÞ.
This is further simplified as follows. Let rp ¼ rðspðtÞ; tÞ be

the location of the beginning of the guideway. Since it can
be written as rp ¼ xþRρ, we have δrp ¼ δrðsþp Þþr0ðsþp Þδsp ¼
δxþRη̂ρ. Thus,

δrðsþp Þ ¼ �r0ðsþp Þδspþδx�Rρ̂η:

Similarly, we obtain

_rðsþp Þ ¼ �r0ðsþp Þ_spþ _x�Rρ̂Ω:

Substituting these into (18), the variation of Gt is
expressed in terms of δrðsÞ, δsp, δx, η, and δrðLÞ.

Variation of Gs: Similar to (14), the variation of Gs is
given by

δGs ¼
Z tf

t0

(
�ms €rðLÞ�msRsΩ̂

2
s ρs�msRs _̂Ω sρs

�GMms
rðLÞþRsρs

JrðLÞþRsρs J
3

)
� r Lð Þþ

(
� J _Ωs�msρ̂sR

T
s €rðLÞ

�Ω̂sJΩs�GMms
rðLÞþRsρs

JrðLÞþRsρs J
3

)
� ηs dt: ð19Þ

In short, the variation of the action integral is given by
(14), (18), and (19).

Variational principle with discontinuity: Let rðs�p Þ, and
rðsþp Þ be the material point of the tether just inside the
guideway, and the material point just outside the guide-
way, respectively. Since the tether is inextensible inside
the guideway, Jr0ðs�p ÞJ ¼ 1. Since the tether is extensible
outside the guideway, Jr0ðsþp ÞJ ¼ 1þϵþ , where ϵþ repre-
sents the strain of the tether just outside the guideway.
Due to this discontinuity, the speed of the tether changes
instantaneously by the amount ϵþ j_spj at the guideway.

As a result, the variation of the action integral is not
equal to the negative of the virtual work done by the
external control moment u at the reeling drum. Instead, an
additional term Q, referred to as Carnot energy loss term,
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should be introduced [13,20]. The resulting variational
principle is given by

δGþ
Z tf

t0
ðQþu=dÞδsp�ue2 � η dt ¼ 0: ð20Þ

The corresponding time rate of change of the total energy
is given by _E ¼ ðQþu=dÞ_sp, where the first term Q _sp
represents the energy dissipation rate due to the velocity
and the strain discontinuity. The corresponding expression
for Q has been developed in [15]

Q ¼ �1
2 μðJr0ðsþp ÞJ�1Þ2 _s2p�1

2 EAðJr0ðsþp ÞJ�1Þ2: ð21Þ

Euler–Lagrange equations: Using these results, and the
variational principle with discontinuity (20), we obtain the
Euler–Lagrange equations for the given tethered spacecraft
model in (22)–(27). In (25), we require that rðspÞ ¼ xþRρ
for the continuity of the tether.

These equations provide a comprehensive, analytical
model of tethered spacecraft, including rotational
dynamics of spacecraft, deformation of tether, and reeling
mechanism. We have shown that the equation of motions
can be derived based on a variational principle in a unified
way. These can be simplified in a number of special cases.
For example, we can substitute _sp ¼ 0 when the length of
the deployed portion of the tether is fixed, and we can set
ρ¼ ρs ¼ 0 when the main spacecraft and the sub-
spacecraft are modeled as point masses instead of rigid
bodies:

� mþmrþμsp
� �

€x�GM mþmrþμsp
� � x

JxJ3
þμ _spð�r0ðsþp Þ_sp�Rρ̂ΩÞþFðspÞ ¼ 0; ð22Þ

� J _Ω�Ω̂JΩþμ _spρ̂R
T ð�r0ðsþp Þ_spþ _x�Rρ̂ΩÞ

þ ρ̂RTFðspÞ�ue2 ¼ 0; ð23Þ

� μspþκ2
� �

€sp�
1
2
μ _x�Rρ̂Ωð Þ � _x�Rρ̂Ωð Þþ 1

2
μ _x

� _x�μ
GM

JrðspÞJ
þμ

GM
JxJ

�F sp
� � � r0 sþp

	 

þμ _s2p Jr0 sþp

	 

J�1

	 

þ u

d
¼ 0; ð24Þ

�μ €r sð ÞþF 0 sð Þ�μGM
rðsÞ

JrðsÞJ ¼ 0; sA sp; L
� �

; r sp
� �¼ xþRρ

� �
;

ð25Þ

�ms €r Lð ÞþmsRsρ̂s _Ωs�msRsΩ̂
2
s ρs

�GMms
rðLÞþRsρs

JrðLÞþRsρs J
3 �F Lð Þ ¼ 0; ð26Þ

� Js _Ωs�msρ̂sR
T
s €r Lð Þ�Ω̂sJsΩs�GMmsρ̂sR

T
s

rðLÞþRsρs
JrðLÞþRsρs J

3 ¼ 0;

ð27Þ
where FðsÞ ¼ EAððJr0ðsÞJ�1Þ=Jr0ðsÞJ Þr0ðsÞ denotes the ten-
sion of the tether.

4. Lie group variational integrator

The Euler–Lagrange equations developed in the previous
section provide an analytical model for a tethered spacecraft.
However, the standard finite-difference approximations or
finite-element approximations of those equations using gen-
eral purpose numerical integrators may not preserve the
geometric properties of the system accurately [17]. For
example, it has been shown that a general purpose numerical
integrator fails to compute the energy dissipation rate cor-
rectly [21], and that explicit Runge–Kutta methods do not
preserve the orthogonal structure of rotation matrices,
thereby yielding unreliable numerical results for the rotational
dynamics of a rigid body [22,23].

Geometric numerical integrators deal with numerical
integration techniques that preserve the underlying geo-
metric properties of a dynamical system, such as invariants,
symmetries, or the structure of configuration manifolds
[17,24]. Variational integrators provide a systematic method
to construct geometric numerical integrators for mechanical
systems [21], where a numerical integrator is developed
according to a discrete analogue of Hamilton's variational
principle. Numerical flows of variational integrators can
have desirable properties such as second-order accuracy,
symplecticity and momentum preservation, and they can
exhibit good energy behavior over a long time period.

In particular, Lie group variational integrators are
developed for Lagrangian/Hamiltonian systems evolving
on a Lie group [18]. They inherit the desirable computa-
tional properties of variational integrators, and they also
preserve the Lie group structures of a configuration mani-
fold naturally by updating a group element using the
group operation. These are in contrast to projection-
based methods where projection at each time-step may
corrupt conservation properties, or constrained-based
methods where a nonlinear constraint needs to be solved
at each time-step. They also avoid singularities introduced
by local parameterizations of a Lie group.

The unique feature of Lie group variational integrators
is that they preserve both the symplecticity of mechanical
systems and the nonlinear structure of a Lie group config-
uration manifold concurrently, and it has been shown that
this is critical for accurate and efficient simulations of
multibody dynamics [23].

In this section, we develop a Lie group variational
integrator for a tethered spacecraft. We first discretize
the tether using a finite-element model, and we construct
a discrete Lagrangian, which is used to derive the discrete
Euler–Lagrange equations for tethered spacecrafts.

4.1. Discretized tethered spacecraft model

Let h40 be a fixed time-step. The value of variables at
t ¼ t0þkh is denoted by a subscript k. We discretize the
deployed portion of the tether using N identical line
elements. Since the unstretched length of the deployed
portion of the tether is L�spk , the unstretched length of
each element is lk ¼ ðL�spk Þ=N. Let the subscript a denote
the variables related to the a-th element. The natural
coordinate on the a-th element is defined by

ζk;a sð Þ ¼ ðs�spk Þ�ða�1Þlk
lk

ð28Þ

for sA ½spk þða�1Þlk; spk þalk�. This varies between 0 and 1
on the a-th element. Let S0 and S1 be shape functions given
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by S0ðζÞ ¼ 1�ζ, and S1ðζÞ ¼ ζ, respectively. These shape
functions are also referred to as tent functions.

Using this finite-element model, the position vector
rðs; tÞ of a material point in the a-th element is approxi-
mated as follows:

rkðsÞ ¼ S0ðζk;aÞrk;aþS1ðζk;aÞrk;aþ1: ð29Þ
Therefore, a configuration of the discretized tethered
spacecraft at t ¼ khþt0 is described by gk ¼ ðxk;Rk; spk ;
rk;1;…; rk;Nþ1;Rsk Þ, and the corresponding configuration
manifold is G¼R3 � SOð3Þ � R� ðR3ÞNþ1 � SOð3Þ. This
is a Lie group where the group acts on itself by the
diagonal action [19]: the group action on xk, spk , and rk;a
is addition, and the group action on Rk;Rsk is matrix
multiplication.

We define a discrete-time kinematics equation using
the group action as follows. Define f k ¼ ðΔxk; Fk;Δspk ;
Δrk;1;…, Δrk;Nþ1; Fsk ÞAG such that gkþ1 ¼ gkf k:

ðxkþ1;Rkþ1; spkþ 1
; rkþ1;a;Rkþ1Þ

¼ ðxkþΔxk;RkFk; spk þΔspk ; rk;aþΔrk;a;RskFsk Þ: ð30Þ
Therefore, f kAG represents the relative update between
two integration steps. This ensures that the structure of
the Lie group configuration manifold is numerically pre-
served since gk is updated by fk using the right Lie group
action of G on itself.

4.2. Discrete Lagrangian

A discrete Lagrangian Ldðgk; f kÞ : G�G-R is an
approximation of the Jacobi solution of the Hamilton–
Jacobi equation, which is given by the integral of the
Lagrangian along the exact solution of the Euler–Lagrange
equations over a single time-step:

Ldðgk; f kÞ �
Z h

0
Lð ~gðtÞ; ~g �1ðtÞ _~g ðtÞÞ dt;

where ~gðtÞ : ½0;h�-G satisfies Euler–Lagrange equations
with boundary conditions ~gð0Þ ¼ gk, ~gðhÞ ¼ gkf k. The result-
ing discrete-time Lagrangian system, referred to as a
variational integrator, approximates the Euler–Lagrange
equations to the same order of accuracy as the discrete
Lagrangian approximates the Jacobi solution [21].

We construct a discrete Lagrangian for the tethered
spacecraft using the trapezoidal rule. From the attitude
kinetics equations (1), the angular velocity is approxi-
mated by

Ω̂k �
1
h
RT
k Rkþ1�Rk
� �¼ 1

h
Fk� Ið Þ:

Define a non-standard inertia matrix Jd ¼ 1
2 tr J½ �I� J. Using

the trace operation and the non-standard inertia matrix,
the rotational kinetic energy of the main spacecraft at (2)

can be written in terms of Ω̂ as 1
2Ω � JΩ¼ 1

2 tr Ω̂JdΩ̂
T

h i
.

Using this, and (2), (3), the kinetic energy of the base
spacecraft is given by

Tk;b ¼
1

2h2
mþmrþμspk
� �

Δxk � Δxkþ
1

2h2
μspk þκs
� �

Δs2pk

þ 1

h2
tr I�Fkð ÞJd
� �

; ð31Þ
where we use properties of the trace operator: tr½AB� ¼
tr½BA� ¼ tr½ATBT � for any matrices A;BAR3�3.

Next, we find the kinetic energy of the tether. Using the
chain rule, the partial derivative of rkðsÞ, given by (29),
with respect to t is given by

_rk sð Þ ¼ 1
h

(
S0ðζk;aÞΔrk;aþS1ðζk;aÞΔrk;aþ1

þ ðL�sÞ
ðL�spk Þ

ðrk;a�rk;aþ1Þ
lk

Δspk

)
:

Substituting this into (4), the contribution of the a-th tether
element to the kinetic energy of the tether is given by

Tk;a ¼
Z 1

0

1
2
μlk J _rk ζk;a

� �
J2 dζk;a

¼ 1

2h2 M
1
kΔrk;a � Δrk;aþ

1

2h2
M2

kΔrk;aþ1 � Δrk;aþ1

þ 1

2h2
M3

k;aΔs
2
pk
þ 1

h2 M
12
k Δrk;a � Δrk;aþ1

þ 1

h2
M23

k;aΔspk � Δrk;aþ1þ
1

h2 M
31
k;aΔspk � Δrk;a; ð32Þ

where inertia matrices are given by

M1
k ¼

1
3
μlk; M2

k ¼M1
k ;

M3
k;a ¼

1
3
μlk

ð3N2þ3Nþ1�6Na�3aþ3a2Þ
N2 ;

M12
k ¼ 1

6
μlk; M23

k;a ¼
1
6
μ
ð1þ3N�3aÞ

N
rk;a�rk;aþ1
� �

;

M31
k;a ¼

1
6
μ
ð2þ3N�3aÞ

N
rk;a�rk;aþ1
� �

:

Similar to (31), from (5), the kinetic energy of the sub-
spacecraft is given by

Tk;s ¼
1

2h2
msΔrk;Nþ1 � Δrk;Nþ1þ

1

h2 tr I�Fsk
� �

Jsd
h i

þ 1

h2
msΔrk;Nþ1 � Rsk Fsk � I

� �
ρs: ð33Þ

From (31), (32), and (33), the total kinetic energy of the
discretized tethered spacecraft is given by

Tk ¼ Tk;bþ ∑
N

a ¼ 1
Tk;aþTk;s: ð34Þ

Similarly, from (6), (7), and (8), the total potential
energy is given by

Vk ¼ �GM mþmrþμspk
� � 1

Jxk J

þ ∑
N

a ¼ 1
�2GMμlk

1
Jrk;aþrk;aþ1 J

þ 1
2
EA
lk

ðJrk;aþ1�rk;a J� lkÞ2�GMms
1

Jrk;Nþ1þRskρs J
:

ð35Þ
Using (34) and (35), we choose the discrete Lagrangian

of the discretized tethered spacecraft to be

Ldk gk; f k
� �¼ hTk gk; f k

� �� h
2
Vk gk; f k

� �� h
2
Vkþ1 gk; f k

� �
:

ð36Þ
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This corresponds to an approximation to the action integral
given by (11) over a single time-step, with second-order
accuracy as it is based on the trapezoidal rule. It can be
shown that the resulting variational integrator will have the
same second-order accuracy [21].

4.3. Discrete-time Euler–Lagrange equations

We define the discrete action sum Gd ¼∑n
k ¼ 1Ldk ðgk; f kÞ.

According to the discrete Lagrange–d'Alembert principle,
the variation of the action sum is equal to the negative of
the discrete virtual work. This yields the discrete-time
forced Euler–Lagrange equations, which we call a varia-
tional integrator.

In [18], the following Lie group variational integrator
has been developed for Lagrangian systems on an arbitrary
Lie group:

Tn

eLf k� 1
� Df k� 1

Ldk� 1
�Adn

f � 1
k

� ðTn

eLf k � Df k Ldk Þ
þTn

eLgk � Dgk Ldk þUdk þQdk ¼ 0; ð37Þ

gkþ1 ¼ gkf k; ð38Þ
where TL : TG-TG is the tangent map of the left transla-
tion, Df represents the derivative with respect to f, and
Adn : G� gn-gn is the co-Ad operator [19].

The virtual work due to the control input and the
Carnot energy loss are denoted by Udk Agn and Qdk Agn,
respectively, and they are chosen to be

Udk � g�1δgk
� �¼ h

d
ukδspk �huke2 � ηk; ð39Þ

Qdk � g�1δgk
� �¼ � h

2l2k
μΔs2pk=h

2þEA
	 


�ð‖rk;2�rk;1‖� lkÞ2 δspk : ð40Þ

By substituting (36), (39), and (40) into (37) and (38),
we obtain a Lie group variational integrator for the given
discrete tethered spacecraft model. This involves deriving
the derivatives of the discrete Lagrangian and their co-
tangent lift. More details about the derivation and the
resulting Lie group variational integrators are summarized
in the Appendix, which also includes a description of the
computational approach.

Computational properties: One of the desirable compu-
tational properties of the proposed Lie group variational
integrator is that it is developed directly on the special
orthogonal group, using rotation matrices. It is well known
that local parameterizations of SOð3Þ, such as Euler angles
or Rodrigues parameters, have singularities. Therefore,
they are not suitable for numerical simulation of complex
rotational maneuvers of spacecraft, as one has to continu-
ally transform into new local parameterizations in order to
avoid the numerical ill-conditioning that arises near the
coordinate singularities.

Quaternions do not have singularities but since the
group SUð2Þ of quaternions double-covers SOð3Þ, there is
an ambiguity in representing attitudes. Furthermore, the
unit-length of quaternions is not generally preserved in
numerical simulations, and therefore attitudes cannot be
determined accurately. In some cases, numerical solutions
are obtained by applying a one-step method and project-
ing onto the unit sphere at each time-step. But, such
projections interfere with the desirable long-time proper-
ties of numerical integrators, since the projection typically
breaks the structure-preservation property, and the errors
accumulate over time.

In the proposed approach, rotation matrices are
updated using the corresponding group operation, namely
matrix multiplication, and therefore the group structure is
preserved automatically to the level of machine precision,
without the need for projection. This also avoids the
singularities and ambiguities that arise in other attitude
representations.

Numerical flows of the proposed Lie group variational
integrator are symplectic and momentum preserving as it
is developed according to Hamilton's variational principle.
These ensure long-term structural stability in computa-
tional results, and they avoid the artificial numerical
dissipation that appears in general purpose numerical
integrators. These conservation properties are difficult to
achieve in conventional approaches that are based on
finite-difference approximations of the continuous equa-
tions of motion.

When the reeling mechanism and the rotational
dynamics are ignored, i.e., Δspk ¼ ρ¼ ρc ¼ 0, it can be
shown that the proposed Lie group variational integrator
for the deformation tether dynamics is equivalent to the
commonly used explicit central-difference algorithm or
the Newmark method (with β¼0 and γ ¼ 1

2 ); this integra-
tor has been widely used for numerical simulation of
structural dynamics and vibrations [25,26]. This reflects
the fact that variational integrators encompass a wide
range of structure-preserving integrators as special cases,
depending on the choice of the discrete Lagrangian [21].
Consequently, we expect that the wave propagation and
tether deformation dynamics computed by the Lie group
variational integrator for the tethered spacecraft are
second-order accurate and they inherit many of the other
good properties of the Newmark class of integrators,
including accuracy of amplitudes and frequencies. Due to
the complexity of the complete dynamics of the tethered
spacecraft, it is not possible to quantify the accuracy
properties of the proposed Lie group variational integrator
for the combined orbital/attitude dynamics, tether defor-
mation, and reeling mechanism.

5. Numerical example

In this section, computational properties of the Lie
group variational integrator are illustrated.

5.1. Validation

The proposed approach is implemented on Matlab and
it is first validated by checking that it generates numerical
results consistent with a tethered spacecraft model con-
sidered in [14]. A case where a sub-spacecraft is released
from a stationary base spacecraft under the effects of
gravity is considered, and the corresponding detailed
simulation parameters are described in [14]. Fig. 2 illus-
trates the length of tether in the reeling mechanism and



Fig. 2. Validation of algorithm: computational results of the proposed approach (red circles) are compared with a tethered spacecraft model (black) in [14].
(a) Length of tether in the reeling mechanism sp. (b) Tension at the guideway. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)

Table 1
Simulation results (LGVI: Lie group variational integrator, RK: Runge–
Kutta).

Case Parameters LGVI RK

I h (s) 0.05 0.003
tf ¼ 6000 s CPU time (h) 4.15 4.80

meanjΔEkj 7:90� 10�8 8:91� 10�2

meanJ I�RT
kRk J 7:38� 10�14 4:59� 10�8

meanJ I�RT
sk
Rsk J 6:11� 10�14 7:04� 10�8

II h (s) 0.05 –

tf ¼ 3848 s CPU time (h) 3.97 –

meanJ I�RT
kRk J 4:40� 10�14 –

meanJ I�RT
sk
Rsk J 5:16� 10�14 –

III h (s) 0.01 0.0004
tf ¼ 6000 s CPU time (h) 24.22 36.17

meanjΔEkj 7:18� 10�2 1:89� 101

meanJ I�RT
kRk J 9:73� 10�14 2:30� 10�3

meanJ I�RT
sk
Rsk J 1:58� 10�13 3:14� 10�2
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the tension of tether at the guideway, where the corre-
sponding figure images from the reference [14] are copied
as backgrounds. It is shown that the proposed approach
(red circles) generates numerical results comparable to
[14] (black curves).

5.2. Benchmark study

Next, we perform benchmark studies using the follow-
ing tethered spacecraft model. The properties of the
tethered spacecraft are chosen to be

m¼ 490 kg; mr ¼ 10 kg; ms ¼ 150 kg;
l¼ 120 km; μ ¼ 24:7 kg=km; EA¼ 659;700 N;

J ¼ diag½5675:8; 5675:8; 6125� kg m2; ρ¼ ½0:5;0:0;1�m;

Js ¼ diag½500; 500; 300� kg m2; ρs ¼ ½0;0;1�m:

Initially, the base spacecraft is on a circular orbit with an
altitude of 300 km, and the tether and the sub-spacecraft
are aligned along the radial direction. The initial
unstretched length of the deployed portion of the tether
is 20 km, i.e., sp(0) ¼100 km. The initial velocity at each
point of the tether and the sub-spacecraft is chosen such
that it corresponds to the velocity of a circular orbit at that
altitude.

We consider the following three cases. In the first case,
the reeling drum is fixed so that the length of the deployed
portion of the tether is fixed, i.e., _sp � 0. In the second case,
the reeling drum is free to rotate, and the tether is released
due to the gravity gradient between the base spacecraft
and the sub-spacecraft. The third case is the same as the
first case except that the initial velocities of the base
spacecraft and the sub-spacecraft are perturbed by about
15% to generate a tumbling motion. For all the cases, the
number of tether elements is N¼20. The orbital period of a
point mass on a circular orbit at the altitude of 300 km is
5410 s.

Simulation results, including time-step, CPU time, and
the mean deviation of conserved quantities, are summar-
ized in Table 1. The CPU times are reported for a Matlab
implementation on a Macbook Air notebook with Intel
Core i5 1.7 GHz processor. For the first case and the third
case, we compare the computational properties of the
proposed Lie group variational integrator with a Runge–
Kutta method: the tether is semi-discretized using the
same finite-elements, and the resulting system of
continuous-time equations is integrated with an explicit
Runge–Kutta method with the same second-order accu-
racy. They serve to illustrate that the numerical conserva-
tion properties of the proposed algorithm are far superior
to even a highly resolved Runge–Kutta simulation with
time-steps chosen to exceed the computational cost of the
proposed Lie group variational integrator. The required
computation time can be dramatically reduced by imple-
menting the algorithm using a compiled language such as
C, by using fixed-point iterations instead of Newton itera-
tions, and by implementing the method on a parallel
computer (see, for example, [27]).

Figs. 3–5 illustrate simulation results for each case. We
consider a fictitious local vertical, local horizontal (LVLH)
frame that is attached to an imaginary spacecraft on a
circular orbit with an altitude of 300 km. For each figure,
we have the following subfigures: (a) the maneuvers of the
tethered spacecraft are illustrated with respect to the LVLH
frame. To represent the attitude dynamics of spacecraft,



Fig. 3. Case 1: Circular orbit, Fixed unstretched tether length. (a) Snapshots observed in the LVLH frame (km) (The size of spacecraft is increased by a factor
of 100 to illustrate the attitude dynamics.). (b) TbaseþTsub (red), Ttether (green), Vgravity (cyan), Velastic (blue), total energy (black) (106 J). (c) Computed total
energy deviation EðtÞ�Eð0Þ (LGVI: red, RK: blue, dotted) (106 J). (d) Angular Velocity of the base spacecraft Ω (LGVI: red, RK: blue, dotted) (rad/s)
(e) Unstretched length of the deployed part of the tether (red), stretched length (blue) (km). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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the size of the spacecraft is increased by a factor of 100,
and the relative strain distribution of the tether at each
instant is represented by a color shading. (Animation that
visualizes each maneuver of tethered spacecraft has also
been submitted as supplementary materials.) The remain-
ing subfigures show (b) the energy transfer, (c) the
computed total energy deviation from its initial value, (d)
the angular velocity of the base spacecraft, and (e)
the unstretched/stretched length of the tether. For the
first case and the third case, the computed total energy
deviation and the angular velocity of the base spacecraft
are compared with the results from the Runge–Kutta
method.
In the first case, we observe a pendulum-like motion
where the tether is taut and its stretched length is almost
close to the unstretched length. But, one observes a strain
wave that propagates along the tether, and nontrivial attitude
dynamics for the base spacecraft and the sub-spacecraft. The
proposed Lie group variational integrator exhibits excellent
conservation properties, as shown in Table 1. The Runge–
Kutta method exhibits relative large deviations in the total
energy, and large errors in the preservation of the orthogonal
structure of rotation matrices. As illustrated in Fig. 3(d), the
errors in preserving the conserved quantities also cause
errors in computing the angular velocities: there is a notice-
able difference after t¼300 s.



Fig. 4. Case 2: circular orbit, releasing tether. (a) Snapshots observed in the LVLH frame (km). (b) TbaseþTsub (red), Ttether (green), Vgravity (cyan), Velastic (blue),
total energy (black) (106 J). (c) Computed total energy deviation EðtÞ�Eð0Þ (106 J). (d) Angular velocity of the base spacecraft Ω (rad/s). (e) Unstretched
length of the deployed part of the tether (red), stretched length (blue) (km). (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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In the second case, the tether is deployed by gravity
gradient effects between the base spacecraft and the sub-
spacecraft. Due to the Carnot energy term discussed in the
previous section, the total energy increases slightly. As the
mass in the base spacecraft is transferred to the deployed
portion of the tether, there is kinetic energy transfer from
the base spacecraft into the deployed portion of tether, as
seen in Fig. 4(b).

The third case is most challenging: there are in-plane
and out-of-plane tumbling motions; the tether is stretched
by 25%; the attitude dynamics of the spacecrafts are
nontrivially excited with large angular velocities. As the
altitude of tethered spacecraft increases, the kinetic
energy is transferred to the gravitation potential energy,
and there is also kinetic energy exchange between space-
craft and tether at a higher frequency. The proposed Lie
group variational integrator computes the complex
dynamics of this tethered spacecraft accurately, and it
exhibits excellent conservation properties compared with
Runge–Kutta method, as shown in Table 1.

One of the most distinct features of the proposed
computational model of tethered spacecraft is that it
explicitly takes account of the coupling between several
dynamic modes, which have been ignored in most of the
existing approaches. As a concrete example to demon-
strate the coupling effect between the rotational dynamics
of tethered spacecraft with the translational orbital
dynamics, the third case is repeated while assuming that



Fig. 5. Case 3: perturbed circular orbit, fixed unstretched tether length. (a) Snapshots observed in the LVLH frame for tr60 s (km). (b) TbaseþTsub (red),
Ttether (green), Vgravity (cyan), Velastic (blue), total energy (black) (106 J). (c) Computed total energy deviation EðtÞ�Eð0Þ (LGVI: red, RK: blue, dotted) (106 J).
(d) Angular velocity of the base spacecraft Ω (LGVI: red, RK: blue, dotted) (rad/s). (e) Unstretched length of the deployed part of the tether (red), stretched
length (blue) (km). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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the base spacecraft and the sub-spacecraft are modeled as
point masses, i.e., ρ¼ ρs ¼ 0. The differences in the position
of the base spacecraft and the sub-spacecraft between the
full dynamics model proposed in this paper and the
simplified model without the attitude dynamics are illu-
strated at Fig. 6(a) and (b). Ignoring the attitude dynamics
causes mean errors of 1.03 km and 8.29 km in the
computed position of the base spacecraft and the
sub-spacecraft, respectively. This is a noticeable discrepancy
considering the fact that the simulation period is slightly
longer than one orbital period, and that the ratio of the
rotational kinetic energy to the total kinetic energy is at the
level of 10�5. In particular, as illustrated at Fig. 6(c), the
relative position of the sub-spacecraft with respect to the
base spacecraft and the configuration of the tether could be
drastically different. These illustrate the importance of the



Fig. 6. Case 3: comparison with a simplified dynamic model where the attitude dynamics is ignored. (a) Difference in the position x of the base spacecraft
(km). (b) Difference in the position rNþ1þRsρs of the sub-spacecraft (km). (c) Snapshots observed in the LVLH frame (red: with attitude dynamics, blue:
without attitude dynamics) ðkm;2600rtr2610Þ. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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nonlinear coupling effects between the attitude dynamics
and the translational dynamics of tethered spacecraft in
complex maneuvers.

6. Conclusions

We develop continuous-time equations of motion and a
geometric numerical integrator for a tethered spacecraft
model that includes tether deformation, spacecraft atti-
tude dynamics, and a reeling mechanism. This provides an
analytical model that is defined globally on the Lie group
configuration manifold, and the Lie group variational
integrator preserves the underlying geometric features,
thereby yielding a reliable numerical simulation tool for
complex maneuvers over a long time period. We also show
that both continuous-time model and numerical integra-
tors for tethered spacecraft can be derived using a varia-
tional framework.

The numerical results suggest that any small distur-
bance to the tethered spacecraft is propagated along the
tether at a high velocity, which is determined by the
material properties of tether. Since the points of contact
between tether and spacecraft are displaced from the
center of mass of the spacecraft, the elastic disturbances
of the tether excite the rotational dynamics of spacecraft
significantly. Therefore, it is critical to accurately model the
reel mechanism, deformation of the tether, spacecraft
rotational dynamics, and their interaction for obtaining
realistic numerical predictions about how tethered space-
craft behave when performing aggressive maneuvers.

Future research directions include designing optimal
orbital maneuvers of tethered spacecraft by adopting
computational geometric optimization techniques based
on the proposed Lie group variational integrator [28]. The
presented tethered spacecraft model can be used for
vibration analysis that includes the rotational dynamics
of both spacecraft and a reel mechanism [9–11]. Also, it
can be generalized for an arbitrary number of rigid bodies
connected by multiple tethers [29,30]. The presence of
multiple-timescales in the fully coupled system also natu-
rally leads to the question of developing multiscale varia-
tional integrators.
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Appendix A. Derivation of the Lie group variational
integrator for a tethered spacecraft

A.1. Derivatives of the discrete Lagrangian

The Lie group variational integrator given by (37) is
expressed in terms of the derivatives of the discrete
Lagrangian and their co-tangent lift. Here, we describe
how to compute the co-tangent lift and the co-Adjoint
operator on the configuration manifold G¼R3 � SOð3Þ�
R� ðR3ÞNþ1 � SOð3Þ without introducing the formal defi-
nition of those operators.

The co-tangent lift of the left translation on a real space
is the identity map on that real space. Using the product
structure of the configuration manifold G¼R3�
SOð3Þ � R� ðR3ÞNþ1 � SOð3Þ, the derivative of the dis-
crete Lagrangian with respect to f k ¼ ðΔxk; Fk;Δspk ;
Δrk;1;…;Δrk;Nþ1; Fsk ÞAG is given by

Tn

eLf k � Df k Ldk ¼ ½DΔxk Ldk ; T
n

I LFk � DFkLdk ; DΔspk
Ldk ;

DΔr1;k Ldk ;…;DΔrNþ 1;k Ldk ; T
n

I LFsk � DFsk
Ldk �: ðA:1Þ

Deriving the derivatives of the discrete Lagrangian with
respect to Δxk, Δspk or Δrk;a is relatively straightforward.
For example, from (31), (34), and (36), the derivatives of
the discrete Lagrangian with respect to xk;Δxk are given by

DΔxk Ldk ¼
1
h

mþmrþμspk
� �

Δxk�
h
2
Dxkþ 1Vkþ1; ðA:2Þ

Dxk Ldk ¼ � h
2
DxkVk�

h
2
Dxkþ 1Vkþ1; ðA:3Þ

where

DxkVk ¼ GM mþmrþμspk
� � xk

Jxk J3
:

Similarly, from (32), the derivative of the discrete Lagran-
gian with respect to Δrk;a for a¼2,…,N is given by

DΔrk;a Ldk ¼ h DΔrk;a Tk;a�1þDΔrk;a Tk;a
� �� h

2
DΔrk;aVkþ1

¼ 1
h
M12

k Δrk;a�1þ
2
h
M1

kΔrk;aþ
1
h
M12

k Δrk;aþ1

þ 1
h

M31
k;aþM23

k;a�1

	 

Δspk �

h
2
Drkþ 1;aVkþ1; ðA:4Þ

where the derivative of the potential energy is given by

Drk;aVk ¼ 2GMμlk
rk;a�1þrk;a

Jrk;a�1þrk;a J3
þ2GMμlk

rk;aþrk;aþ1

Jrk;aþrk;aþ1 J3

þ∇Ve
k;a�1�∇Ve

k;a; ðA:5Þ

∇Ve
k;a ¼

EA
lk

‖rk;aþ1�rk;a‖� lk
‖rk;aþ1�rk;a‖

rk;aþ1�rk;a
� �

: ðA:6Þ

Expressions for the other derivatives of the discrete
Lagrangian with respect to spk , Δspk , rk1 , Δrk1 , rk;Nþ1,
Δrk;Nþ1 can be developed similarly.

Now we find the derivative of the discrete Lagrangian
with respect to Fk. From (31), (35), and (36), we have

DFkLdk � δFk ¼
1
h
tr �δFkJd
� �

:

Similar to (12), the variation of the rotation matrix Fk can be
written as δFk ¼ Fkζ̂ for a vector ζAR3. From the definition of
the co-tangent lift of the left translation, we have

Tn

I LFk � DFk Ldk
� � � ζ¼ 1

h
tr �Fkζ̂kJd
h i

:

By repeatedly applying the following property of the trace

operator, tr½AB� ¼ tr½BA� ¼ tr½ATBT � for any A;BAR3�3, this can

be written as tr �Fkζ̂kJd
h i

¼ tr � ζ̂kJdFk
h i

¼ tr ζ̂k
h

FTk Jd� ¼

�1
2 tr ζ̂k JdFk�FTk Jd

	 
h i
. Using the property of the hat map,

xTy¼ �1
2 tr x̂ŷ

� �
for any x; yAR3, this can be further written

as

Tn

I LFk � DFkLdk ¼
1
h
ðJdFk�FTk JdÞ3 : ðA:7Þ

Similarly, we obtain

Tn

I LFsk � DFsk
Ldk

¼ 1
h
ðJsd Fsk �FTsk Jsd Þ

3 þ ms

h
ρ̂sF

T
sk
RT
sk
Δrk;Nþ1

� h
2
GMmsρ̂sF

T
sk
RT
sk

rkþ1;Nþ1þRskþ 1ρs

Jrkþ1;Nþ1þRskþ 1ρs J
3 : ðA:8Þ

Expression for the derivatives of the discrete Lagrangian with
respect to Rk and Rsk are similarly developed.

The Lie group variational integrator given by (37) also
involves the co-Adjoint map [19]. Using the product
structure of the configuration manifold, the second term
of (37), namely Adn

f � 1
k
ðTn

eLf k � Df k Ldk Þ; corresponds to the
collection of the co-Adjoint maps for each element of
Tn

eLf k � Df k Ldk given by (A.1).
The co-Adjoint map on a real space is the identity map

on that real space. For example,

Adn

�Δxk ðDΔk Ldk Þ ¼DΔk Ldk : ðA:9Þ

The co-Adjoint map on SOð3Þ is given by Adn

F � 1
k

p¼ Fkp¼ ðFkp̂FTk Þ3 for any pAðR3ÞnCsoð3Þn to obtain
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FTk
Tn
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A.2. Lie group variational integrator

Once the derivatives of the discrete Lagrangian and their
co-Adjoint maps are obtained, they are substituted into (37)
and (38) with the contributions of the external control
moment (39), and the Carnot energy loss term (40). The
resulting discrete-time Euler–Lagrange equations of tethered
spacecraft are given by (A.12)–(A.18), where the constraint on
the continuity of the tether at the beginning of the guideway
which is given by (A.13) and (A.15) is satisfied for a¼2,…,N.

For a given gk ¼ ðxk;Rk; spk ; rk;1;…rk;Nþ1;Rsk Þ, we solve
(A.12)–(A.15) for the relative update f k ¼ ðΔxk; Fk;Δspk ;
Δrk;1;…, Δrk;Nþ1; Fsk Þ. Then, the configuration at the next
step, namely gkþ1 is obtained by (30). This yields a discrete-
time Lagrangian flow map ðgk; f kÞ↦ðgkþ1; f kþ1Þ, and this is
iterated.

Special cases: If we set Δspk � 0 for all k, then the
discrete-time Euler–Lagrange equations provide a geo-
metric numerical integrator for tethered spacecraft with
a fixed unstretched tether length. If we chose ρ¼ ρc ¼ 0,
then these equations describe the dynamics of two point
masses connected by tether and a reeling mechanism.

Computational approach: These Lie group variational inte-
grators for tethered spacecraft are implicit: at each time-step,
we need to solve nonlinear implicit equations to find the
relative update f kAG. Therefore, it is important to develop an
efficient computational approach for these implicit equations.
This computational method should preserve the group struc-
ture of fk, and in particular, the orthogonal structure of the
rotation matrix FkASOð3Þ should be preserved. The key idea
of the computational approach proposed in this paper is to
express the rotation matrix Fk in terms of a vector ckAR3

using the Cayley transformation [17]:

Fk ¼ ðIþ ĉkÞðI� ĉkÞ�1: ðA:19Þ
Since the rotation matrix Fk represents the relative attitude
update between two adjacent integration steps, it is a near-to-
identity transformation when the time-step h is sufficiently
small. As such, the expression above remains valid for
numerical simulations even though the Cayley transformation
is only a local diffeomorphism between R3 and SOð3Þ about
ck¼0 and Fk ¼ I.

Our computational approach is as follows. The implicit
equations for Fk and Fsk , namely (A.17) and (A.18), are
rewritten in terms of vectors ck, csk using (A.19). Then, the
relative update map is expressed by a vector Xk ¼ ½Δxk;
ck;Δspk ;Δrk;1;…Δrk;Nþ1; csk �AR3ðNþ1Þþ10, which is solved
by using a Newton iteration. After the vector Xk converges,
the rotation matrices Fk and Fsk are computed by (A.19), to
obtain f kAG.

This computational approach is desirable, since the implicit
equations are solved numerically using operations in a linear
vector space. Rotation matrices, Fk and Fsk , are computed by
numerical iterations on R6, and its orthogonal structure is
automatically preserved by (A.19). It has been shown that this
computational approach is numerically efficient [23].

Appendix B. Supplementary material

Supplementary data associated with this paper can be
found in the online version of http://dx.doi.org/10.1016/j.
actaastro.2014.02.021.
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