
AN INTRODUCTION TO MATLAB

MELVIN LEOK

MATLAB is an interactive environment for numerically manipulating arrays and matrices, as well as providing
tools for visualizing data. It is particularly appropriate for implementing simple numerical algorithms as it provides
the necessary data structures, matrix operations, and visualization tools, thereby allowing one to concentrate on the
algorithmic structure of the numerical methods we study.

Scalars, Arrays, and Matrices

Scalars: To assign a scalar value to a variable,
>> x = 0.2
By default, MATLAB will echo the value you
entered,
x =
0.2000
unless you suppress output by adding a semi-
colon to the end of your command,
>> x = 0.2;

Row vectors: To enter a row vector,
>> y = [1 2 3]
where each term in row is separated by either a
space or a comma.

Column vectors: To enter a column vector,
>> y = [1;2;3]
Notice that the rows are separated by semi-
colons. Alternatively, we can take the matrix
transpose of a row vector,
>> y = [1 2 3]’
where the ’ denotes the transpose operation.

Matrices: As is the case for row and column vec-
tors, we separate terms in each row by a space,
and we separate the rows by semicolons,
>> A = [1 2 3;4 5 6; 7 8 9]

Special Matrices: It is often convenient to con-
struct the following special vectors and matrices,

Equally spaced elements in a vector:
To create a vector starting at 0 and ending
at 2 with intervals 0.5, we enter,
>> v = 0:0.5:2
v = 0 0.5000 1.0000 1.5000 2.0000
We could also have constructed a linear
space that starts at 0 and ends at 2, with
5 evenly spaced entries,
>> v = linspace(0,2,5);

Matrix of zeros: >> Z = zeros(3,5);
Matrix of ones: >> X = ones(3,5);
Identity matrix: >> I = eye(3);
Diagonal matrices: If you wish to create a

diagonal matrix with entries 1,2,3, we en-
ter,
>> diag([1,2,3]);

To create a 4 x 4 matrix with entries
1,2,3 in the diagonal above the main di-
agonal, we enter,
>> diag([1,2,3],1);

Selecting parts of a matrix: Given a matrix,
A =
1 2 3
4 5 6
7 8 9
To select the entry in row 1, column 2, we enter,
>> A(1,2)
ans = 2
To select a submatrix, say rows 1 and 2, and
columns 2 and 3,
>> A(1:2,2:3)
ans =
2 3
5 6

Concatenating matrices: Matrices can be com-
bined together. Given a row vector,
>> v=[1 2]; we can either construct a 2 x 2
matrix,
>> [v ; v]
ans =
1 2
1 2
or a row 4 vector,
>> [v v]
ans =
1 2 1 2

Matrix operations: The follows are some ma-
trix level operations in MATLAB,

+ Addition
- Subtraction
* Multiplication
^ Power
’ Conjugate transpose

If you would like to operate on each term in
the matrix individually, say given a matrix,
>> A = [1 2;3 4]; we would like to obtain a
new matrix consisting of squares of each term,
we would enter,

1



2 MELVIN LEOK

>> A.^2
ans =
1 4
9 16
By prefixing the ^2 with a period, we cause
MATLAB to apply the operation elementwise.
In contrast,
>> A^2
ans =
7 10
15 22

Programming

Relational operators: These operators provide
a means of comparing the values of two objects,
and return a boolean value.

== Equal
~= Not equal
< Less than
> More than
<= Less than or equal
>= More than or equal

Logical operators: These operators implement
boolean gates, and other logical operations.

~ NOT
& AND
| OR
xor Exclusive OR
any True if any elements is nonzero
all True if all elements are nonzero

For loops: To loop through a set of commands
with an index variable i varying from initial
value i0, final value i1, and step delta, we have,
for i=i0:step:i1
...
end
Note that the step can be negative if the final
value is less than the initial value. If the step
size is 1, we can use the more compact notation,
for i=i0:i1.

If statements: These have the form,
if (logical-expression)
...
elseif (logical-expression)
...
else
...
end
where the elseif and else terms are optional.

While loops: The while loop executes the inner
loop as long as the condition is true.
while (while-expression)
...
end

Functions: It is often helpful to construct user-
defined functions. These are saved as individual
M-files, which have the form,
function [out1,out2,out3] = f (in1,in2,in3)
...
which defines a function f that takes in1, in2,
in3 as inputs, and returns out1, out2, out3
as outputs. The M-file is saved as f.m, and it is
called by the following command,
>> [a,b,c]=f(x,y);
Where we notice that we require separate vari-
ables a,b,c to store the output of the function.

Passing functions to functions: Say we have a
function that computes the slope of the line join-
ing the endpoints of another function. This is to
say that given f(x), it computes,

m =
f(b) − f(a)

b− a
.

It would have to take as one of its inputs
the function f(x), which we can do as follows,
function m=slope(func,a,b)
fa=feval(func,a);
fb=feval(func,b);
m=(fb-fa)/(b-a);
where feval allows us to evaluate the function
that was passed in at a specific point. Now, say
we wish to apply this function to y = x2 +3∗x3.
We first construct another function,
function y=f(x)
y=x^2+3*x^3;
We then pass the function f to the function
slope as follows
>> slope(@f, 0, 1)

Graphics and Visualization

To plot a function, we need to construct two arrays,
giving the points on the x-axis, and the corresponding
points on the y-axis. Say we wish to plot sin(x) over the
interval x = 0..π. We first set up the array for x,
>> x=linspace(0,pi,50);
To evaluate sin(x) on is array, we simply enter,
>> y=sin(x);
and to plot the result, we use,
>> plot(x,y);
To plot both sin(x), and cos(x) simultaneously, we would
additionally do,
>> z=cos(x);
>> plot(x,y, x,z,’o’);
where the ’o’ is an optional parameter asking MATLAB
to plot the second function using circles instead.

To change the viewing axis, we use the axis com-
mand,
>> axis([0 pi -1 1]);

A title, axis labels, and legends can be added using,
title(’y=sin(x), y=cos(x)’);
xlabel(’x’);



AN INTRODUCTION TO MATLAB 3

ylabel(’y’);
legend(’sin(x)’, ’cos(x)’);
The resulting plot is shown as follows.

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
y=sin(x), y=cos(x)

x

y

sin(x)
cos(x)

Another approach is to use fplot, which allows us to
plot a function directly. It is called as follows,
>> fplot(’sin’,[0,pi],50)
where the 50 determines the number of sample points to
use. It can be omitted, in which case the default is 25.

To plot in three-dimensions, we need to set up a 2-
dimensional mesh as follows,
>> x = 0:0.1:2*pi;
>> y = -pi:0.1:pi;
>> [x,y] = meshgrid(x,y);
>> z = sin(x).*cos(y);

>> mesh(z)
Note that we needed to use the elementwise multiplica-
tion .* in defining z.

0

20

40

60

80

0

20

40

60

80
−1

−0.5

0

0.5

1

Additional resources

Cleve Moler’s book entitled, Numerical Computing
with MATLAB, is also a useful reference with sample
MATLAB codes for many of the numerical methods
we will be studying. It is available for download at
http://www.mathworks.com/moler/

Online help for MATLAB is also available on the web
at http://www.mathworks.com/access/helpdesk/
help/techdoc/matlab.shtml, and within MATLAB
itself, by entering help function name.

Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093.
E-mail address: mleok@math.ucsd.edu


