Problem 1 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions such that

$$
f(x) f(y)=[g(x+y)], \quad f(0)=1
$$

Show that $f(x)=1$ for all $x \in \mathbb{R}$. Here $[x]$ denotes the integer part of x.
Let $x, y \in \mathbb{R}$. We have

$$
f(x+y) f(0)=[g(x+y)], \quad f(x) f(y)=[g(x+y)] \Longrightarrow f(x+y) f(0)=f(x) f(y) .
$$

Since $f(0)=1$, we obtain

$$
f(x+y)=f(x) f(y)
$$

Thus $f(n x)=f(x)^{n}$ for all integers $n>0$ by induction on n. Setting $x \mapsto x / n$, we find

$$
f(x)=f(x / n)^{n} .
$$

For $y=0$, we obtain $f(x)=[g(x)]$. Thus $f(x)$ is an integer for all $x \in \mathbb{R}$.
Fix $x \in \mathbb{R}$ and let $n>0$ be an integer. Since

$$
f(x)=f(x / n)^{n}
$$

and $f(x / n)$ is an integer, it follows that $f(x)$ is an integer which is always an nth power. Since n is arbitrary, this implies $f(x)=0$ or $f(x)=1$.

If $f(x)=0$, then

$$
0=f(x) f(2-x)=f(2)=f(1) f(1)=1
$$

yields a contradiction. Thus $f(x)=1$ for all $x \in \mathbb{R}$.

Problem 2 Let S be a set of 132 positive integers such that $3 \in S$ and $97 \in S$. Show that there exist three distinct elements $a, b, c \in S$ and $[a, b] \leq c$. Here, $[a, b]$ denotes the least common multiple of a and b.

If $1 \in S$ then $(1,3,97)$ is a triple with the required property. Similarly if $2 \in S$, then $(2,3,97)$ is a triple with the required property. Thus, we may assume $1,2 \notin S$.

Let $m=\min \{s: s \in S, s \neq 3\}$ and $M=\max \{s: s \in S\}$. Note $3<m<M$. Also $M>97$ since S has 132 elements which are distinct positive integers.

If $M \geq 3 m$, then $(3, m, M)$ is a triple with the required property since $[3, m] \leq 3 m \leq M$. Thus, we may assume $M \leq 3 m-1$ or equivalently $m \geq \frac{M+1}{3}$.

If $M \geq 291=3 \cdot 97$, then $(3,97, M)$ is a triple that works. Thus, we may assume $M \leq 290$.

If there exists $s \in S \backslash\{3, M\}$ with $3 \mid s$ then $(3, s, M)$ is a triple with the required property since $[3, s]=s<M$. Thus, we may assume all elements in $S \backslash\{3, M\}$ are not divisible by 3.

By induction on the nonnegative integers α, β, we show that the set $\{\alpha, \alpha+1, \cdots, \beta\}$ contains $\leq \frac{2}{3}(\beta-\alpha+2)$ numbers not divisible by 3 .

Recall that S has 132 elements. Two of these elements are 3 and M. The remaining ones are in the set $\{m, \ldots, M-1\}$ and are not divisible by 3 . There are $\leq \frac{2}{3}(M-m+1)$ elements in the latter set which are not divisible by 3 . Thus

$$
132 \leq 2+\frac{2}{3}(M-m+1)
$$

Using $m \geq \frac{M+1}{3}$, we obtain

$$
132 \leq 2+\frac{2}{3}\left(M-\frac{M+1}{3}+1\right) \Longrightarrow M>290
$$

a contradiction.

Problem 3 Let $n \geq 3$. Prove that the maximum number of line segments which can be drawn between the vertices of a regular n-gon in the plane without having two disjoint line segments is n.

First we may consider all $n-1$ lines segments containing a vertex v of a regular n-gon plus the single line segment between the vertices immediately adjacent to v in the n-gon to get n line segments without two disjoint line segments. So at least n line segments are possible without two disjoint line segments.

Now let L be any collection of $n+1$ line segments between the vertices of a regular n gon. For each vertex v of the n-gon contained in some line segment, let ℓ_{v} denote the line segment joining v to the nearest vertex of the n-gon in the clockwise direction. Remove for each vertex v the line segment ℓ_{v}. The number of line segments removed is at most n. Therefore there exists a remaining line segment joining a vertex u to a vertex v. Now ℓ_{v} and ℓ_{u} are disjoint line segments. Therefore at most n line segments are possible if no two are disjoint.

We conclude the maximum number of line segments is n.

Problem 4 Prove or disprove: For any positive integer N there exists a set $S \subset\left\{1,2, \ldots, N^{2}\right\}$ with $|S|=N$ so that there is no integer n that can be written as $n=x+y$ with $x, y \in S$ in more than 2023 different ways.

The statement is true.
For a prime $p>2$ let S_{p} denote the set of integers of the form $x+2 p\left(x^{2}(\bmod p)\right)$ where $1 \leq x \leq p$ is an integer and $\left(x^{2}(\bmod p)\right)$ is the unique integer between 0 and $p-1$ (inclusive) that is congruent to x^{2} modulo p. We note that $S_{p} \subset\left\{1,2, \ldots, 2 p^{2}\right\}$, and $\left|S_{p}\right|=p$. We also claim that any integer n can be written as a sum of two elements of S_{p} in at most two ways.

In particular, suppose that
$n=\left(x+2 p\left(x^{2} \quad(\bmod p)\right)\right)+\left(y+2 p\left(y^{2} \quad(\bmod p)\right)\right)=\left(z+2 p\left(z^{2} \quad(\bmod p)\right)\right)+\left(w+2 p\left(w^{2} \quad(\bmod p)\right)\right)$.
Taking both sides modulo p, we have that $x+y \equiv z+w(\bmod p)$. Furthermore, noting that $1<x+y, z+w \leq 2 p$, subtracting 1 from both sides, dividing by $2 p$ and taking the floor yields that

$$
\left(x^{2} \quad(\bmod p)\right)+\left(y^{2} \quad(\bmod p)\right)=\left(z^{2} \quad(\bmod p)\right)+\left(w^{2} \quad(\bmod p)\right) .
$$

Taking both sides modulo p yields that $x^{2}+y^{2} \equiv z^{2}+w^{2}(\bmod p)$. So if $x+y \equiv z+w \equiv a$ $(\bmod p)$ and $x^{2}+y^{2} \equiv z^{2}+w^{2} \equiv b(\bmod p)$, then $x y \equiv z w \equiv\left(a^{2}-b\right) / 2(\bmod p)$. Therefore, $\{x, y\}$ and $\{z, w\}$ are both the set of roots modulo p of $t^{2}-a t+\left(a^{2}-b\right) / 2$. Thus, $\{x, y\}=$ $\{z, w\}$, so n can be written as a sum of two elements of S in at most two ways.

For the full solution, note that if $N<2023$ we can just take $S=\{1,2, \ldots, N\}$. Otherwise, let $p>2$ be a prime with $N / 10<p<N / 5$. Let

$$
S_{0}=\left(S_{p}+2 p^{2}\right) \cup\left(S_{p}+4 p^{2}\right) \cup\left(S_{p}+6 p^{2}\right) \cup \ldots \cup\left(S_{p}+20 p^{2}\right),
$$

where $\left(S_{p}+m\right)$ denotes the set of elements of the form $x+m$ with $x \in S_{p}$. Note that S_{0} has $10 p>N$ elements, each of size at most $22 p^{2}<N^{2}$. Furthermore, no integer n can be written as the sum of an element of $\left(S_{p}+m_{1}\right)$ and an integer in $\left(S_{p}+m_{2}\right)$ in more than two ways (since each such way corresponds to a way of writing $n-m_{1}-m_{2}$ as a sum of two elements of S_{p}), so no integer n can be written as the sum of two elements of S in more than $2 \cdot 10^{2}<2023$ ways.

Taking a S to be any subset of S_{0} of size exactly N gives a set with the desired property.

