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PART II
4 Questions

Welcome to Part II of the contest!

Please print your Name, School, and Contest ID number:

Name
First Last

School

Contest ID number

Please do not open the exam until told do so by the proctor.

EXAMINATION DIRECTIONS:

1. Print (clearly) your Name and Contest ID number on each page of the contest.

2. Part II consists of 4 problems, each worth 25 points. These problems are “essay”
style questions. You should put all work towards a solution in the space following
the problem statement. You should show all work and justify your responses as best
you can.

3. Scoring is based on the progress you have made in understanding and solving the
problem. The clarity and elegance of your response is an important part of the
scoring. You may use the back side of each sheet to continue your solution, but be
sure to call the reader’s attention to the back side if you use it.

4. Give this entire exam to a proctor when you have completed the test to your satis-
faction.

Please let your coach know if you plan to attend the Awards Banquet on Wednesday,
April 27, 6:00–8:30pm.



Name: ID Number:

Problem 1 Solve the equation below for x:

cos(π log3(x+ 6)) cos(π log3(x− 2)) = 1.

Solution: The only solution is x = 3.

Note that since | cos(x)| ≤ 1, this can have a solution only if | cos(π log3(x + 6))| =
| cos(π log3(x− 2))| = 1. This happens only if log3(x+ 6) and log3(x− 2) are both integers.
Thus, it must be the case that x + 6 = 3n and x − 2 = 3m for some integers n and m.
Subtracting, we find that 3n − 3m = 8. The fact that 3n > 8 implies that n ≥ 2. If n = 2,
we must have m = 0, which gives x = 3, which is a solution. If n > 2, then either
m ≥ n in which case 3n − 3m ≤ 0 (which cannot happen), or m ≤ n − 1, in which case
3n − 3m ≥ (2/3)3n ≥ (2/3)27 = 18 > 8 (which again is impossible).

Thus the only solution is x = 3.
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Problem 2 Let BD be a fixed line segment. Find the geometric locus (set of all points) A such
that there exists an isosceles triangle ABC for which AB = AC so that BD is the median of the
edge AC.

Solution: The locus is the circle of radius (2/3)BD centered at the point on BD distance
BD/3 beyond D.

Given a point A, let C ′ be the reflection of A across D. We note that BD will be the
median of AC if and only if C = C ′. The triangle ABC ′ is isosceles with AB = AC ′ if and
only if AB = 2AD. Thus, we need the locus of points so that AB = 2AD. This is a circle
of Apollonius.

In particular, if we put B and D in the coordinate plane with B = (0, 0) and D = (1, 0),
then the set of allowable points A are the points (x, y) with√

x2 + y2 = 2
√

(x− 1)2 + y2.

Squaring, we see that this is equivalent to

x2 + y2 = 4x2 − 8x+ 4 + 4y2.

Rearranging, this gives
(x− 4/3)2 + y2 = 4/9.

This is the circle of radius 2/3 centered at (4/3, 0).
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Problem 3 Suppose we have an infinite sequence of numbers a0, a1, . . . , an, . . ., all between 0 and
1, such that for any n ≥ 0,

an+2 − 2an+1 + an ≥ 0 .

Show that the sequence must be decreasing, and that 0 ≤ an − an+1 ≤ 1
n+1

for all n.

Solution: Define the sequence of finite differences Dn = an+1 − an. Notice that the equa-
tion in question is exactly equivalent to Dn+1 ≥ Dn, and the desired statement is to prove
that 0 ≥ Dn ≥ −1/(n+ 1).

On the one hand, if Dn > 0 for some n, then Dn ≤ Dn+1 ≤ Dn+2 ≤ . . .. This means that
for each m ≥ n that am+1 ≥ am +Dn. By induction on k this implies that an+k ≥ an + kDn.
Taking k > 1/Dn, this is larger than 1, yielding a contradiction.

If, on the other hand,Dn < −1/(n+1), we have that−1/(n+1) > Dn ≥ Dn−1 ≥ Dn−2 ≥
. . . ≥ D0. Thus, for m ≤ n, am − am+1 = −Dm > 1/(n + 1). Therefore, by induction on k
we have that an+1−k > an+1+k/(n+1). Applying this for k = n+1 yields a contradiction.
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Problem 4 Suppose that z1, z2, . . . , zn are complex numbers so that for every integer k from 1 to
n we have that

∑n
i=1 z

k
i = 2n. What is

∑n
i=1 z

n+1
i ?

Solution: The answer is 2n+ (−1)n+1(2n)
(
2n−1
n

)
.

Thinking of the zi as formal variables let pk denote the polynomial
∑n

i=1 z
k
i . We claim

that there is a polynomial P of degree at most n + 1 so that pn+1 = P (p1, p2, . . . , pn). This
is a standard fact in the theory of symmetric polynomials, but we prove it below.

First, let σi denote the ith elementary symmetric polynomial in the z’s (i.e. the sum
of all products of i distinct zj’s). We claim that each σi is a polynomial in the pj’s for
j ≤ i. We show this by starting with σi and repeatedly subtracting off products of the pj’s
until there is nothing left. We will only use terms here total degree equal to i, so at any
given stage we will have some symmetric polynomial in the zj’s that is homogenous of
degree i. We consider a term with as many different z’s as possible, say za11 z

a2
2 z

a3
3 · · · z

ak
k .

By subtracting off an appropriate multiple of pa1pa2pa3 · · · pak we can remove this term
(and the other symmetric ones) and introduce only new terms with fewer z’s in them. By
repeating this process, eventually we will eliminate all terms with k distinct zj’s in them,
and then iterating again, we will remove all terms with k + 1 distinct zj’s and so on until
nothing is left.

Next, we claim that each pi can be written as a polynomial in the σj’s with each term
homogeneous of degree i in the z’s. We again do this by starting with pi and subtracting
off polynomials in the σj’s until nothing is left. At each stage we will have a homogenous
degree i symmetric polynomial in the z’s. We now take a term with as few z’s as possible
(say za11 z

a2
2 z

a3
3 · · · z

ak
k with a1 ≥ a2 ≥ . . . ≥ ak). Subtracting off an appropriate multiple

of σak
k σ

ak−1−ak
k−1 · · ·σa1−a2

1 , this eliminates that term (and the symmetric ones) while only
introducing new terms with more z’s in them. We can repeat this process until there is
nothing left.

Thus, we can write pn+1 as a polynomial in the σi, which can be written as polynomials
in the pj for j ≤ n. If we throw away all the terms not of homogeneous degree n+1 in the
z’s, the equality will still hold, and we will be left with a polynomial of degree at most n.

Note that if p1 = p2 = . . . = pn = x for some x that pn+1 = P (x, x, . . . , x) = Q(x)
for Q some degree at most n + 1 polynomial. Our answer is Q(2n). We will attempt to
determine Q be finding its values at certain special numbers.

Note that if k of the z’s are 1 and the other n−k are 0 that pi = k for all i. ThusQ(k) = k
for k = 0, 1, 2, . . . , n. This means that Q(x) − x has roots at 0, 1, 2, . . . , n, and since it is a
degree n + 1 polynomial (and thus has at most n + 1 roots), Q(x) = x + Cnx(x − 1)(x −
2) · · · (x− n) for some Cn.

To find C we note that if we take w to be a primitive (n + 1)st root of unity and take
zi = wi then for 1 ≤ k ≤ n, we have that

pk =
n∑

i=1

zki =
n∑

i=1

wik =
n∑

i=0

(wk)i − 1 =
1− wk(n+1)

1− wk
− 1 = −1.
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On the other hand, we have that

pn+1 =
n∑

i=1

zki =
n∑

i=1

1 = n.

Thus, Q(−1) = n. So

n = −1 + Cn(−1)(−2) · · · (−n− 1) = −1 + Cn(−1)n+1(n+ 1)!.

Therefore, Cn = (−1)n+1/n!.

The answer we are looking for is Q(2n) which is

Q(2n) = 2n+ (−1)n+1/n!(2n)(2n− 1) · · · (n) = 2n+ (−1)n+1(2n)

(
2n− 1

n

)
.
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