Problem 1 Matt has a biased coin that is more likely to come up heads than tails. He flips this coin n times and counts the number of tails. Show that this number is more likely to be even than it is to be odd.

Solution: Let $p>1 / 2$ be the probability that a single flip comes up heads. Let a_{n} be the probability that we have an even number of tails after n flips. Clearly $a_{0}=1$. For $n>1$, we have an even number of tails if and only if we either had an even number after $n-1$ flips and got a heads on the $n^{t h}$ flip, or had an odd number after $n-1$ flips and got a tails. Thus,

$$
a_{n}=p a_{n-1}+(1-p)\left(1-a_{n-1}\right)=(1-p)+(2 p-1) a_{n-1} .
$$

From here it is easy to see by induction on n that $a_{n}=1 / 2+(2 p-1)^{n} / 2>1 / 2$.

Problem 2 Let $n \geq 2$ be a positive integer and X be a set containing n^{2} consecutive numbers. Let A be a subset of X with n elements. Show that $X \backslash A$ contains at least one arithmetic progression with n elements.

Solution: Arrange the numbers in an $n \times n$ table in increasing order in each row and each column. If A "misses" a row or a column, we have an arithmetic progression; else, if A has exactly one element in each row/column, index with i_{1} the column where the element of A is in row 1 , with i_{2} the column where the element of A is in row 2 , etc. If any $i_{k+1} \geq i_{k}$, we have an arithmetic progression between the rows k and $k+1$. Else the only way to do it is by taking the anti-diagonal; in which case, the elements in the first upper-anti-diagonal (positions $(1,(n-1)),(2,(n-2)), \ldots((n-1), 1))$ and $((n-1), n)$ give an arithmetic progression.

Problem 3 Let $n>0$ be an integer. It is known that the difference d of two divisors of 55^{n} is a power of 2 . Show that $d=4$.

Solution: Let $1 \leq d_{1}<d_{2}$ be the two divisors whose difference is d. Write

$$
d=d_{2}-d_{1}=2^{c} .
$$

The divisors d_{1} and d_{2} of 55^{50} can only contain the primes 5 and 11 in their factorization. Furthermore, d_{1} and d_{2} cannot be both divisible by 5 at the same time and they cannot be both divisible by 11 at the same time since their difference $d=2^{c}$ is divisible neither by 5 nor by 11. Therefore,

$$
d_{1}=5^{a}, d_{2}=11^{b} \text { or } d_{1}=11^{a}, d_{2}=5^{b} .
$$

We analyze the equations

$$
5^{a}-11^{b}=2^{c} \text { and } 11^{a}-5^{b}=2^{c} .
$$

We show $c=2$.
(i) Assume $11^{a}-5^{b}=2^{c}$ holds.

- Reducing the equation mod 5 we obtain

$$
2^{c} \equiv 1 \quad \bmod 5 .
$$

Inspecting $c \bmod 4$, we obtain $c \equiv 0 \bmod 4$, so in particular c is even.

- Noting that $11^{a}-5^{b}$ is even we obtain that $c>0$ so $c \geq 2$.
- Reducing the equation $\bmod 4$ we obtain

$$
(-1)^{a}-1 \equiv 0 \quad \bmod 4 \Longrightarrow a \text { even. }
$$

- Reducing the equation mod 3 we obtain

$$
(-1)^{a}-(-1)^{b} \equiv(-1)^{c} \quad \bmod 3
$$

This cannot hold since a is even and c is even.
(ii) Assume $5^{a}-11^{b}=2^{c}$ holds.

- Reducing mod 3 we find

$$
(-1)^{a}-(-1)^{b} \equiv(-1)^{c} \quad \bmod 3
$$

which shows a, b cannot have the same parity.

- We reduce mod 8 to show that $c=2$ is the only possibility.

If a is even and b is odd, write

$$
a=2 k, \quad b=2 \ell+1,
$$

and note that

$$
5^{a}-11^{b}=25^{k}-11 \cdot 121^{\ell} \equiv 1-11 \cdot 1 \quad \bmod 8 \equiv 6 \bmod 8 \Longrightarrow 2^{c} \equiv 6 \bmod 8
$$

By inspection, this is impossible for $c \leq 2$. For $c \geq 3$ we obtain a contradiction since $2^{c} \equiv 0 \bmod 8$.

If a is odd and b is even, write

$$
a=2 k+1, \quad b=2 \ell,
$$

and note that

$$
5^{a}-11^{b}=5 \cdot 25^{k}-121^{\ell} \equiv 5 \cdot 1-1 \equiv 4 \bmod 8 \Longrightarrow 2^{c} \equiv 4 \bmod 8
$$

For $c \geq 3$ we obtain a contradiction since $2^{c} \equiv 0 \bmod 8$. Thus $c \leq 2$. By inspection, $c=2$ is the only possibility.

We showed $c=2$ and therefore

$$
d=2^{c}=4
$$

The difference $d=4$ can be achieved for instance for the pairs $(1,5)$ or $(121,125)$.

Problem 4 Let C be a set of n points on a circle in the plane. Prove that amongst any set of $n+1$ line segments between points in C, there exist two geometrically disjoint line segments, but that n segments are not sufficient.

Solution: We prove the latter part first. In particular, we show that there is some set of n lines so that any pair intersect. We can do this for example by picking one of our points p and drawing the $n-1$ segments from p to each other point and the one segment between p 's nearest neighbors on either side. The segments through p all intersect at p, and it is easy to see that the remaining segment intersects each of the others.

To show the other direction, for each of the n points p, select the segment (p, q) from our list where q is the closest point counting clockwise from p for which there is a segment. Since there are $n+1$ segments and only n points, some segment (p, q) must not have been selected. Since this was not the segment selected from p, there must be another segment q^{\prime} so that we have a segment $\left(p, q^{\prime}\right)$ in our set and p, q^{\prime}, q appear in that order going clockwise. Similarly, there must be a segment $\left(p^{\prime}, q\right)$ so that q, p^{\prime}, p appear in that order going clockwise. Therefore, $\left(p, q^{\prime}\right)$ and $\left(p^{\prime}, q\right)$ are two segments in our set that do not intersect.

