
Name: ID Number:

Problem 1 Draw n dots in a line. An arc diagram is a way to draw arcs (possibly none) that
join some of the dots so that the arcs are all drawn above the line and dots and so that no two arcs
intersect or share a dot. When n = 4, here are all of the arc diagrams:

Let mn be the number of ways an arc diagram can connect n dots (so by the above, m4 = 9, and
by convention, m0 = m1 = 1). Prove that for n ≥ 2:

mn = mn−1 +
n−2∑
i=0

mimn−2−i.

Solution: Let n ≥ 2. Each arc diagram on n dots is of one of two types: either the leftmost
dot is in an arc or it isn’t. For the first type, removing this dot gives a bijection with the
set of arc diagrams on n− 1 dots, so there are mn−1 arc diagrams of this form.

For the second type, we can further split them based on which other dot the first dot
is connected to. Let i be the number of dots underneath this arc. Then the number of
diagrams with this value of i is mimn−2−i because no arcs can go between these i dots
and the dots to the right of the first arc because of the non-intersecting condition, and so
we are picking an arc diagram just on these i dots together with an arc diagram on the
last n − 2 − i dots. This value of i can be anything from 0 to n − 2, so the second type of
diagrams is counted by

∑n−2
i=0 mimn−2−i.
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Problem 2 Find all real numbers x and positive integers n such that

(1 + (1 +
√
2)x)n + (1 + (

√
2− 1)x)n = 8.

Solution: The solutions are x = 0, n = 2 and x = ±2, n = 1.

Indeed, let a = 1 +
√
2 so that a−1 =

√
2− 1. The equation to be solved is

(1 + ax)n + (1 + a−x)n = 8. (1)

We have
(ax/2 − 1)2 ≥ 0 =⇒ 1 + ax ≥ 2 · ax/2 =⇒ (1 + ax)n ≥ 2n · anx/2 (2)

and similarly
(1 + a−x)n ≥ 2n · a−nx/2. (3)

Next, we have
(anx/4 − a−nx/4)2 ≥ 0 =⇒ anx/2 + a−nx/2 ≥ 2.

Thus
8 = (1 + ax)n + (1 + a−x)n ≥ 2n · (anx/2 + a−nx/2) ≥ 2n+1.

This shows that n = 1 or n = 2.

If n = 2, we must have equality throughout. In particular, from (2), we obtain

ax = 1 =⇒ x = 0.

If n = 1, equation (1) becomes
ax + a−x = 6.

Set y = ax. Then

y +
1

y
= 6 ⇐⇒ y2 − 6y + 1 = 0 ⇐⇒ y = 3± 2

√
2 ⇐⇒ ax = 3± 2

√
2.

We can directly verify that

(1 +
√
2)2 = 3 + 2

√
2 and (1 +

√
2)−2 = (3 + 2

√
2)−1 = 3− 2

√
2.

This implies that x = ±2.
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Problem 3 Let B denote the square n × n grid with each square colored red or white. Suppose
that if a white square in B has at least two red neighboring squares (i.e. sharing a side with it),
then that white square becomes red. What is the minimum number of squares that would need to
be colored red so that following this procedure would eventually lead the entire board to be red?

Solution: The answer is n. It is easy to see that you can color n red squares to convert
the entire grid, by coloring the squares along a long diagonal red. After one round, the
squares on the diagonals immediately above and below will be red, and the next round
the diagonals below that and so on.

To show that you cannot achieve this with fewer red squares, we note that every time
a white square adjacent to two red ones is colored red, the perimeter of the region defined
by the set of red squares does not get any bigger. This is because at most two new edges
are added to this perimeter, while at least two edges are removed. Thus, if you want to
end up with the entire grid (which has perimeter 4n) being red, your initial collection of
s squares must have perimeter at least 4n. However, such a set cannot have perimeter
more than 4s, so we get that s must be at least n.
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Problem 4 Sage is playing tag with n of their friends. The playing area is an infinite plane Sage
starts at the origin and their friends start at a point p two units away. Sage’s friends each run
at unit speed, while Sage can run at twice that. Sage’s goal is run until they have caught each of
their friends at least once. Show that the friends have a strategy which forces Sage to take at least
(1.01)

√
n−1 time in order to catch all of them.

Solution: The strategy is as follows. Let m = d
√
ne. Each of Sage’s friends picks a distinct

pair of integers (a, b) with 1 ≤ a, b ≤ m (this is possible since m2 ≥ n). Assume that Sage
starts at point (−2, 0) in the plane and the friends start at point p = (0, 0). Then the friend
with numbers (a, b) can run so that at time t they are in location (at/m

√
2, bt/m

√
2). We

note that this involves them running at speed
√

a2+b2

2m2 ≤ 1 and so is a possible strategy.

When responding to this, suppose that Sage catches their ith friend at time ti. Since all
the friends are running to locations with positive x-coordinate, it will take Sage at least
unit time to reach any, so t1 ≥ 1. If Sage catches their ith friend at time ti, then at that
time all other friends must be at distance at least ti/(m

√
2) from Sage. Since the sum of

Sage’s speed with that of any friends is at most 3, it must take Sage an additional time of
at least ti/(3m

√
2) to catch their next friend. Thus, ti+1 ≥ ti(1 + 1/(3m

√
2)). Therefore,

we conclude that no matter what strategy Sage uses, it will take time at least tn ≥ (1 +
1/(3m

√
2))n−1 to catch all of their friends.

We note that

(1 + 1/(3m
√
2))m =

m∑
k=0

(
m

k

)
(1/(3m

√
2))k ≥ 1 +m/(3m

√
2) = 1 + 1/(3

√
2) > 1.1.

Therefore, we have that the time Sage requires is at least (1.1)(n−1)/m. Since m ≤
√
n + 1,

we have that (n− 1)/
√
m ≥

√
n− 1, and so we have that the total time required is at least

(1.1)
√
n−1.
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