59th ANNUAL HIGH SCHOOL HONORS MATHEMATICS CONTEST

April 16, 2016 on the campus of the University of California, San Diego

> PART II: Solutions 4 Questions

1. A fair coin is tossed 10 times. What is the probability that it comes up heads 5 times in a row, but not 6 times in a row?

Solution. Since there are no 6 heads in a row, the configuration of tosses must look like one of the following:

HHHHHTABCD THHHHHTABC ATHHHHHTBC ABTHHHHHTC ABTHHHHHTC ABCTHHHHHT ABCDTHHHHH

where A, B, C, D can be heads H or tails T independently. All 6 of these types of configurations are distinct: there is no way to select the values of A, B, C, D so that two of them actually match up. So to count the number of configuration, we just need to count the number of each type. As A, B, C, D can each take the two values H or T independently, the first and sixth patterns each account for $2^4 = 16$ configurations, while the middle 4 each account for $2^3 = 8$ configurations. So there are $2 \cdot 16 + 4 \cdot 8 = 64 = 2^6$ configurations having a string of 5 heads, but no string of 6 heads. This is out of 2^{10} total possible configurations; so the probability is

$$\frac{2^6}{2^{10}} = \frac{1}{2^4} = \frac{1}{16}.$$

2. Let *R* be a rectangle whose sides have lengths 2 and 3. Choose any four points inside *R*. Prove that there exist two of these points whose distance from each other is less than $\sqrt{5}$.

Solution. Divide *R* into three 1×2 rectangles, as shown in the picture below:

By the pigeonhole principle, we can find two of the four points inside or on the sides of one of the rectangles, called *S*. The distance between these points is at most $\sqrt{5}$ (the length of the diagonal of *S*). The distance cannot be equal to $\sqrt{5}$, since this would force the points to be opposite vertices of *S*, contradicting that the points lie inside *R*.

3. What is the largest positive integer *n* so that *n* is not the area of a union of two squares with corners on lattice points and sides parallel to the *x*- and *y*-axes? For example, 12 is the area of the following union of squares of side lengths 2 and 3.

Solution. The answer is 3. Such a union cannot have area 3 since if either square has side length 2 or more that is already too much, and otherwise the total area is at most 1 + 1 = 2 < 3.

The more difficult problem is showing that any n > 3 can be written as such an area. Let m be the largest integer so that $m^2 \le n$. Note that $m \ge 2$ and that $n = m^2 + k$ for some integer $0 \le k \le 2m$. We split into cases based on whether k is even or odd. If k is odd, we write k = 2s + 1, and note that n is the area of the union of the following pair of squares of side lengths m and s + 1 overlapping in a square of side length s.

If k is even, we need a few more cases. Firstly if k = 0, we write n as the area of union of a square of side length m with itself. If k = 2, we write it as the union of a square of side length 2 with one of side length m that overlap in a 1×2 rectangle, as show below:

Finally, if k > 2 is even, we write k = 2s with $s \le m$. We write n as the union of a square of side length n with a square of side length s that overlap in an $s \times (s - 2)$ rectangle as shown below:

4. Let $p_1 = 2$ and define p_{n+1} to be the largest prime divisor of $1 + p_1 p_2 \dots p_n$. Is 11 a term in the sequence $\{p_n\}$?

Solution. 11 is not a term in the sequence.

For a contradiction, assume $p_N = 11$ for some index *N*. By direct calculation we see that

$$p_1 = 2, p_2 = 3, p_3 = 7, p_4 = 43,$$

so $N \geq 5$. Let

$$A = 1 + p_1 p_2 p_3 \dots p_{N-1}.$$

In particular

$$A = 1 + 2 \cdot 3 \cdot 7 \cdot B = 1 + 42B$$

for $B = p_4 \dots p_{N-1}$. This shows that *A* cannot have 2, 3, 7 as prime factors. Since by assumption 11 is the largest prime dividing *A*, 5 and 11 are the only possible prime factors of *A*. Therefore,

$$A = 5^k \cdot 11^\ell,$$

for integers $k, \ell \ge 0$. We reduce A modulo 3, 4 and 7 to derive a contradiction:

(i) We begin by claiming that p_n is odd for all n > 1. Indeed, since $p_1 = 2$, it follows that $1 + p_1 \dots p_{n-1}$ is odd, and thus $p_n \neq 2$ being a divisor of $1 + p_1 \dots p_{n-1}$. As a consequence,

$$A = 1 + 2p_2 \dots p_{N-1} = 1 + 2 \cdot \text{ odd number}$$

so $A \equiv 3 \mod 4$. Thus

$$5^k \cdot 11^\ell \equiv 3 \mod 4 \implies 1 \cdot (-1)^\ell \equiv -1 \mod 4 \implies \ell \text{ is odd.}$$

(ii) Since $A = 1 + 42B \implies A \equiv 1 \mod 3$. Reducing modulo 3, we have

$$5^k \cdot 11^\ell \equiv 1 \mod 3 \implies (-1)^k \cdot (-1)^\ell \equiv 1 \mod 3 \implies k + \ell \text{ is even.}$$

As a result of (i) and (ii), both k and ℓ must be odd.

(iii) Finally,
$$A = 1 + 42B \implies A \equiv 1 \mod 7$$
, hence reducing modulo 7 we have
 $5^k \cdot 11^\ell \equiv 1 \mod 7 \implies (-2)^k \cdot 4^\ell \equiv 1 \mod 7 \implies 2^{k+2\ell} \equiv (-1)^k \mod 7$

$$\implies 2^{k+2\ell} \equiv -1 \mod 7,$$

using the already established fact that k is odd.

However, by examining the remainders $2^m \mod 7$, for positive integers m, we only obtain the values $\{1, 2, 4\}$. This means the value $-1 \mod 7$ is not possible, thus obtaining a contraction.

To see the last claim about $2^m \mod 7$, write m = 3q + r for $r \in \{0, 1, 2\}$. Then

$$2^m = 2^{3q+r} = 8^q \cdot 2^r \equiv 1 \cdot 2^r \mod 7$$

and note that $2^r \in \{1, 2, 4\}$ if r = 0, 1, 2.

Part II Honors Math Contest 2016