58th ANNUAL HIGH SCHOOL HONORS MATHEMATICS CONTEST

April 18, 2015
on the campus of the
University of California, San Diego

PART II
SOLUTIONS

1. Let a, b be integers such that $|1+a b|<|a+b|$. Prove that either a or b is equal to 0 .

Solution. Assume that $|1+a b|<|a+b|$. Then $(1+a b)^{2}<(a+b)^{2}$ and thus $1+a^{2} b^{2}-a^{2}-b^{2}<0$. This can be rewritten as $\left(1-a^{2}\right)\left(1-b^{2}\right)<0$. Hence, one of $1-a^{2}$ and $1-b^{2}$ is >0 and the other is <0. For the sake of argument, suppose it is a which satisfies $1-a^{2}>0$. Thus $a^{2}<1$. Since a is an integer, so is a^{2}, and thus $a=0$.
2. The fractal below is formed by starting with an outer square of edge length 1 . Lines are drawn between each vertex of this square and the midpoint of the side two steps counterclockwise of it. These four lines form a smaller square in the middle and this process in repeated on this square, producing a new square on which the process is repeated and so on. A spiral is then drawn as shown connecting a vertex of each square to a corresponding vertex of the next smaller one. What is the total length of the spiral?

Solution. The answer is $\frac{1+\sqrt{5}}{2}$.
Consider the diagram below consisting of an edge $A C$ of one of the squares in our figure and a corresponding edge $D E$ of the next smaller square. Let B be the midpoint of $A C$. Since the lines $C E$ and $B D$ run along opposite sides of the small square, they must be parallel. Therefore since $B D$ bisects $A C$, it must also bisect $A E$, thus $A D=D E$. By rotational symmetry it must be the case that $A D=E C$. Consider the right triangle $A E C$. The legs have length $D E$ and $2 D E$, therefore by the Pythagorean Theorem, we have that $A C=\sqrt{5} D E$. Therefore the ratio of side lengths of consecutive squares in the figure is $\sqrt{5}$.

Next suppose that $A C$ were an edge of the original square and $A E$ the first segment in the spiral. We have by the above that $A E=2 D E=\frac{2}{\sqrt{5}} A C=\frac{2}{\sqrt{5}}$. Thus, the length of the first segment is $\frac{2}{\sqrt{5}}$. The length of each subsequent segment is small than the
previous by a factor of $\sqrt{5}$. Therefore, the total length of the spiral is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{2}{\sqrt{5}^{n+1}} & =\frac{2 / \sqrt{5}}{1-1 / \sqrt{5}} \\
& =\frac{2}{\sqrt{5}-1} \\
& =\frac{2(1+\sqrt{5})}{5-1} \\
& =\frac{1+\sqrt{5}}{2}
\end{aligned}
$$

3. Let n be a positive integer. Determine all functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ which satisfy $|f(a)-f(b)| \geqslant|a-b|$, for all $a, b \in\{1,2, \ldots, n\}$.

Solution. Putting $a=n$ and $b=1$, we get that $|f(n)-f(1)| \geqslant n-1$. Note that if $a, b \in\{1,2, \ldots, n\}$ then $|a-b| \geqslant n-1$ if and only if $\{a, b\}=\{1, n\}$. We deduce that either (1) $f(n)=n$ and $f(1)=1$, or (2) $f(n)=1$ and $f(1)=n$.
Assume first that we are in case (1), and let $1 \leqslant a \leqslant n$. Then by applying the given inequality to the pairs $(a, 1)$ and (a, n), we get that $|f(a)-1| \geqslant a-1$ and $|f(a)-n| \geqslant(n-a)$. Since $1 \leqslant f(a) \leqslant n$, we can rewrite these inequalities as $f(a) \geqslant a$ and $f(a) \leqslant n-(n-a)=a$. Thus, $f(a)=a$, for all $a \in\{1,2, \ldots, n\}$.
In case (2), define $g:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ by letting $g(a)=(n+1)-f(a)$. Then $|g(a)-g(b)|=|f(a)-f(b)| \geqslant|a-b|$, for all $a, b \in\{1,2, \ldots, n\}$, and $g(1)=1$ and $g(n)=n$. Thus, by the first case, we get that $g(a)=a$ and hence $f(a)=n+1-a$, for all $a \in\{1,2, \ldots, n\}$.
4. Consider the set \mathcal{P} of all points in the plane with integer coordinates. First, two points A, B of \mathcal{P} are painted black. A new point in \mathcal{P} is painted black provided it lies on some circle of rational radius passing through two other black points.
Show that either infinitely many points of \mathcal{P} will be painted black, or else no point of \mathcal{P} other than A and B will be painted black. Furthermore, show that both situations can occur.

Solution. We assume first that at least one other point of \mathcal{P} is painted black. Once this point exists, we argue that the number of black points is infinite. Let R be a back point in \mathcal{P} constructed from a pair of old black points (P, Q) in \mathcal{P}. Thus, by assumption the radius of the circle $P Q R$ is rational. We produce a new triple ($P^{\prime}, Q^{\prime}, R^{\prime}$) of black points in \mathcal{P} using the following procedure.
We can form a triangle $P^{\prime} Q^{\prime} R^{\prime}$ so that P, Q, R are midpoints of the sides $Q^{\prime} R^{\prime}, P^{\prime} R^{\prime}, P^{\prime} Q^{\prime}$ respectively. The construction is the following: we consider lines through P, Q, R parallel to the sides of $Q R, P R, P Q$ respectively, and let $P^{\prime}, Q^{\prime}, R^{\prime}$ denote the intersection points. We claim that:

- the points $P^{\prime}, Q^{\prime}, R^{\prime}$ have integer coordinates. To see this, consider the parallelogram $P Q P^{\prime} R$, so that the coordinates of P^{\prime} are computed as

$$
P^{\prime}=Q+R-P
$$

which must be integer;

- the radii of the circles through $P^{\prime} Q R, Q^{\prime} P R, R^{\prime} P Q$ are all equal to that of the circle through $P Q R$, since these triangles are all congruent. Since $P Q R$ has rational radius, the other three circles must have rational radius as well. As P, Q, R are already painted black, this implies that $P^{\prime}, Q^{\prime}, R^{\prime}$ are also painted black.

However, the triangle $P^{\prime} Q^{\prime} R^{\prime}$ has area 4-times as big as the area of $P Q R$. Continuing in this fashion we obtain bigger and bigger triangles with black vertices, each containing the previous one, proving that we have infinitely many black points.

If $A(0,0)$ and $B(2,0)$ are initially painted black, then a third point painted black will be $C(1,1)$ since the circle through $A B C$ has radius equal 1 . By what we proved above, then this will guarantee that infinitely many points of \mathcal{P} will be painted black.

If $A(0,0)$ and $B(1,0)$ are chosen adjacent, we show no other point is painted black. Indeed, let $C(x, y)$ be the first such point so that the radius of the circle through $A B C$ is rational. We will derive a contradiction. Since A, B, C are not collinear, $y \neq 0$. By symmetry, we may assume $x \geq 0$. Otherwise, we can replace C by the point $B^{\prime}(-1-x, y)$. Considering the parallelogram $A B C B^{\prime}$, the circles $A C B$ and $A C B^{\prime}$ have equal rational radii, and A, C are black. Then B^{\prime} would then also be painted black and have non-negative x-coordinate.

We compute the radius R of the circle $A B C$ and show it cannot be rational, thus deriving the desired contradiction. First, twice the area of $A B C$ equals

$$
A C \cdot B C \cdot \sin \angle C=\text { base } \cdot \text { height }=2 R \sin \angle C \cdot \text { height, }
$$

using the law of sines in the last equality. Thus

$$
A C \cdot B C=2 R \cdot \text { height }=2 R \cdot|y| \in \mathbb{Q} .
$$

Since

$$
A C^{2}=x^{2}+y^{2}, B C^{2}=(x-1)^{2}+y^{2}
$$

we conclude that

$$
\left(x^{2}+y^{2}\right)\left((x-1)^{2}+y^{2}\right)
$$

is the square of a rational number. Since x, y are integers, this expression must be the square of an integer. Let d be the greatest common divisor of $x^{2}+y^{2}$ and $(x-1)^{2}+y^{2}$, so that

$$
x^{2}+y^{2}=d U,(x-1)^{2}+y^{2}=d V
$$

for some positive integers $(U, V)=1$. Since the product $\left(x^{2}+y^{2}\right)\left((x-1)^{2}+y^{2}\right)=$ $d^{2} U V$ is a perfect square, it follows $U V$ is a perfect square. Since U, V have no common factors, all prime factors of U and V appear with even exponents, or in other words $U=u^{2}, V=v^{2}$ for $u, v>0$. Therefore,

$$
x^{2}+y^{2}=d u^{2},(x-1)^{2}+y^{2}=d v^{2} .
$$

Subtracting we find

$$
2 x-1=d\left(u^{2}-v^{2}\right) .
$$

- If $x=0$, we obtain $d=1, u^{2}-v^{2}=-1 \Longrightarrow(u-v)(u+v)=-1 \Longrightarrow v-u=$ $u+v=1 \Longrightarrow u=0, v=1 \Longrightarrow y=0$, contradicting $y \neq 0$ shown above.
- If $x>0$, then $2 x-1>0$ hence $d\left(u^{2}-v^{2}\right)>0 \Longrightarrow u>v \Longrightarrow u \geq v+1$. This gives

$$
2 x-1=d\left(u^{2}-v^{2}\right) \geq d\left((v+1)^{2}-v^{2}\right)=d(2 v+1) \geq 2 d v+1 \Longrightarrow x \geq d v+1 .
$$

But $(x-1)^{2}+y^{2}=d v^{2}$ and $y \neq 0$ hence $x<1+\sqrt{d} v$. This contradicts $x \geq d v+1$.
This contradiction shows that only A and B are painted black.

