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1. Let a, b be integers such that |1 + ab| < |a+ b|. Prove that either a or b is equal to 0.

Solution. Assume that |1 + ab| < |a + b|. Then (1 + ab)2 < (a + b)2 and thus
1 + a2b2 − a2 − b2 < 0. This can be rewritten as (1 − a2)(1 − b2) < 0. Hence, one
of1− a2 and 1− b2 is > 0 and the other is < 0. For the sake of argument, suppose it
is a which satisfies 1 − a2 > 0. Thus a2 < 1. Since a is an integer, so is a2, and thus
a = 0.
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2. The fractal below is formed by starting with an outer square of edge length 1. Lines
are drawn between each vertex of this square and the midpoint of the side two steps
counterclockwise of it. These four lines form a smaller square in the middle and this
process in repeated on this square, producing a new square on which the process is
repeated and so on. A spiral is then drawn as shown connecting a vertex of each
square to a corresponding vertex of the next smaller one. What is the total length of
the spiral?

Solution. The answer is 1+
√
5

2
.

Consider the diagram below consisting of an edge AC of one of the squares in our
figure and a corresponding edge DE of the next smaller square. Let B be the mid-
point of AC. Since the lines CE and BD run along opposite sides of the small
square, they must be parallel. Therefore since BD bisects AC, it must also bisect
AE, thus AD = DE. By rotational symmetry it must be the case that AD = EC.
Consider the right triangle AEC. The legs have length DE and 2DE, therefore by
the Pythagorean Theorem, we have that AC =

√
5DE. Therefore the ratio of side

lengths of consecutive squares in the figure is
√
5.

A B C

D

E

Next suppose that AC were an edge of the original square and AE the first segment
in the spiral. We have by the above that AE = 2DE = 2√

5
AC = 2√

5
. Thus, the length

of the first segment is 2√
5
. The length of each subsequent segment is small than the
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previous by a factor of
√
5. Therefore, the total length of the spiral is

∞∑
n=0

2
√
5
n+1 =

2/
√
5

1− 1/
√
5

=
2√
5− 1

=
2(1 +

√
5)

5− 1

=
1 +
√
5

2
.
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3. Let n be a positive integer. Determine all functions f : {1, 2, ..., n} → {1, 2, ..., n}
which satisfy |f(a)− f(b)| > |a− b|, for all a, b ∈ {1, 2, ..., n}.

Solution. Putting a = n and b = 1, we get that |f(n) − f(1)| > n − 1. Note that if
a, b ∈ {1, 2, ..., n} then |a − b| > n − 1 if and only if {a, b} = {1, n}. We deduce that
either (1) f(n) = n and f(1) = 1, or (2) f(n) = 1 and f(1) = n.

Assume first that we are in case (1), and let 1 6 a 6 n. Then by applying the
given inequality to the pairs (a, 1) and (a, n), we get that |f(a) − 1| > a − 1 and
|f(a) − n| > (n − a). Since 1 6 f(a) 6 n, we can rewrite these inequalities as
f(a) > a and f(a) 6 n− (n− a) = a. Thus, f(a) = a, for all a ∈ {1, 2, ..., n}.
In case (2), define g : {1, 2, ..., n} → {1, 2, ..., n} by letting g(a) = (n+1)− f(a). Then
|g(a) − g(b)| = |f(a) − f(b)| > |a − b|, for all a, b ∈ {1, 2, ..., n}, and g(1) = 1 and
g(n) = n. Thus, by the first case, we get that g(a) = a and hence f(a) = n+1− a, for
all a ∈ {1, 2, ..., n}.
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4. Consider the set P of all points in the plane with integer coordinates. First, two
points A,B of P are painted black. A new point in P is painted black provided it
lies on some circle of rational radius passing through two other black points.

Show that either infinitely many points ofP will be painted black, or else no point of
P other than A and B will be painted black. Furthermore, show that both situations
can occur.

Solution. We assume first that at least one other point of P is painted black. Once
this point exists, we argue that the number of black points is infinite. Let R be
a back point in P constructed from a pair of old black points (P,Q) in P . Thus,
by assumption the radius of the circle PQR is rational. We produce a new triple
(P ′, Q′, R′) of black points in P using the following procedure.

We can form a triangle P ′Q′R′ so that P,Q,R are midpoints of the sides Q′R′, P ′R′, P ′Q′

respectively. The construction is the following: we consider lines through P,Q,R
parallel to the sides of QR, PR, PQ respectively, and let P ′, Q′, R′ denote the inter-
section points. We claim that:

– the points P ′, Q′, R′ have integer coordinates. To see this, consider the parallel-
ogram PQP ′R, so that the coordinates of P ′ are computed as

P ′ = Q+R− P

which must be integer;

– the radii of the circles through P ′QR, Q′PR, R′PQ are all equal to that of the
circle through PQR, since these triangles are all congruent. Since PQR has
rational radius, the other three circles must have rational radius as well. As
P,Q,R are already painted black, this implies that P ′, Q′, R′ are also painted
black.

However, the triangle P ′Q′R′ has area 4-times as big as the area of PQR. Contin-
uing in this fashion we obtain bigger and bigger triangles with black vertices, each
containing the previous one, proving that we have infinitely many black points.

If A(0, 0) and B(2, 0) are initially painted black, then a third point painted black
will be C(1, 1) since the circle through ABC has radius equal 1. By what we proved
above, then this will guarantee that infinitely many points ofP will be painted black.

If A(0, 0) and B(1, 0) are chosen adjacent, we show no other point is painted black.
Indeed, let C(x, y) be the first such point so that the radius of the circle through
ABC is rational. We will derive a contradiction. Since A,B,C are not collinear,
y 6= 0. By symmetry, we may assume x ≥ 0. Otherwise, we can replace C by the
point B′(−1 − x, y). Considering the parallelogram ABCB′, the circles ACB and
ACB′ have equal rational radii, and A,C are black. Then B′ would then also be
painted black and have non-negative x-coordinate.
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We compute the radius R of the circle ABC and show it cannot be rational, thus
deriving the desired contradiction. First, twice the area of ABC equals

AC ·BC · sin∠C = base · height = 2R sin∠C · height,

using the law of sines in the last equality. Thus

AC ·BC = 2R · height = 2R · |y| ∈ Q.

Since
AC2 = x2 + y2, BC2 = (x− 1)2 + y2

we conclude that
(x2 + y2)((x− 1)2 + y2)

is the square of a rational number. Since x, y are integers, this expression must be the
square of an integer. Let d be the greatest common divisor of x2+y2 and (x−1)2+y2,
so that

x2 + y2 = dU, (x− 1)2 + y2 = dV

for some positive integers (U, V ) = 1. Since the product (x2 + y2)((x − 1)2 + y2) =
d2UV is a perfect square, it follows UV is a perfect square. Since U, V have no
common factors, all prime factors of U and V appear with even exponents, or in
other words U = u2, V = v2 for u, v > 0. Therefore,

x2 + y2 = du2, (x− 1)2 + y2 = dv2.

Subtracting we find
2x− 1 = d(u2 − v2).

– If x = 0, we obtain d = 1, u2 − v2 = −1 =⇒ (u− v)(u+ v) = −1 =⇒ v − u =
u+ v = 1 =⇒ u = 0, v = 1 =⇒ y = 0, contradicting y 6= 0 shown above.

– If x > 0, then 2x− 1 > 0 hence d(u2 − v2) > 0 =⇒ u > v =⇒ u ≥ v + 1. This
gives

2x− 1 = d(u2 − v2) ≥ d((v + 1)2 − v2) = d(2v + 1) ≥ 2dv + 1 =⇒ x ≥ dv + 1.

But (x−1)2+y2 = dv2 and y 6= 0 hence x < 1+
√
dv. This contradicts x ≥ dv+1.

This contradiction shows that only A and B are painted black.
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