
57th ANNUAL
HIGH SCHOOL HONORS MATHEMATICS CONTEST

April 19, 2014
on the campus of the

University of California, San Diego

PART II: Solutions



1. Alice and Bob each have a bag of 9 balls. The balls in each bag are numbered from 1
to 9. Alice and Bob each remove one ball uniformly at random from their own bag.
Let a be the sum of the numbers on the balls remaining in Alice’s bag. Let b be the
sum of the numbers on the balls remaining in Bob’s bag. Determine the probability
that a and b differ by a multiple of 4.

Solution. Suppose that Alice removes the ball numbered x from her bag and that
Bob removes the ball numbered y from his bag. Then

a = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9− x = 45− x, and
b = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9− y = 45− y.

Hence, a − b = (45 − x) − (45 − y) = y − x. Since 1 ≤ x, y ≤ 9, it follows that
−8 ≤ y − x ≤ 8. Hence, in order for a − b = y − x to be a multiple of 4, it must be
one of 0, ±4, or ±8.

As Alice and Bob each choose 1 ball uniformly randomly from amongst 9, the prob-
ability in question is equal to n

92
, where n is the number of pairs (x, y) for which

x− y ∈ {0,±4,±8}. We proceed to count these now.

• If x−y = 0, then x = y, meaning we have the pairs (x, y) = (1, 1), (2, 2), . . . , (9, 9),
9 in total.

• If x − y = 4, then x > y; since x ≤ 9 and y ≥ 1, the possible pairs are (x, y) =
(5, 1), (6, 2), (7, 3), (8, 4), (9, 5), giving a total of 5. If x − y = −4, this is just
the same as the above case with the roles of x and y reversed, giving the 5
possibilities (x, y) = (1, 5), (2, 6), (3, 7), (4, 8), (5, 9).

• If x− y = 8, there is only one possibility: (x, y) = (9, 1). If x− y = −8, the only
possibility is (x, y) = (1, 9).

Hence, n = 9 + 5 + 5 + 1 + 1 = 21, and therefore the probability is 21
81

=
7

27
.
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2. Suppose that x ∈ Q is a rational number with the property that x2 − x ∈ Z is an
integer. Prove that, in fact, x ∈ Z is an integer.

Solution. Let a = x2 − x; we know that a ∈ Z. Thus, the rational number x satisfies
the quadratic equation x2 − x − a = 0. The general solutions of this equation are
x = 1

2
± 1

2

√
1 + 4a. Now, since a ∈ Z, 1 + 4a ∈ Z as well; hence, in order for x to be

rational, it must be true that 1 + 4a is a perfect square: 1 + 4a = k2 for some integer
k. Since 1 + 4a is odd, k is odd. Thus x = 1

2
(1 ± k) for an odd integer k; it follows

that x is an integer.
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3. In triangle ABC, AB = BC = 25 and AC = 30. The circle with diameter BC
intersects AB at X and AC at Y . Determine the length of XY .
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(b) In triangle ABC, AB BC= = 25 and AC = 30. The
circle with diameter BC  intersects AB at X and AC  at
Y.  Determine the length of XY .
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Solution 1
Join BY .  Since BC  is a diameter, then ∠ = °BYC 90 .
Since AB BC= , ∆ ABC  is isosceles and BY  is an
altitude in ∆ ABC , then AY YC= = 15.
Let ∠ =BAC θ .
Since ∆ ABC  is isosceles, ∠ =BCA θ .
Since BCYX  is cyclic, ∠ =BXY 180 – θ and so
∠ =AXY θ .

θ θ

θ
25

15 15

 B

 X

 A Y C
Thus ∆ AXY  is isosceles and so XY AY= = 15.
Therefore XY = 15.

Solution 2
Join BY .  ∠ = °BYC 90  since it is inscribed in a
semicircle.
∆ BAC is isosceles, so altitude BY  bisects the
base.

Therefore BY = =25 15 202 2– .
Join CX .  ∠ = °CXB 90  since it is also inscribed in
a semicircle.
The area of ∆ ABC  is

25

15 15

 B

 X

 A Y C

7
20

24

1
2

AC( ) BY( ) = 1
2

AB( ) CX( )
1
2 30( ) 20( ) = 1

2 25( ) CX( )

CX = 600
25

= 24.

From ∆ ABY  we conclude that cos ∠ = = =ABY
BY
AB

20
25

4
5

.

In ∆ BXY , applying the Law of Cosines we get XY BX BY BX BY XBY( ) = ( ) + ( ) ( )( ) ∠2 2 2 2– cos .
Now (by Pythagoras ∆ BXC),

Solution. Since BC is a diameter, the inscribed triangle BCY is a right triangle.
Since ABC is isosceles, the altitude BY bisects the base, and so Y C = 15. Hence
BY =

√
252 − 152 = 20.

Similarly, BCX is a right triangle. We will determine the length CX as follows: the
area of ABC is given both by 1

2
(AC)(BY ) and by 1

2
(AB)(CX); thus

(30)(20) = (AC)(BY ) = (AB)(CX) = (25)(CX), ∴ CX = 24.

This allows us to compute BX from Pythagoras again: BX =
√
252 − 242 = 7.

The triangle BXY is not a right triangle, but we can use the law of cosines:

(XY )2 = (BX)2 + (BY )2 − 2(BX)(BY ) cos θ = 449− 280 cos θ

where θ = ∠XBY = ∠ABY . Since ABY is a right triangle, we therefore have
cos θ = 20

25
= 4

5
. Hence, we conclude that (XY )2 = 449 − 280 · 4

5
= 225, and hence

XY = 15 .
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4. A school has a row of n open lockers, numbered 1 through n. Starting at the be-
ginning of the row, you walk past and close every second locker until reaching the
end of the row, as shown in the example below. Then you turn around, walk back,
and close every second locker that is still open. You continue in this manner back
and forth along the row, until only one locker remains open. Define f(n) to be the
number of the last open locker. For example, if there are 15 lockers, then f(15) = 11
as shown below.

8. (a) A function is defined by

f(x) =

8
<
:

4 if x < � 4
�x if � 4  x  5
�5 if x > 5

On the grid in the answer booklet, sketch the graph g(x) =
p

25� [f(x)]2. State the
shape of each portion of the graph.

(b) In the diagram, two circles are tangent to each
other at pointB. A straight line is drawn through
B cutting the two circles at A and C, as shown.
Tangent lines are drawn to the circles atA andC.
Prove that these two tangent lines are parallel.

A

B

C

9. The circle (x� p)2 + y2 = r2 has centre C and the circle x2 + (y� p)2 = r2 has centreD.
The circles intersect at two distinct pointsA andB, with x-coordinates a and b, respectively.
(a) Prove that a + b = p and a2 + b2 = r2.
(b) If r is fixed and p is then found to maximize the area of quadrilateral CADB, prove that

either A or B is the origin.
(c) If p and r are integers, determine the minimum possible distance betweenA andB. Find

positive integers p and r, each larger than 1, that give this distance.

10. A school has a row of n open lockers, numbered 1 through n. After arriving at school
one day, Josephine starts at the beginning of the row and closes every second locker until
reaching the end of the row, as shown in the example below. Then on her way back, she
closes every second locker that is still open. She continues in this manner along the row,
until only one locker remains open. Define f(n) to be the number of the last open locker.
For example, if there are 15 lockers, then f(15) = 11 as shown below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�! 1 //////2 3 //////4 5 //////6 7 //////8 9 /////////////10 11 /////////////12 13 /////////////14 15

//////1 3 //////5 7 //////9 11 /////////////13 15  �

�! 3 //////7 11 /////////////15

//////3 11  �

(a) Determine f(50).
(b) Prove that there is no positive integer n such that f(n) = 2005.
(c) Prove that there are infinitely many positive integers n such that f(n) = f(2005).Calculate f(2014).

Solution. To begin, we establish the following recurrence:

f(2m) = f(2m− 1) = 2m+ 1− 2f(m).

To prove this, first consider the case that there are n = 2m lockers. On your first pass,
you close lockers 2, 4, 6, . . . , 2m, so the remaining open lockers are 1, 3, 5, . . . , 2m−1.
On the other hand, if n = 2m−1, on the first pass you close lockers 2, 4, 6, . . . , 2m−2,
so the remaining lockers are again 1, 3, 5, . . . , 2m − 1. Thus, everything proceeds
exactly the same from here in the two cases, which shows that f(2m) = f(2m− 1).

For the second equality, with n = 2m or 2m − 1, after the first pass the remaining
open lockers are 1, 3, 5, . . . , 2m − 1; the number of open lockers is m. So from here,
you proceed as if there were m lockers, but they’ve been relabeled: 2m − 1 → 1′,
2m− 3→ 2′, . . . ,1→ m′; that is, p′ = 2(m− p) + 1. This means that, if f(m) = p, then
f(2m) = p′ = 2m+ 1− 2p = 2m+ 1− 2f(m), as claimed.

In particular, this means we need only calculate f(n) for odd n; if n is even, f(n) =
f(n − 1). Now, any odd n is equal to either 1 or 3 mod 4. Iterating the recurrence
once, we calculate that

f(4m+ 1) = f(2(2m+ 1)− 1) = 2(2m+ 1) + 1− 2f(2m+ 1)

= 4m+ 3− 2f(2m+ 2)

= 4m+ 3− 2(2m+ 2 + 1− 2f(m+ 1))

= 4f(m+ 1)− 3.
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Similarly

f(4m+ 3) = f(2(2m+ 2)− 1) = 2(2m+ 2) + 1− 2f(2m+ 2)

= 4m+ 5− 2f(2m+ 2)

= 4m+ 5− 2(2m+ 2 + 1− 2f(m+ 1))

= 4f(m+ 1)− 1.

This allows us to quickly calculate f(2014) iteratively.

f(2014) = f(2013) = f(4 · 503 + 1) = 4f(504)− 3

f(504) = f(503) = f(4 · 125 + 3) = 4f(126)− 1

f(126) = f(125) = f(4 · 31 + 1) = 4f(32)− 3.

We could do this twice more, or we could now use the original recursion to compute
that

f(32) = f(2 · 16) = 2 · 16 + 1− 2f(16) = 33− 2f(16) = 33− 2f(15),

and, as shown in the problem, f(15) = 11, so f(32) = 33 − 22 = 11. We now trace
back: f(126) = 4f(32)− 3 = 4 · 11− 3 = 41; f(504) = 4f(126)− 1 = 4 · 41− 1 = 163;
f(2014) = 4f(504)− 3 = 4 · 163− 3 = 649 .
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